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An antiphased magnetoplasma �MP� mode in a two-dimensional electron gas has been studied by means of
inelastic light-scattering spectroscopy. Unlike the cophased MP mode, it is purely quantum excitation which
has no classic plasma analog. It is found that zero-momentum degeneracy for the antiphased and cophased
modes predicted by the first-order perturbation approach in terms of the electron-electron interaction is lifted.
The zero-momentum energy gap is determined by a negative correlation shift of the antiphased mode. This
shift, observed experimentally and calculated theoretically within the second-order perturbation approach, is
proportional to the effective Rydberg constant in a semiconductor material.
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The unique symmetry properties of the quantum Hall
�QH� electron liquid have stimulated progress in the study of
strongly correlated electron systems in perpendicular mag-
netic field. In particular, it has been discovered that the sim-
plest excitations of a two-dimensional electron gas �2DEG�
are excitons consisting of an electron promoted from a filled
Landau level �LL� and bound to an effective hole left in the
“initial” LL.1–3 Within the exciton paradigm, the physics of
this many-particle quantum system is reduced to a two-
particle problem. This can be solved in an asymptotically
exact way where the parameter rc=EC /��c is considered to
be small. Here EC=�e2 /�lB is the characteristic Coulomb
energy, �c is the cyclotron frequency, and the numerical co-
efficient ��1 represents the averaged renormalization factor
due to the finite thickness of the 2DEG in experimentally
accessible systems. The excitation energy in this approach is
the sum of two terms: �i� a single-electron gap �which is the
Zeeman or cyclotron, or combined one� and �ii� a correlation
shift induced by the electron-electron �e -e� interaction.
Kohn’s renowned theorem dictates that in a translationally
invariant electron system, one of the excitons �magneto-
plasma �MP� mode� has no correlation shift at q=0. This
mode is described by the action of Kohn’s “raising” operator

K̂s
†=�np�

�n+1cn+1,p,�
† cn,p,� on the 2DEG ground state �0�,

where cn,p,� is the Fermi annihilation operator corresponding
to the state �n , p� with the spin index �= ↑ ,↓ �n is the LL
number; p labels the inner LL number, if, e.g., the Landau
gauge is chosen�.4 Yet, Kohn’s theorem does not ban the
existence of another homogeneous MP mode that has a non-
vanishing correlation shift. Precisely two MP modes should
coexist at odd electron fillings ��1 when the numbers of
fully filled spin sublevels differ by unit �see the illustration in
Fig. 1�. The symmetric mode is a cophased �CP� oscillation
of spin-up and spin-down electrons and the antisymmetric
one is an antiphased �AP� oscillation of two spin subsystems.
When calculated to first order in terms of the parameter rc,
Kohn’s mode �the CP magnetoplasmon� has the energy3,5

Es�q� = ��c + �e2q/2� + O�ECq2lB
2� �1�

at small q �qlB	1�. The AP mode is a state orthogonal to

K̂s
†�0�. It has the energy Ea�q�=��c+O�ECq2lB

2� calculated to

first order in rc.
3 Both Coulomb shifts 
s,a=Es,a�0�−��c

thus vanish if calculated up to 	rc. So, within this approxi-
mation, both MP modes turn out to be degenerate at q=0.

Kohn’s MP mode has been a prime subject for cyclotron
resonance studies and the validity of Kohn’s theorem has
been confirmed scores of times.6 It is well established experi-
mentally that homogeneous electromagnetic radiation inci-
dent on a translationally invariant electron system is unable
to excite internal degrees of freedom associated with the
Coulomb interaction, i.e., 
s
0. No similar experiments
have been performed for the AP mode as it is not active in
the absorption of electromagnetic radiation. Recent develop-
ment of Raman-scattering spectroscopy to the point when it
became sensitive to the cyclotron spin-flip and spin-density
excitations7–10 opened the opportunity to employ this spec-
troscopy in the investigation of the AP mode. Here, we report
on a direct observation of the AP mode for a number of odd
electron fillings and show that the theoretically predicted
zero-momentum degeneracy for Kohn’s and AP modes is in
fact lifted due to many-particle correlations. We also show
that the second-order corrections to the excitation energies
accurately reproduce the observed effect. The correlation
shift for the AP mode is nonvanishing and negative at q=0.11

In closing the introductory part it is worth noting: our study
of the splitting between CP and AP modes which appears at

FIG. 1. ILS spectra of Kohn’s �CP� and antiphased �AP� mag-
netoplasma modes taken at �=3. The arrow indicates the cyclotron
energy. The picture illustrates two single-electron transitions at odd
filling factors that when coupled by the Coulomb interaction give
rise to two magnetoplasma modes.
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second and higher order in electron-electron interactions
should not be confused with the first-order splitting which is
band-structure driven but influenced by interactions.12

Several high-quality heterostructures were studied. Each
consisted of a narrow 18–20 nm GaAs /Al0.3Ga0.7As quan-
tum well �QW� with an electron density of �1.2–2.4�
�1011 cm−2. The mobilities were �3–5��106 cm2 /V s—
very high for such narrow QWs. The electron densities were
tuned via the optodepletion effect and were measured by
means of in situ photoluminescence. The experiment was
performed at a temperature of 0.3 K. The QWs were set on a
rotating sample holder in a cryostat with a 15 T magnet. The
angle between the sample surface and the magnetic field was
varied in situ. By continuously tuning the angle, we were
able to increase the Zeeman energy while keeping the cyclo-
tron energy fixed. This reduced thermal spin-flip excitations
through the Zeeman gap. The inelastic light-scattering �ILS�
spectra were obtained using a Ti:sapphire laser tunable above
the fundamental band gap of the QW. The power density was
below 0.02 W /cm2. A two-fiber optical system was em-
ployed in the experiments.13 One fiber transmitted the pump-
ing laser beam to the sample; the second collected the scat-
tered light and guided it out of the cryostat. The scattered
light was dispersed by a Raman spectrograph and recorded
with a charge-coupled device camera. Spectral resolution of
the system was about 0.03 meV.

Narrow QWs were chosen to maximize energy gaps sepa-
rating the size-quantized electron subbands. This mitigated
the subband mixing induced by the tilted magnetic field. Yet,
the mixing effect was important and we put it under close
scrutiny. The influence of the tilted magnetic field on the
cyclotron energy was studied for every QW by measuring the
energies and dispersions for the MP and Bernstein modes.13

Most accurately, this procedure was performed for the nar-
rowest 18 nm QW where the nonlinearity was fairly small.
Besides, it is exactly the 18 nm QW where the correlation

shift reaches its largest value, as it is affected by the QW
width through the renormalization factor �. Therefore, here-
after we will only address the 18 nm QW.

The ILS resonances for both CP and AP modes are shown
in Fig. 1. They have quite different properties. Kohn’s reso-
nance is blueshifted from the cyclotron energy. Its small mo-
menta dispersion is given by Eq. �1�. Experimentally, q is
defined by the orientation of pumping and collecting fibers
relative to the sample surface. It is 0.7�105 cm−1 for the
spectra in Fig. 1. Kohn’s resonance is well broadened be-
cause of linear q dispersion �1� and because the momentum
is effectively integrated in the range of �q	0.6–0.8�
�105 cm−1 due to the finite dimension of the fibers. On the
contrary, the resonance for the AP mode is redshifted and
does not broaden. In fact, we did not see any appreciable
change in the AP mode energy upon varying the momentum
transferred to the 2DEG via the ILS process. This experi-
mental finding agrees with the first-order perturbation theory
of Ref. 3, which predicts a negligible �compared to the ex-
perimental resolution� change in the AP mode energy at
small q, defined by the light momentum. Variation in the AP
shift in the accessible range of magnetic fields and electron
densities is also within the experimental uncertainty. Since
dimensional analysis of second-order Coulomb corrections
to the energies of inter-LL excitations yields exactly an in-
dependence of the correlation shift on the magnetic field, we
assume that the origin of the AP shift should be sought
within the second-order perturbation theory.8,14

The redshift for the AP mode at odd � �QH ferromagnets�
is filling factor dependent; it reduces at larger � �Fig. 2�.
Interestingly its value falls on the same 1 /� curve that de-
scribes the correlation shifts for the antisymmetric mode in
another QH system, namely, that for the cyclotron spin-flip
mode in a spin-unpolarized 2DEG at even � �Fig. 3�. These
two kinds of excitations differ by the total spin quantum

FIG. 2. ILS spectra of the AP magnetoplasma mode �left� and
three Zeeman components of the cyclotron spin-flip mode �right�
taken at odd �left� and even �right� filling factors. The arrows indi-
cate the corresponding cyclotron energies.

FIG. 3. Main picture: correlation shifts for the AP magneto-
plasma mode �solid dots� and for the �S ;Sz�= �1;0� component of
the cyclotron spin-flip mode �open dots�. The solid line shows the
2�
SF

��=2�� /� dependence. In the inset, theoretical values for �
SF� and
�
a� at �=2 and �=3 found for the self-consistently computed form
factor F�q� �triangles� and for the strict 2D limit F�q�=1 �dia-
monds�. Corresponding functions 2�
SF

��=2�� /� are shown by dashed
and dot-dashed lines. Circles and the solid line represent the experi-
mental data. Illustration of single-electron transitions involved in
the �S ;Sz�= �1;0� component of the cyclotron spin-flip triplet ��
=2,4 ,6 , . . .� and in the AP mode ��=3,5 ,7 , . . .� is given on the
right.
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number: S=0 for the AP mode which is a spinless magneto-
plasmon and S=1 for the cyclotron spin-flip mode. The latter
splits into three Zeeman components with different spin pro-
jections along the magnetic field. As a consequence, in the
experimental spectra of Fig. 2 a single ILS resonance corre-
sponds to the AP mode, whereas the cyclotron spin-flip mode
is represented by the Zeeman triplet. The e -e correlation
nature of redshift for the cyclotron spin-flip mode is con-
firmed theoretically in our previous publications8,14 and here
we employ a similar approach to calculate the AP shift at �
=3.

Our technique is a variation in the standard perturbative
technique,15 although it has some special features. The first is
the usage of the excitonic representation,14,16 where the basis
of exciton states is employed instead of degenerate single-
electron LL states. Second, in the development of the pertur-
bative approach, one is forced to use a nonorthogonal basis
of two-exciton states. These are created by action of the in-
teraction Hamiltonian on the single-exciton basis, when con-
sidering first-order corrections to the exciton states. The third
feature lies in calculating the correlation shift counted from
the ground-state energy and the latter also has to be taken
into account up to the second-order corrections.

Because of the twofold degeneracy of the q=0 MP states,
we have to employ two single-exciton states as a bare basis
set. As a result, we come to a 2�2 secular equation. The
bare states are �X↓�=Q

0̄1̄

† �0� and �X↑�=Q12
† �0�, where Qmk

†

=Qmkq
† �q=0, and Qmk

† =Qmkq
† �q=0, and the exciton operators are

defined, e.g., as14,16,17

Qmkq
† =

1
�N�

�
p

e−iqxpck,p+qy/2,↑
† cm,p−qy/2,↑ �2�

�Qmkq
† differs by changing ↑ to ↓ in the right-hand side�; q is

measured in units of 1 / lB and N� is the LL degeneracy num-
ber. The commutation rules of exciton operators define a

special Lie algebra. Considering Ĥint as a part of the inter-
action Hamiltonian relevant to the calculation of the second-
order energy corrections, we present it as a combination of
two-exciton operators,

Ĥint =
e2

2�lB
�

n1,n2,q
m1,m2

�Ĥn1n2q
m1m2

↓↓†

+ 2Ĥn1n2q
m1m2

↓↑†

+ Ĥn1n2q
m1m2

↑↑† � , �3�

where Ĥn1n2q
m1m2

↓↑†

=V�q�hm1n1
�q�hm2n2

�−q�Qm1n1q
† Qm2n2−q

† ,

2V�q� is the dimensionless two-dimensional �2D� Fourier
component of the Coulomb potential, hmn�q�
= �m ! /n!�1/2e−q2/4�q−�n−mLm

n−m�q2 /2� �Lm
n is the Laguerre

polynomial, q�= �
i

�2
�qx� iqy��. Expressions for first and

third operators in parentheses in Eq. �3� differ from the ex-

pression for Ĥ. . .
↓↑†

by replacement of Q† operators’ indexes:

m2n2→m2n2 and m1n1→m1n1, correspondingly. Besides, we

may define that Ĥ. . .
↑↓†


 Ĥ. . .
↓↑†

. As a result of a consistent per-
turbative study, we find that the correct zero-order MP states
C↓�X↓�+C↑�X↑� and the correlation shifts are obtained from
the equation

EC� = �
��

C��M���, �4�

where the quantities M���
�1� = X��Ĥint�X���−E0

�1���,�� calcu-
lated within the first-order approximation vanish �E0

�1� is the
ground-state energy calculated to the first order�; whereas the
second-order approximation yields

M↓↓ = −
�e2/�lB�2

4��c
�

�1,�2

�
n1,n2,q
m1,m2

�
n1�,n2�,q�
m1�,m2�

�0��Q0̄1̄,Ĥn1�n2�q�
m1�m2�

�1�2 ��Ĥn1n2q
m1m2

�1�1†
,Q

0̄1̄

† ��0�

n1 + n2 − m1 − m2
+ N�

−1/2

0�Ĥn1�n2�q�
m1�m2�

�1�2 �Q0̄0̄ − Q1̄1̄,Ĥn1n2q
m1m2

�1�1†��0�

n1 + n2 − m1 − m2

� . �5�

The LL number indexes ni ,ni� and mi ,mi� run from zero to
infinity; however, only terms for which n1+n2−m1−m2=n1�
+n2�−m1�−m2��1 contribute to the total sum �5�. �Other
terms, being not subject to this condition, have zero numera-
tors.� The expression for another diagonal matrix element
M↑↑ differs from Eq. �5� by replacements Q0̄1̄→Q12, Q

0̄1̄

†

→Q12
† , Q0̄0̄→Q11, and Q1̄1̄→Q22; whereas the nondiagonal

element M↓↑ differs from expression �5� by the absence of
the second term in parentheses and the change from Q

0̄1̄

†
to

Q12
† in the first term. Correspondingly, M↑↓ is also obtained

by omitting the second term and replacing Q0̄1̄ with Q12.
Analysis shows that M↓↑
M↑↓, as it should be �both values
are real�.

Fortunately, the symmetry of the system and Kohn’s theo-
rem simplify the calculations a great deal. First, note that one

solution of Eq. �4� is actually known. Indeed, the CP mag-
netoplasma mode in the zero order is written as K̂s�0�

�N���X↓�+�2�X↑��. Therefore, substituting C↓=1, C↑=�2,
and E=
s
0 into Eq. �4�, we obtain two necessary identi-
ties: M↓↑
−M↓↓ /�2 and M↑↑
M↓↓ /2.18 Another root of the
secular equation det�M�1�2

−E��1,�2
�=0 is just the correlation

shift for the AP mode and thus expressed in terms of the only
matrix element �5�: E=
a=3M↓↓ /2. Second, considerable
simplifications occur in the calculations associated with Eq.

�5�. It is evident that the Ĥ. . .
↑↑†

terms commuting with Q op-
erators in Eq. �5� do not contribute to the result. However,

due to Kohn’s theorem, the Ĥ. . .
↓↓†

operators do not contribute
either. Indeed, consider our ground state as a direct product
of two fully polarized ground states: �0�
�0↓� � �0↑�. Here
�0↓� is the �=1 ground state with a positive g factor and �0↑�
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is the �=2 QH ferromagnet realized in the situation when the
g factor is negative, but the Zeeman gap is larger than the

cyclotron gap. In Eq. �5� all terms with the Ĥ. . .
↓↓†

operators act
only on the �=1 ground state and—taken together—yield
zero because the sum of these terms would constitute the q
=0 correlation shift of Kohn’s mode for the �=1 QH ferro-
magnet.

Substituting the terms Ĥ. . .
↓↑†

and Ĥ. . .
↑↓†

into Eq. �5� and cal-
culating the commutators according to commutation rules for
exciton operators,14 one finds


a = −
3me

�e4

2�2�2�
0

�

qdqV�q�2G�q� , �6�

where

G�q� = �
n2=2

� � �h1n2
�2�h00

2 − 2h00h11�

n2 − 1

+
�h0n2

�2�h00
2 − 2h00h11� − �h01h1n2

�2

n2
−

�h01h0n2
�2

n2 + 1

+ �
n1=1

� � �h1n1
h1n2

�2

n1 + n2 − 2
+

�h1n1
h0n2

�2 − �h0n1
h1n2

�2

n1 + n2 − 1

−
�h0n1

h0n2
�2

n1 + n2
�� . �7�

We emphasize that this result for 
a includes all contribu-
tions to the second-order correction. In Eq. �7�, terms con-
taining only squared moduli of the h functions yield the di-
rect Coulomb contribution. Terms containing ¯h00h11 are of
the exchange origin. �Thus the exchange contribution to the
correlation shift is positive.�

In the strict 2D limit V�q�=1 /q, and the correlation shift
�6� and �7� is equal to −0.1044 if expressed in the 2Ry�

=me
�e4 /�2�2�11.34 meV units. This value is nearly 2/3 of

the correlation shift for the �=2 cyclotron spin-flip mode


SF=−0.1534,14 which is in surprisingly good agreement
with the experimental 1 /� dependence. Finally, substituting
V�q�=F�q� /q into Eq. �6�, one obtains a numerical result for
the correlation shift of the zero-momentum AP mode at �
=3 �see Fig. 3�. Here, the form factor F�q� is calculated with
the usual self-consistent procedure.19 The calculation result
looks quite satisfactory compared to the ILS data, if one
takes into account that under specific experimental condi-
tions the quantity rc can only be considered as a “small pa-
rameter” with great reserve.

To conclude, we outline the general meaning of the pre-
sented results. It is known that optical methods �including
ILS�, being in practice the only tool for direct study of co-
operative excitations in a correlated 2DEG, suffer from an
inevitable disadvantage: small momenta of studied excita-
tions are far off the interesting region, corresponding to in-
verse values of mean electron-electron distance. Besides,
studying the symmetric MP spectra, one only comes to the
results well described by the classical plasma formula �1�,
which can be rewritten as Es /���c+�p

2 /2�c ��p to denote
the 2D plasma frequency�. Therefore the CP magnetoplasma
modes are actually classical plasma oscillations irrelevant to
any quantum effects. Contrary to this, homogeneous but an-
tisymmetric modes, namely, the AP mode in a QH ferromag-
net and the cyclotron spin-flip mode in an unpolarized QH
system are quantum excitations even at zero q—related to
the existence of both the spin-up and spin-down subsystems.
The correlation shift, measured in effective rydbergs, repre-
sents therefore a purely quantum effect. In particular, it in-
cludes exchange corrections, which can be taken into ac-
count neither by classical plasma calculations nor by the
random-phase approximation �RPA� approach. Quantum ori-
gin, common for both types of antisymmetric excitation,
seems to be a reason why both second-order correlation
shifts are empirically well described by the same 1 /� depen-
dence shown in Fig. 3.
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