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In the past several years, optical metamaterials (MMs) have attracted a considerable deal of interest because
it may be anticipated that their properties can be shaped to an unprecedented extent relieving optics from some
of its natural limitations. An inevitable first step toward this goal is the evaluation of the optical properties of
specifically designed MMs. To date, apart from identifying chiral properties of very specific configurations, this
is primarily done in retrieving an effective refractive index—mostly—only for normal incidence. On this basis
suggestions for a perfect lens, exploiting this negative refractive index have been put forward by taking
advantage of geometrical optics arguments. We show that this approach is pointless for realistic MMs. Instead
we prove that the dispersion relation of normal modes in these MMs provides all the required information.
Most of the relevant optical parameters, such as refraction and diffraction coefficients, can be derived from this
relation. Imaging properties follow straightforwardly from that data. This general approach holds for any
optical material, in particular, for all MMs in question. As an example, we apply it to the fishnet structure: one
of the most prominent and best studied design approaches to date. We show that both refraction and diffraction
properties are strongly spatially and temporally dispersive and they can even change sign. In detail, we study
the effect of these peculiarities on imaging and refraction of finite beams. In particular, we discuss both the
effect of the specific dispersion relation and the losses on the imaging properties. All our physical predictions
are backed by rigorous numerical calculations and the agreement is almost perfect. Ultimately the main
conclusion to be drawn is that a negative index of refraction is by no means a sufficient criterion to achieve

negative refraction and/or perfect imaging.
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I. INTRODUCTION

Optical metamaterials (MMs) are a class of artificial mat-
ter that primarily derive its properties from intentionally de-
signed geometrical features of periodically arranged unit
cells rather than from the intrinsic material properties of its
constituents. Exploiting this freedom in design, MMs are ex-
pected to have the potential to realize promising optical de-
vices with unprecedented properties and numerous applica-
tions such as the perfect lens' or the cloaking device.” At
present, the description of light propagation in such media is
frequently simplified. This simplification relies on the argu-
ment that the spatial details of the unit cells are not resolved
by the propagating field if A >a,, where a.. is a characteristic
length of the underlying nanostructure, i.e., the unit-cell size.
In this case, the medium is effectively homogenized and the
fairly cumbersome rigorous description of light propagation
can be avoided by assigning effective parameters to the me-
dium. Investigating the reflection/transmission behavior both
an effective refractive index and an effective impedance can
be calculated.’* In a second step, these parameters, which
are related to a propagating wave in a definite direction (to
date almost exclusively normal to the MM surface), are used
to straightforwardly derive the effective permittivity & and
permeability p.

However, this approach contains some inherent deficien-
cies. First, optical MMs operate in a mesoscopic domain,
which is characterized by a size of the unit cell that is smaller
than—but yet—on the order of the wavelength. This leads
inevitably to the effect that the optical response at a certain
site depends both on the field and its derivative at this site,
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being an indication for spatial dispersion. Second, all effec-
tive parameters derived are related to a certain direction of
wave propagation,”’~’ which means that they are not globally
valid for a certain MM. Hence, aiming at describing any
optical functionality in MMs that requires off-axis propaga-
tion (such as imaging and cloaking), the full dispersion rela-
tion of the MM normal modes, i.e., the Bloch waves in pe-
riodic media, has to be evaluated. The dispersion relation
w(k,,k,.k;) relates frequency and wave vector of these
normal  modes. An  effective refractive  index
n= \e"k)2(+k§+kf/ (w/c) can be easily derived by a simple scal-
ing but yields no further information. As is well known from
the light propagation in other periodically structured optical
media like photonic crystals and waveguide arrays, effects
such as refraction and diffraction for monochromatic fields,
as elements of the image formation process, can be exactly
and easily described by inspecting the dispersion relation at a
fixed frequency , (isofrequency contour), e.g.,
k,(k,ky, ). In doing so, anomalous effects such as negative
and zero diffraction as well as negative refraction have been
identified.>® Here we aim at proceeding along this path by
analyzing the dispersion relation for arbitrary transverse
wave-vector components, i.e., propagation directions, and
studying the consequences for refraction and diffraction in
imaging MMs. From a general point of view, the image for-
mation using a MM slab device requires the compensation of
normal light diffraction in free space by anomalous light dif-
fraction in the MM. Thus, an essential goal is to investigate
the angularly and spectrally dependent diffraction coefficient
of MMs. As shown earlier,®? the diffraction coefficient is
related to the curvature of the isofrequency surface. Its be-
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havior provides the key for understanding the lensing prop-
erty of MMs. In this respect, an optimal MM for imaging
applications should exhibit an isofrequency curve with a
constant negative curvature, i.e., a sphere. Only in this case,
it is permitted and useful to assign a global and constant
negative refractive index. Thus, dealing with mesoscopic
MMs, it is not of any or only of minor importance to have a
medium at hand with a large negative index of refraction that
varies with the propagation direction. It will be shown that,
although the MM exhibits a negative index in the entire an-
gular spectral domain, the diffraction of a beam is normal
and compares to that of a real homogeneous medium. It will
be furthermore shown that the geometrical shift which a
beam experiences upon traversing a MM slab, being a mea-
sure of wide beam refraction, can be either negative or posi-
tive; although the respective effective index is negative. The
sign of this shift can be easily explained by the concrete
shape of the isofrequency surface. Similar observations were
already reported in Ref. 10.

The overall aim of this work is to show that the dispersion
relation of the relevant normal modes in any optical material,
particularly in MMs, is the key for understanding linear in-
teractions of optical beams and pulses with matter. Our main
conclusions are general. Although, the concrete numerical
studies are performed for a three-dimensional (3D) fishnet
structure, the derived conclusions are applicable for other
types of MMs too, as there are, for example, indefinite MMs
exhibiting hyperbolic isofrequency curves.'"'> The rest of
the paper is structured as follows. In Sec. II we calculate the
dispersion relation and the isofrequency curves by using two
different approaches. On this basis, we derive the relevant
quantities for beam propagation such as an inclination and
diffraction coefficient. In Sec. III the image formation by
using a MM slab is predicted in taking advantage of these
studies. These results are compared with fully numerical
simulations. Finally, the refraction of wide beams at MM
slabs is discussed in Sec. IV.

II. DISPERSION RELATION

Because our studies aim at spatial effects such as diffrac-
tion and image formation, we need to calculate the isofre-
quency curves, i.e., the dependence of the longitudinal on the
transverse wave-vector components of the normal modes. In
bulk MMs with periodically arranged unit cells, these normal
modes are Bloch waves. In order to use these MMs as imag-
ing devices, it has to be ensured that only the fundamental
Bloch wave contributes to the transmitted field, i.e., the
higher-order evanescent waves must suffer large losses. It
has been shown that this condition usually holds for bulk
fishnet MMs, whereas in stacked split-ring MMs additional
measures are required to avoid contributions of these higher-
order modes.'? The procedure may be even further facilitated
if the MM can be effectively homogenized. In this effec-
tively homogeneous medium, the relevant normal modes are
plane waves. The justification of treating the medium as an
effective homogenous one can be evaluated in comparing the
results of two distinct approaches. In the first approach, the
exact one—the dispersion relation kf’M(kx,ky;w) of the fun-
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FIG. 1. (Color online) Top: sketch of the fishnet structure under
consideration. Bottom: dispersion relation kz(277)\‘1) and the de-
rived effective refractive index n(2w\~') of the 12 layer fishnet
MM for normal incidence.

damental Bloch mode in an infinite MM—is calculated. In
the second approach, recently presented,® the relation
kfw(kx,ky;w) for plane waves in an effective homogeneous
medium can be derived from the complex reflection and
transmission coefficients of a finite MM slab for arbitrary
transverse wave-vector components (k,,k,). This parameter
retrieval represents an extension of the widely used normal-
incident retrieval.* The reflection and transmission coeffi-
cients are rigorously computed by using the Fourier modal
method (FMM) (Refs. 14—16) for a realized fishnet MM.!”
The latter approach has the advantage that no infinite me-
dium is required, thus it meets better the experimental con-
ditions. A comparison of these alternative approaches results
in almost identical isofrequency curves provided that the
MM thickness exceeds that of four fishnet layers.” Thus, in
what follows, we have calculated the dispersion relation by
taking advantage of the retrieval procedure for the finite slab.

As already mentioned, in order to get more specific with
regard to available structures we have chosen the fishnet
structure as an exemplary system (see the top in Fig. 1). At
present it seems to be one of the most promising approaches
obtaining a MM with the required anomalous refraction and
diffraction properties at optical frequencies. Furthermore, it
was recently shown that bulk fishnet MMs can be fabricated
with available technologies.'® The geometrical data are taken
from the literature'’ and amount to w,=316 nm, w,
=100 nm, AX=Ay=6OO nm, and A ;=200 nm. The fishnet
itself consists of three layers; two metallic layers separated
by a thin dielectric spacer. The metallic layers consist of
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silver with a thickness of 45 nm. The permittivity &,, is
calculated using the Drude formula.!” The dielectric spacer
consists of MgF, with a thickness of 30 nm. Its refractive
index is reasonably assumed to have no dispersion and
amounts to 1.38 in the frequency region of interest. To en-
sure that the derived dispersion relation reflects that of the
bulk (infinitely extended) MM (Ref. 13), 12 layers have been
assumed for the retrieval. The remaining space in the unit
cell in z direction is assumed to be occupied by air, ensuring
that the extension of the unit cell in z direction amounts to
A.. Overall, the whole MM slab device is surrounded by air.
It has to be noted that deviations from this material and
geometric data affect the results only marginally and all
physical conclusions will remain valid.

For the sake of simplicity we assume in the following that
the transverse wave vector of the incident field has only one
component k, along the interface (k,=0). Therefore, we re-
strict ourselves to scenarios with an x-z plane of incidence
and a y-polarized electrical field. Thus, the polarization of
the incident field is identical for all incident angles. For this
polarization the excited structural plasmonic resonance,
which provides the required magnetic properties, is strongest
and occurs in the desired frequency domain. Resonances as-
sociated with an x-polarized electric field occur at higher
frequencies and are irrelevant here. In general, other arrange-
ments of the structure with respect to the illuminating field
would be possible as well but will alter only quantitatively
our conclusions.

Figure 1 shows the frequency dispersion k,(ko=2m\"")
(for practical reasons we use the vacuum wave number k
rather than the frequency) for normal incidence (k,=0). It is
evident that in a certain spectral domain (4.0 um™'<k,
=<4.7 um™"), the real part of the longitudinal wave-vector
component PRe(k,) becomes negative. A formally defined ef-
fective refractive index n= \rki+kf/k0 also exhibits a nega-
tive real part in this domain (see Fig. 1). It attains its mini-
mum value at 4.37 um™'.

To proceed with the analysis of the spatial dispersion re-
lation (isofrequency curves), we selected three frequencies
where detailed investigations have been performed. The
choice of frequencies was motivated by the spectral behavior
of the propagation constant as shown in Fig. 1. The first
value of k;=4.37 um™" (\,=1.437 um) corresponds to the
minimum of PRe(k,) for normal incidence. The two other
frequency values are slightly positively/negatively detuned
from this spectral position, ie., k,=4.52 um™' >k, (\,
=1.389 um) and k3=4.23 um~'<k, (\;=1.486 wum). The
size of detuning permits a meaningful qualitative distinction
in the angular behavior when compared to normal incidence.
This size effects only quantitatively the observations. The
corresponding dispersion relations (isofrequency curves)
k.(k,) are shown in Fig. 2. These curves are symmetric with
respect to k,, i.e., k,(k)=k,(—k,). In this figure, the above
defined effective refractive index is also displayed to under-
line its strong variation with the transverse wave-vector com-
ponent.

The k, component of the wave vector is varied between
zero and 4.2 um~' which approximately corresponds to
grazing incidence from air for the three wavelengths of in-
terest. From Fig. 2 it can be seen that PRe(k,) approaches zero
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FIG. 2. (Color online) Dispersion relation (isofrequency curve)
k(k,) and the effective refractive index n(k,). Blue, solid:
N =1.437 pm; green, dashed dotted: \,=1.389 um; and black,
dashed: N3=1.486 wm. Due to the symmetry of the MM, all curves
are mirror symmetric with respect to &,

for k,—4.2 ,um‘l in all three cases. In this limit, the MM
slab mimics just a diluted metal and does not support any
magnetic resonance. Thus, also larger transverse wave vec-
tors, which apply to evanescent waves of the exciting field
and thus subwavelength structures, do not excite magnetic
resonances at these wavelengths. Hence, the first important
conclusion of this study is that information on subwave-
length structures gets lost and a perfect lens cannot be ob-
tained with this specific fishnet geometry.

Qualitatively, the real part Re(k.) for A; (blue, solid) and
N5 (black, dashed) behaves similar and the respective curves
differ from each other only by a scaling factor. In particular,
both curves exhibit their minimum at normal incidence (k,
=0) and vary monotonically with k.. In stark contrast, for \,
the isofrequency curve k.(k,) exhibits its minimum at k,
=2.60 wm~' and the curve shows a nonmonotonic depen-
dence on k,, having dramatic consequences for the imaging
properties.

III. DIFFRACTION OF BEAMS AND IMAGING
PROPERTIES

A very promising and frequently invoked application of
MMs is the perfect lens. This requires a MM slab with a
unitary impedance, vanishing losses, and a refractive index
of Re(n)=-1 for all transverse wave vectors k,. If losses are
not accounted for, it allows the production of a perfect image
of a monochromatic source located in the front focus of the
MM slab."?° Let us briefly remind the basic properties of a
MM acting as a perfect lens in terms of its dispersion relation
(isofrequency contours). First, it has to exhibit a spherical
isofrequency surface (at least at the operational wavelength)
which provides a constant but anomalous diffraction in the
propagating wave regime. Second, the amplification of eva-
nescent waves is a pure surface-related effect which takes
advantage of the surface states resulting in an effective and
proper gain of all incident evanescent waves. These evanes-
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cent waves are crucial for obtaining subwavelength reso-
lution, which has been already proven in the microwave
domain.”! However, in our considerations we may disregard
them because—as mentioned above—the fishnet structure
under study does not exhibit any magnetic resonances for the
respective large transverse wave vectors in the relevant spec-
tral region. Furthermore, there is another more practical rea-
son why we did not study their influence on image forma-
tion. The limitations imposed on the image quality by the
imperfect (noncircular) dispersion relation exceed by far the
possible effect of missing evanescent waves. In view of the
above arguments, it will suffice to study the performance of
a MM slab as a conventional lens, i.e., without the potential
for subwavelength resolution. Thus it is of primary interest to
analyze the consequences of the noncircular shape of the
isofrequency surfaces as already displayed in Fig. 2.

In the following, we consider the image formation at two
distinct frequencies. The choice was motivated by the pre-
liminary results as discussed in Sec.Il. First, we choose \;
=1.437 pm and second \,=1.389 um because these two
cases turned out to exhibit quite remarkably different disper-
sion curves (see Fig. 2). Results for \; would have been
similar to A, hence this wavelength is omitted.

To investigate its pertinent imaging properties, the field
originating from a finite object at z=0 (the source position in
front of the device) has to be propagated through the MM
and the adjacent domains. In what follows, we assume a
one-dimensional, TE-polarized (E=Ee,) finite field distribu-
tion of a line source as E(x,0)=Ey(x). By using the angular
decomposition of this field Eo(kx)=%7 o dxEy(x)exp(=ik,x),
its propagation to any position z behind the device can be
represented by its angular spectrum as

+o0

E(x,z)= | dk, Eo(kexp{ik; (k,z_)}T(k,)

—o0

X exp{ikfs(kx) (z = z,)exp(ik,x)

=f dk, E(k,;z)exp(ikx), (1)

—o0

with kfs(kx)=v'(w/ c)2—k)2c (the propagation constant in free
space), containing both homogeneous and evanescent com-
ponents. Furthermore, z_ and z, denote the coordinates of the
entrance and exit facets of the MM slab. T(k,) represents its
transmission function relating the input and output fields by
E(k,;z,)=T(k,)E(k,;z_). There are two approaches to derive
this transmission function T(k,). The first one relies on the
rigorous numerical propagation of every angular spectrum
component through the actual nanostructure employing the
FMM. Note that due to the small period of the fishnet struc-
ture, only the zeroth transmitted diffraction order is propa-
gating, whereas the others are evanescent.

The second approach relates the dispersion relation k,(k,)
to an approximated transmission function referred to as
Tp(k,). Provided that T(k,) = Tp(k,), the dispersion relation
can be exploited to predict and explain the imaging proper-
ties of the realistic MM slab. But, how to calculate 7},? Tak-
ing into account that the MM slab introduces a strong damp-
ing, it seems reasonable to assume at first that multiple
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FIG. 3. (Color online) Logarithm of the modulus (left) and the
phase (right) of the transmission coefficient vs k, for
N =1.437 pm. T—blue, solid curve; Tp—red, dotted curve.

reflections of light inside the slab can be neglected. Conse-
quently, the propagation of a plane-wave eigenmode from
the input to the output facet in the MM slab is given by a
simple multiplication with the factor exp{ik,(k,)d}, with d
being the MM thickness. Neglecting furthermore the reflec-
tions at the MM boundaries, the entire transmission coeffi-
cient can be approximated by

Tp(k,) = explik (k,)d}. 2)

Equation (2) provides the desired simple yet approximate
relation between the dispersion relation and the transmission
coefficient of the structure. To evaluate its validity, Figs. 3
and 4 show a comparison between T(k,) and Tp(k,) for both
wavelengths of interest (\;=1.437 wm and \,=1.389 um).

In general, both models coincide very well for either
wavelength. Only near grazing incidence where |T(k,)| tends
to zero (log|T|— —) also qualitative differences can be ob-
served for the two approaches. We attribute these deviations
to Fresnel effects at the MM interfaces neglected in calculat-
ing Tp(k,). We mention that all succeeding numerical studies
concerning the MM imaging properties are performed in us-
ing the rigorously computed transmission coefficient T(k,).
The dispersion relation, and thus T,(k,), will be only used to
back the numerical results by physical arguments. However,
it will turn out that the results of both approaches agree per-
fectly.

Returning to Eq. (2) it is important to note that the ap-
proximated transmission coefficient 7p(k,) entirely mimics
the propagation within a MM over a distance d. All informa-
tion about refraction into the MM and diffraction inside the
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FIG. 4. (Color online) Logarithm of the modulus (left) and the
phase (right) of the transmission coefficient vs k, for
N=1.389 um. T—blue, solid curve; Tp—red, dotted curve.
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MM are provided by the dispersion relation, or more pre-
cisely, the respective isofrequency curves. This concept has
been successfully applied for various periodically structured
media, such as photonic crystals and waveguide arrays, to
explain effects such as superprism action and diffraction-free
propagation.®? Our aim is to apply this concept to MMs too,
although the lossy characteristics of contemporary (optical)
MMs will prevent a complete analogy. Proceeding along this
route, we will shortly summarize the main ideas whereas
adapted quantities, such as diffraction and refraction coeffi-
cients, are defined taking into account the lossy nature of the
underlying media.

Therefore we assume that a monochromatic beam propa-
gates in the positive z direction (z+) and is incident onto the
three-dimensional MM. Its mean propagation direction is de-
noted by k”=(k?,k%)".

The propagation of the beam inside the MM is governed
by the set of excited angular spectrum components. For loss-
less media, the curvature of the isofrequency curve repre-
sents a measure for the sign and strength of diffraction. Thus
we may define a diffraction coefficient (in analogy to the
dispersion coefficient in the temporal domain) as

D) = , (3)

d*Re(k)
ds®> |0

with ds=|dk|. This rather general definition translates into
the more convenient form

PRe(k,)
k>

for an isofrequency curve k.(k,). The diffraction coefficient
evaluated at k'”) is a measure for the spreading or focusing of
the beam along its mean propagation direction. If D <0 dif-
fraction is normal, similar to an ordinary homogeneous me-
dium, and if D >0 it is anomalous, observable, for instance,
in waveguide arrays and photonic crystals. Concerning the
refraction of a beam at an interface between two arbitrary
media 1 and 2 (i.e., air and MM), the transverse wave-vector
component kg has to be conserved. One can furthermore in-
troduce the inclination parameter,

D(K)) =

dRe(k,)

V(%) =
(ky) ko

(5)

which is related to the transverse shift that a beam experi-
ences during propagation. If V<0, the beam is inclined into
the x+ direction and vice versa. Hence, we may consider the
refraction coefficient R(kg):Vl(kg)/ Vz(kg) which is a mea-
sure for refraction between media 1 and 2. The sign of R
distinguishes between normal (R>0) and anomalous (nega-
tive) refraction (R<<0). Thus we may conclude that the de-
pendence of the quantities D, V, and R on the mean propa-
gation vector k© of the normal modes completely reflects
the refraction and diffraction properties of any considered
medium.
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FIG. 5. (Color online) Isofrequency curves [real part of k. (blue,
solid curve)], the inclination parameter (V) (black, dashed curve),
and the diffraction coefficient D (red, dashed-dotted curves) vs the
transverse wave-vector component k,. Left: N\=1.437 um; right:
\,=1.389 um.

Now we return to the analysis of the isofrequency curves
of the considered fishnet structure. Neglecting for a moment
the imaginary part of the longitudinal effective wave-vector
component k, Fig. 5 shows the relevant data. There,
Re[k.(k,)] as well as the diffraction coefficient D(k,) and the
inclination parameter V(k,) are shown for the two wave-
lengths of interest (\;=1.437 um and \,=1.389 um).

It is evident that the diffraction coefficient experiences
rapid variations and even changes sign for both wavelengths.
Moreover, it can be seen that near normal-incidence (k,=0)
anomalous diffraction (D> 0) occurs only for \;, whereas it
is normal for \,. This will have important consequences for
the imaging properties as will be shown later. The inclination
parameter V does not exhibit a simple monotonic behavior in
neither case as it would be expected for an isotropic medium
and it also changes sign for \, at k,=2.6 um~'. As will be
shown in Sec. 1V, this feature will lead to a transition from a
positive to a negative refraction behavior.

Recalling the functionality of the perfect lens, we already
mentioned that anomalous diffraction is required (D>0).
Recalling the dispersion relation of an ideal isotropic
(n==1) MM, k,=sgn(n)\n2k2—k>=—\ka—k>, it is evident
that this model medium precisely fulfills these conditions. It
is this anomalous diffraction which cancels exactly the nor-
mal diffraction of the free space. Choosing the correct focal
distance of the well-known perfect lens configuration (half of
the slab thickness), the total diffractive spreading between
the two focal points disappears. These simple considerations
will facilitate the understanding of image formation and they
will be the key in explaining the realistic imaging properties
of the current fishnet structure operated at wavelengths \;
and \,, respectively. The detailed calculations picking up
these issues will be provided in Sec. III B.

A. Diffraction and imaging of Gaussian beams

In what follows, we assume the z axis as the principal
propagation direction. Without loss of generality, the source
field is assumed to be Gaussian as

115430-5



PAUL et al.

2
Eyx)=A, exp(— %) ,

X

leading to a Gaussian angular spectrum
Eo(k,) < exp(- ki/07), (6)

where 0,=2/0, denotes the angular spectral width.

To characterize the imaging properties, a series of calcu-
lations with a varying spectral width o, was performed for
normally and obliquely incident beams. The waist of the in-
cident beam was located 1.2 wm in front of the MM slab,
which has an overall thickness of 2.4 um corresponding to
12 functional MM layers. In order to clearly distinguish the
impact of different physical effects (damping and varying
diffraction), we will compare three different scenarios char-
acterized by three different MM transmission functions.

The first one is the real scenario which employs the com-
plete complex transmission coefficient Tx(k,)=T(k,), where
all damping effects are accounted for. The second one is the
semireal scenario, where damping is neglected so that effec-
tively only Pe(k,) will be taken into account, i.e., Tsg(k,)
=exp{i arg[T(k,)]d}. The third one serves as a benchmark
and is the semi-ideal scenario, assuming the dispersion rela-
tion of an effectively homogeneous and isotropic material
having n=-1 (circular isofrequency curve). The
complex transmission coefficient is approximated by
Tsi(k,) =exp{-iVw’/c?—k’d} with k*=<w’/c?, representing
essentially the perfect lens except the dropped evanescent
waves.

B. Operating wavelength A,

The fishnet structure operated at a wavelength of
1.437 pm (see left panel of Fig. 5) exhibits an anomalous
diffraction for k,<1.6 um™!, diffraction-free propagation at
k,=1.6 um™', and a normal diffraction beyond this point.
Therefore, it is expected that the MM slab may work as a
lens for normally incident beams with an angular spectrum
|k,|<1.6 um (this corresponds to a beam width of about
1.5)\,). Oblique incidence will lead either to a further spread-
ing or a more complex behavior because some spectral com-
ponents experience normal and some anomalous diffraction.

Table I provides an overview over the widths of the
beams at the image focal position as a function of the spatial
and angular width of the incident beam. The focal position is
identified as the point where the amplitude reaches its unique
maximum at the optical axis.

In the semi-ideal scenario, differences between input and
output width can be clearly attributed to the missing evanes-
cent waves. In the semireal scenario the width becomes
larger than in the semi-ideal one if the angular spectrum
becomes sufficiently broad (Jo|=1/10-27/\,). First, we at-
tribute this difference to the nonconstant curvature of Re(k,),
leading to higher-order diffraction terms, which results in
additional aberrations. These aberrations tend to increase the
width of the image. These effects are very similar to the
temporal propagation characteristics of pulses, where higher-
order dispersion leads to pulse deformation and
broadening.?> Second, as already mentioned before, the dif-
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TABLE I. Calculated beam width (FWHM) in the focal plane of
the MM slab for the different scenarios as described in the main
body of the text for different incident-beam widths. Additionally the
spectral width oy of the input beam is given. No clear focus position
could be identified for the real scenario at o3, =3/3-2/\;.

FWHM
in units of \;

Ok

in 27/ N\, Input Semi-ideal Semireal Real
1710 5.33 5.33 5.33 6.47
1/6 3.21 3.21 3.27 4.86
1/3 1.59 1.59 1.70 3.97
2/3 0.79 0.85 1.32 3.74
1 0.53 0.71 1.21

fraction is only anomalous (as required for focusing) for k,
=<1.6 um~!. Thus proper imaging can be expected as long
as the angular spectrum is not too broad (beam not too nar-
row) (Joy|=1/3-2m/\)).

Now, in order to close the gap between ideal and real
MMs, losses are fully taken into account (last column of
Table I). The smallest achievable focal width amounts to
about 3.74\,. The large deviation to the semireal scenario
may be explained by the strong variations of the imaginary
part Jm(k,) (Fig. 2), causing an inhomogeneous attenuation
of the angular spectrum components. The MM acts essen-
tially as a low-pass filter, which becomes evident in inspect-
ing Fig. 3. The transmitted amplitude has its maximum at
normal incidence (7~ 10~*) dropping rapidly to T~ 1076 for
|k,|=1.7 um™!, where the succeeding increase has no big
effect (see the transmission function in a nonlogarithmic
scale in the right panel of Fig. 6). The full width at half
maximum (FWHM) of this central transmission peak is
about 1.05 um™' corresponding to a spatial beam width
(FWHM) of 5.1 um (Gaussian shape assumed). This value
fits perfectly to the calculations presented in Table I and is
close to the aforementioned limit of about 3.74\;
=5.37 um.

For the sake of visualization of the image formation, Fig.
6 shows the amplitude distribution behind the MM for the
three scenarios (transmission functions), where two different
source widths have been considered. In all cases z=0 coin-
cides with the MM output facet.

The first and third rows display two distinct spectral
widths oy, of the input beam. The upper row belongs to oy
=1/3-2@w/\; (FWHM=1.59\,) and the lower one to oy

It can be clearly seen from Fig. 6 that both focal width
and position differ strongly where the latter changes signifi-
cantly for the transition from the semi-ideal to the semireal
or real scenario, respectively. As expected for the semi-ideal
calculations, the focus is exactly located 1.2 wm behind the
MM slab. For both the semireal and real calculations, the
focal point is shifted further away (~9—11 wum). In the first
approximation, this is caused by the quite large diffraction
coefficient D in the interval of interest (k. <oy
=1/3-2m/\;=1.46 um™") compared to the semi-ideal case.
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FIG. 6. (Color online) Amplitude distributions of the field transmitted through the MM slab at normal incidence for A;=1.437 um. Top
row: source’s FWHM is 1.59\; (0,=1/3-2m/\); bottom row: source’s FWHM is 0.53\; (o=-27/\;). Middle row: phase (blue, solid) as
well as the normalized modulus (red, dashed) of the respective MM slab transmission function. The different columns reflect the three
different transmission functions used to calculate the field distributions. First column: Tg;; second column: Tqr; and third column: Tk.

There, the diffraction coefficient is constant with a value of
D=1/(ko|n|)=1/ky=0.23 um whereby it extends up to D
=1.38 wum (see Fig. 5) for the semireal and real calculations,
respectively. This would require a thinner MM for obtaining
a focal spot near 1.2 wm. It remains to note that already in
the semireal case (without losses) beam distortions are very
strong. This indicates again the crucial effect of the non-
spherical isofrequency curve on the imaging properties.

C. Operating wavelength \,

Now we study the case with the qualitatively different
isofrequency curve at \,=1.389 um, which exhibits a local
maximum at normal incidence and a minimum at k,
=2.60 um™' [see Figs. 2 and 5 for the dispersion relation
k.(k,), the diffraction (D), and inclination coefficients (V),
respectively]. Therefore the diffraction is normal (D <0) for
k,<2.15 um' (see Fig. 5). Hence, normally incident beams
cannot be focused by a MM slab at this frequency, although
the derived refractive index is negative in the entire domain.
This clearly demonstrates that a negative refractive index is
not sufficient for using a MM slab as a focusing device, not
to mention a perfect lens. Although not explicitly shown, this
behavior was indeed proven by the numerical simulations of

beam propagation. There is only a narrow domain
(2.15 um™'<k,<3.0 um™') where anomalous diffraction
occurs. Thus focusing may be achieved for obliquely inci-
dent beams, but due to the strong changes in the diffraction
coefficient the imaging quality is expected to be poor. This
has been numerically verified as can be recognized from Fig.
7. We assumed oblique incidence with a mean transverse
wave vector of kg=2.4 wum™! for the illuminating Gaussian
beam.

The comparison between the semi-ideal and the semireal
calculations shows strong deviations of the beam’s propaga-
tion characteristics behind the MM slab, where the white
arrow marks the corresponding focus position. For an input
beam with a FWHM of 4.24\,, the image width is 4.25\, for
the semi-ideal case calculated 1.2 um behind the slab;
whereas it amounts to 4.84\, measured at z=31.68 wm, in
the semireal scenario. This rather large difference in the focal
distance may be again attributed to the huge variation in the
diffraction coefficient in the latter case near k\’=2.4 um™!
(see Fig. 5, right).

Considering the real scenario, it is apparent that no focal
point can be identified. Instead the smallest beam width is
directly observed at the output facet (z=0) and amounts to
FWHM=6.34\,. This behavior can again be attributed to the
effect of the imaginary part Jm(k,) of the propagation con-
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FIG. 7. (Color online) Top row: amplitude distributions of the field transmitted through the MM slab at oblique incidence kf
=24 um™' for \,=1.388 9 um. The source’s spectral width is o, =1/8-27/\, corresponding to a FWHM of 4.24\,; middle row: phase
(blue, solid) as well as the normalized modulus (red, dashed) of the respective MM slab transmission function; and bottom row: normalized
angular spectrum of the transmitted field directly at the back facet (z=0) of the MM slab. The black dashed line indicates the mean transverse
wave-vector component ki) of the incident beam. The different columns reflect the three different transmission functions used to calculate the
field distributions. First column: Ty, second column: Tsg; and third column: Tk.

stant. In looking at Fig. 2 or at the left panel of Fig. 4, it can
be seen that Jm(k.) has a strong gradient between
k,~2 um~'and k,~3 um™'.If the structure is excited by a
beam having its principal propagation direction within this
angular spectral range, the spectrum of the beam is asym-
metrically damped. Therefore, the first momentum of the
spectrum and so the principal propagation direction is sig-
nificantly shifted. In the present case, the shift occurs toward
smaller values of k,. This is illustrated in the third row of
Fig. 7. The dashed vertical line indicates the mean transver-
sal component of the wave vector of the incident field which
is k,=2.4 um™!. The presented curves show the angular
spectrum of the normalized transmitted field. In contrast to
the semi-ideal and the semireal calculations scenario, the an-
gular center is shifted to k,~1.95 um™'. Thus, the principal
spectral component is now situated outside the anomalous
diffraction regime (D becomes negative; compare Fig. 5)
preventing focusing of the output field. Hence, the complex
interplay between the effects caused either by the real or the
imaginary part of the propagation constant hinders the image
formation, although the beam spectrum was initially situated
in the domain of anomalous diffraction. In general, at this
wavelength, a genuine focusing effect could not be observed.

Strong damping of waves in the angular domain where the
diffraction coefficient is anomalous prevents refocusing of
the beam.

D. Double Gaussian source field distribution

In the previous calculations, we have dealt with a single
Gaussian beam incident onto the MM slab. To make contact
with the standard resolution criteria in evaluating imaging
properties, we proceed with two spatially separated Gaussian
sources. The calculations are performed for either wave-
lengths, where a free-space propagation (MM is replaced by
air) over equal distance serves as a benchmark. The source
field consists of two Gaussian distributions of angular width
0=1/3Q27/\) (—o,=2/0,=3\/ ) spatially separated by a
distance 2S,. By this, the field is written as

(x—sﬂ . {_ (x+sx>2}
o2 T2

X X

Ey(x) o exp{—

The source position is 1.2 um in front of the MM.

At first, the left part of Fig. 8 shows the results for \;
=1.438 um. Here the separation 2§, of the Gaussians
amounts to 6 um. The red dashed curve represents the re-
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FIG. 8. (Color online) Normalized image of two spatially sepa-
rated Gaussian fields (parameters in the text) for A;=1.438 um at
the focal point z=10 wm (left) and A\,=1.389 um at z=1.2 um
(right). The different curves correspond to: input field (green, dot-
ted), semireal propagation (blue, solid), real propagation (red,
dashed), and pure free-space propagation (black, dashed dotted). In
case of A\;=1.438 um, the image positions correspond to the iden-
tified focal positions of the beams in Sec. III B. The field for free-
space propagation is evaluated at the same position. In case of
N,=1.389 wm, an arbitrary position was chosen because no genu-
ine backside focus could be identified.

sults of the real propagation scenario. Although two distinct
maxima are properly visible (compare to the input field dis-
tribution), the MM lens is working at its resolution limit
because the contrast to the central minimum is almost van-
ishing. Considering the semireal calculation (blue, solid), it
is certainly not surprising that it clearly reproduces the main
features of the source field distribution. The black dashed-
dotted curve shows the diffraction pattern revealed for a free-
space propagation over the same distance. Summarizing
these observations it can be noticed that the resolution of the
real MM lens is very much affected by the strong dispersive
absorption properties, although the essential features of the
object can be still identified.

Second, the right part of Fig. 8 shows the results for \,
=1.389 um, where we do not expect the MM lens to work
properly. As it was discussed in the previous example, we
can meaningfully analyze the imaging characteristics only in
comparing them to a free-space propagation of equal dis-
tance (up to 1.2 wm behind the slab). In doing so, a free-
space propagation over (in sum) 4.8 wm still keeps the two
main maxima of the source field distribution because the
overall diffraction is sufficiently small. On the other hand it
can be seen that in case of the semireal and real calculations,
the overall diffraction is higher, resulting i.e., in an additional
amplitude maximum in the center. As expected at normal
incidence, the functionality of the fishnet slab operated at
N,=1.389 um is even worse compared to a similar free-
space propagation.

IV. REFRACTION OF BEAMS AND THEIR TRANSVERSE
SHIFT

A beam propagating through any medium experiences dif-
fraction. On the contrary, beam refraction appears only at the
interface of two media. In this section, we shall show that
one can likewise take advantage of the dispersion relation to
explain the refraction effects at MM surfaces. It has been
shown that interesting effects appear in reflection, as, e.g.,
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FIG. 9. (Color online) Refraction of wide beams. Top left: sche-
matic picture of ray optical refraction and beam shift at the inter-
faces of an isotropic and homogeneous slab for oblique incidence.
In geometrical optics, a material with RRe(n) >0 leads to a positive
shift of the beam A >0 (blue, dotted path) along the surface. For
MRe(n) <0 the expected shift is negative, with A<<0 (red, dashed
path). Top right: schematic illustration of the direction of beam
propagation normal to the isofrequency curve around the mean
wave vector k@ (lossless medium assumed). Bottom: calculated
beam displacements A of the transmitted field at the output facet of
the MM slab as a function of the incident-beam’s mean wave-vector
component kg. The incident beam is Gaussian with oy
=1/25-27/N(FWHM =19 pm). Left: operational wavelength X\,
=1.437 um; right: operational wavelength A;=1.389 um. Semi-
real case Tgg: (red, dashed); real case Ty (blue, solid).

the Goos-Hinchen and/or the Imbert-Fedorov shift.?>>* Here
it will turn out that peculiarities may also occur in transmis-
sion.

For example, it is well known that an obliquely incident
beam, traversing a slab, experiences a displacement caused
by refraction at both interfaces. In geometrical optics, light is
represented by rays, which are refracted at material bound-
aries, as described by Snell’s law. By considering a beam of
light impinging from vacuum and traversing a homogeneous
and isotropic slab, the sign of the observed beam displace-
ment A is strictly related to the sign of the real part of the
slab’s refractive index PRe(n). This is illustrated in the top
panel of Fig. 9. In this simple yet intuitive picture, multiple
reflections inside the slab structure are neglected. In case of a
slab material with a relatively large damping rate, which
holds for the considered fishnet structure, this assumption
appears to be realistic.

By contrast, in wave optics a monochromatic beam of
light can be represented by its angular spectrum centered
around its main wave vector k(°)=(k2,k2)T provided that k,
=0. For a lossless medium, the mean propagation direction
(energy flow) of a beam points normal to the isofrequency
contour (Jw/Re[k®]).2 Therefore, the beam’s propagation
angle « is linked to the already introduced inclination param-
eter V(kg) by tan[a(kf?)]:—V(kg)=—&9%e(kz)/&kx| 0. Now, we
consider the beam refraction at an arbitrary interface between

115430-9



PAUL et al.

two media. If the beam hits the interface, the transverse
wave-vector component k(x) passes continuously. The respec-
tive longitudinal component kg, and thus likewise the propa-
gation direction of the refracted beam, is adjusted by the
dispersion relation of the medium where the beam enters.
For refraction into photonic crystals, these considerations are
well established and are used to explain the superprism effect
or negative refraction.’®?” Thus only if the medium is homo-
geneous and isotropic (spherical or circular isofrequency sur-
face), simple Snell’s law may be applied but it fails in all
other cases. In other words, the refractive index n(kg) evalu-
ated only at the central wave-vector component is no longer
a measure for refraction. Instead, the inclination parameter or
the refraction coefficient has to be used. If strong losses
[large Jm(k,)] are involved, as in the present fishnet MM,
similar angular filtering effects as already discussed in Sec.
IIT can be observed. However, using sufficiently wide and
paraxial beams, the losses can be considered constant in the
narrow angular spectral range of interest and the whole beam
experiences a constant damping during propagation with
negligible impact on the beam’s profile. Nevertheless, in the
following calculations the influence of damping will be con-
sidered and its consequences are pointed out.

We shall study refraction at the fishnet MM slab where we
take advantage of the results displayed in Fig. 5 (isofre-
quency curve Re[k.(k,)] and inclination parameter V(kg) for
the two relevant wavelengths N;=1.437 um and A\,
=1.389 um). For both wavelength, the refractive index
would be negative in the whole angular spectral domain (see
blue curves in Fig. 5), thus one would naively expect nega-
tive refraction in the entire domain. However, it will turn out
that the inclination coefficient V in the MM is the relevant
quantity that controls refraction. For \;=1.437 um (see Fig.
5 left) V is positive, exhibiting a maximum at k,
~1.6 um™'. This leads to the conclusion that anomalous
refraction should appear (negative beam displacement A
<0) in the entire angular domain. To verify this statement,
rigorous numerical calculations are performed for a Gaussian
beam with o,=1/25-27/\ and a mean wave vector (and
thus the incident angle) which varies from normal to grazing
incidence. The beam displacement is simply measured as the
difference of the beam’s center of gravity at the front and the
back side facet of the MM slab, respectively. The results of
two different computational scenarios (real case—Tx and
semireal case—Tgg) are shown in Fig. 9 (bottom left). Both
curves almost coincide indicating that the variation of Jm(k,)
is of minor importance as long as the beam’s spectrum is
sufficiently small. Losses affect only the transmittance but
not the refraction. The numerical results agree almost per-
fectly with the predictions derived from the inclination pa-
rameter V in Fig. 5. The maxima of both functions coincide
and the beam displacement is entirely negative except for
k2>3.5 wum~!, where rigorous calculations predict a slight
positive beam displacement. This can be attributed to the
Fresnel effects at the boundary, which become important for
large incident angles. They lead to the modifications of the
amplitude transmission function across the spectral width of
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the incident beam (the logarithm of the transmitted ampli-
tude tends to diverge toward —oo for grazing incidence; see
Fig. 3).

As expected from the isofrequency curve and the inclina-
tion parameter V at \,=1.389 um (see Fig. 5, right panel),
refraction is expected to change from normal to anomalous
behavior at k2> 2.6 wm™!. This is indeed confirmed by rig-
orous numerical calculations (see Fig. 9, bottom right). For
smaller incident angles, the refraction is normal and the
beam displacement is positive. This is a very instructive ex-
ample for the irrelevance of the retrieved refractive index,
which is negative in the entire parameter region (see Fig. 2;
bottom left, green curve). On the other hand, the predictions
based on the dispersion relation (Fig. 5) and rigorous calcu-
lations (Fig. 9) agree perfectly.

V. CONCLUSIONS

We have shown that diffraction, refraction, and imaging
of beams at MM slabs may be comprehensively explained
and understood on the basis of the dispersion relation of light
in the respective medium. It turns out that the isofrequency
curves are quite complex and neither spherical nor elliptical.
This may lead to variations between normal and anomalous
refraction and diffraction behaviors, respectively. Thus the
analyzed MM does not mimic an isotropic or a uniaxial or
biaxial anisotropic medium. In this context it turned out that
the concept of an effective refractive index is pointless in the
mesoscopic operational domain of contemporary MMs be-
cause simple geometric optical models, such as Snell’s law,
are no longer appropriate. Only the complete dispersion re-
lation provides access to the correct description of all rel-
evant effects. To this end, related quantities as inclination
and diffraction coefficients may be introduced. They may be
used to predict (de-)focusing and imaging of narrow beams
as well as normal or anomalous refraction of wide beams.
Concerning the imaging properties of a realistic fishnet MM
slab, the specific dispersion properties prevent ideal imaging
(perfect lens) of narrow beams, regardless of evanescent
waves which are completely damped by absorption. We have
also found that diffraction and inclination coefficients are
strongly dispersive. Thus, e.g., a blue shift of the wavelength
from the resonance at normal incidence may prevent any
image formation. Refraction may behave normal even in do-
mains with a negative effective index. All the predictions
based on the dispersion relation have been numerically veri-
fied by rigorous calculations. In designing MMs for perfect
lens applications, we suggest to optimize the MM with re-
spect to an almost constant anomalous diffraction coefficient
rather than with respect to a large negative refractive index.
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