
Junctions of spin-incoherent Luttinger liquids with ferromagnets and superconductors

Dagim Tilahun1,2 and Gregory A. Fiete1,3

1Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
2Kavli Institute for Theoretical Physics, University of California–Santa Barbara, Santa Barbara, California 93106, USA

3Department of Physics, California Institute of Technology, MC 114-36, Pasadena, California 91125, USA
�Received 14 October 2008; revised manuscript received 23 January 2009; published 18 March 2009�

We discuss the properties of a strongly interacting spin-charge separated one-dimensional system coupled to
ferromagnets and/or superconductors. Our results are valid for arbitrary temperatures with respect to the spin
energy, but require that temperature be small compared to the charge energy. We focus mainly on the spin-
incoherent regime where temperature is large compared to the spin energy, but small compared to the charge
energy. In the case of a ferromagnet we study spin pumping and the renormalized dynamics of a precessing
magnetic order parameter. We find that the interaction-dependent temperature dependence of the spin pumping
can be qualitatively different in the spin-incoherent regime from the Luttinger liquid regime, allowing an
identification of the former. Likewise, the temperature dependence of the renormalized magnetization dynam-
ics can be used to identify spin-incoherent physics. For the case of a spin-incoherent Luttinger liquid coupled
to two superconductors, we compute the ac and dc Josephson currents for a wire geometry in the limit of tunnel
coupled superconductors. Both the ac and dc responses contain “smoking gun” signatures that can be used to
identify spin-incoherent behavior. Experimental requirements for the observation of these effects are laid out.
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I. INTRODUCTION

An exotic and distinctive feature of interacting one-
dimensional �1-d� systems is the phenomenon of spin-charge
separation where the elementary excitations of the fermionic
system are decoupled charge and spin bosonic modes that
propagate at different velocities.1–3 At low energies, Lut-
tinger liquid �LL� theory4 has been quite successful at de-
scribing the properties of one-dimensional systems such as
quantum wires5,6 and nanotubes.7,8 One of the elegant fea-
tures of the theory is the ease with which one can obtain
exact results, thanks to the quadratic form of the Hamiltonian
describing the low-energy properties,

H1-d = �
i

vi� dx

2�
� 1

Ki
��x�i�x��2 + Ki��x�i�x��2� , �1�

where i=� ,� stand for the charge and spin sectors and �i and
�i are bosonic fields satisfying ��i�x� ,� j�x���=−i�2 �ij sgn�x
−x�� representing charge-/spin-density fluctuations and
charge/spin current-density fluctuations, respectively, and vi
are the collective mode velocities. The parameters Ki de-
scribe the interactions in the 1-d system. For repulsive inter-
actions K��1, and for SU�2� symmetry in the spin sector
K�=1. Generally, the theory is applied under the assumption
that both the spin and charge modes operate at low energy.
But at low densities n, where rs= �2naB�−1	1 �with aB as the
Bohr radius for the material�, strong interactions open up a
wide window between the characteristic energies of the
charge and the spin sectors by suppressing the spin-exchange
energy E� while enhancing the charge energy E�. When the
temperature T is raised into the window of energy, E�


kBT
E� �where kB is Boltzmann’s constant�, the spin sec-
tor consists of thermally randomized spins that are no longer
described by Eq. �1�, while the charge sector effectively be-
comes a spinless LL. A one-dimensional system in this re-
gime is known as a spin-incoherent Luttinger liquid �SILL�.9

Several properties of the SILL have already been estab-
lished theoretically,9 but the experimental effort has been
slowed due to the difficulty of reaching the aforementioned
window of energy. Nevertheless, there are experimental in-
dications of this regime in high-quality quantum wires grown
with the cleaved-edge technique,10 in recent split-gate
devices,11 and possibly even in low-density carbon
nanotubes.12 Given the recent progress in manufacturing hy-
brid devices consisting of superconductors �SCs� and ferro-
magnets �FMs�, and one-dimensional systems such as nano-
tubes, we propose here that the properties of the SILL be
experimentally investigated by studying junctions of super-
conductors and ferromagnets with a SILL. As we show be-
low, these SILL hybrid systems lead to distinctive behaviors
�relative to a LL or noninteracting 1-d system� that will allow
the SILL to be identified in various types of transport mea-
surements, and in the dynamics of a coupled ferromagnet.

In early work on transport in the spin-incoherent regime,
Matveev13,14 found that a SILL adiabatically connected to
noninteracting leads resulted in a universal reduction in the
conductance of a single-channel quantum wire from 2e2 /h to
e2 /h. This effect has been ascribed to the deactivation of the
spin channel, whereby the spin excitations are reflected while
the charge ones propagate freely. In a recent related work,
the authors studied the problem of a SILL adiabatically con-
nected to two superconductors. It was found that the critical
Josephson current through such a SC-SILL-SC system suf-
fers the same fate: the critical value of the Josephson current
is halved relative to the LL case.15 These universal results
follow from the assumption of adiabaticity of the contacts
between the SILL and the leads/SC, which may not be satis-
fied in some experimental situations.

In this work we study the transport properties of a SILL in
the opposite limit where it is contacted via tunnel junctions
to a superconductor and/or a ferromagnet. We will discuss
several scenarios that may be implemented experimentally
with existing technologies. The central aim of this work is to
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contribute to our fundamental understanding of the SILL by
addressing its properties in hybrid structures, and to add to
the arsenal of experiments that can be carried out to probe it
and infer its existence.

Our main results are the following. For the case of a FM
tunnel coupled to a SILL, we compute the spin current
pumped into the SILL due to a time-dependent magnetiza-
tion in the ferromagnet. The algebraic form of the expression
for the pumped spin current is the same as that for noninter-
acting fermions, or a Luttinger liquid, but the coefficients
appearing have a temperature dependence characteristic of
the SILL. We argue that the spin transport is diffusive and
under this assumption compute the renormalization �due to
the pumped spin current and its backflow� of the Gilbert
damping � of the magnetization motion in the FM. This also
has a characteristic temperature dependence in the spin-
incoherent regime. For the case of a SC tunnel coupled to a
SILL, we evaluate the ac and dc Josephson currents in a wire
that can be either side coupled �bulk coupled� or end coupled
to the SC. We find that the dc Josephson current suffers an
exponential decay in real space due to the incoherence of the
spin sector �in contrast to the inverse length suppression that
was found for adiabatically contacted SCs �Ref. 15��. We
show the exponential decay is due to the contributions of the
nonzero modes of the charge excitations, which do not enter
in the adiabatic case where only the zero modes carry the
Josephson current. Finally, we show that the ac Josephson
effect also contains important information about spin-
incoherent effects in its voltage and temperature dependence.

This paper is organized as follows. In Sec. II we review
bosonization for a strongly interacting electron system for
energy scales small compared to the charge energy, but arbi-
trary compare to the spin energy. In Sec. III we study spin
pumping and magnetization dynamics in the FM-SILL sys-
tem. In Sec. IV we study ac and dc Josephson effects in the
SC-SILL-SC system. Finally in Sec. V we discuss prospects
for experimental realizations of the physics we discussed and
directions for future work. Some technical details and results
appear in Appendixes A and B.

II. REVIEW OF BOSONIZATION FOR STRONGLY
INTERACTING ELECTRONS

In this paper we will be studying a strongly interacting
one-dimensional electron system coupled to either a ferro-
magnet or a superconductor. Strong interactions imply9 that
E�
E�. Therefore it is possible to be in a regime of tem-
peratures that may not be small compared to the spin energy
E�, but are still small compared to the charge energy E�. This
means that we are no longer free to use standard bosoniza-
tion procedures1–3 for the electron operator because these
formulas rely on the assumption that the relevant energy
scales on which the system is probed are small compared to
both spin and charge energies.

For a strongly interacting system we require a formalism
that applies to all energy scales relative to the spin energy
�and in particular to kBT�E��, but only low-energy scales
relative to the charge energy. Such a formalism was recently
developed by Matveev et al.16 and applied to the evaluation

of the spectral function and tunneling into a strongly inter-
acting electron system at arbitrary temperatures relative to
the spin energy.17 In this section we review the essential
elements of their work and show how to represent the elec-
tron operator in a strongly interacting one-dimensional elec-
tron system. The general expressions for electron correlation
functions obtained in this way provide a launching point for
numerical studies in the intermediate-temperature �with re-
spect to spin� regime kBT	E�, which is not well handled by
existing analytical methods.

A. Basic assumptions and general expressions

As is typical of interacting one-dimensional electron sys-
tems, we assume that the Hamiltonian in the strongly inter-
acting case is spin-charge separated,9,14 H=H�+H�. Here, H�

is identical to that of the LL, and is given by Eq. �1�. On the
other hand, the spin Hamiltonian at arbitrary temperatures is
to a very good approximation given by a nearest-neighbor
antiferromagnetic Heisenberg spin chain,14,18,19

H� = �
l

JS� l · S� l+1, �2�

where evidently the spin energy is set by J: E�=J. The basic
idea is to represent the electron operator as a product of
operators that describe the holons �x� �spinless fermions
that naturally arise in the context of strongly interacting fer-
mions and the spin-incoherent regime20,21� and the spin de-

grees of freedom S� l. The holon operators �denoted by † ,�
by construction satisfy the equation

†�x��x� = �↑
†�x��↑�x� + �↓

†�x��↓�x� , �3�

where �s is the electron annihilation operator for electrons of
spin projection s, and �s

† is the corresponding electron cre-
ation operator.

The issue of how to bosonize the electron operator for a
strongly interacting system earlier arose in the context of the
large-U limit of the one-dimensional Hubbard model. Penc et
al.22 wrote the electron creation operator as

�s
†�0� = Z0,s

† †�0� , �4�

where Z0,s
† creates a site on spin chain �2� with spin projec-

tion s. Expression �4� can be physically motivated as follows.
From Eq. �3� it is clear that the creation of an electron is also
accompanied by the creation of a holon. However, electrons
also carry spin so there must be a component of the electron
operator that also creates spin. This is accomplished by Z0,s

† .
In general, one has Zl,s

† as the object that adds a new site to
the spin chain between l−1 and l. While this appears physi-
cally intuitive, the expression suffers from the drawback that
it does not naturally account for the variation in electron
density with position in a real electron gas.23 Matveev et al.16

showed that a remedy for this issue is to define the position
at which the spin site is added to chain �2� in terms of the
number of holons to the left of the site,
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l�x� = �
−�

x

†�y��y�dy . �5�

In terms of Eq. �5� the electron creation and annihilation
operators are defined as

�s
†�x� = Zl�x�,s

† †�x� , �6�

�s�x� = �x�Zl�x�,s. �7�

The operators given above explicitly account for the fact that
the spins are attached to electrons, and the formulas are valid
at all energy scales. It is perhaps worth noting that even
though the Hamiltonian is spin-charge separated, the electron
operators are not written as a product of a spin piece and a
charge piece because the “spin” pieces Zl�x�,s also depend on
the electron density via Eq. �5�.

B. Bosonizing the holon operators

In writing Eqs. �6� and �7� no assumptions have been
made about the energy scale relative to the spin and charge
energies. We now restrict our considerations to energies
small compared to E�, but arbitrary with respect to E�. In this
case, we are free to bosonize the holon sector. The Hamil-
tonian for the holons must then necessarily take the low-
energy form20

H� = v�� dx

2�
� 1

K
��x��x��2 + K��x��x��2� , �8�

where the interaction parameter K of the holon is related to
the interaction parameter of the charge sector as20 K=2K�,
and the spinless fields � and � can be related to the holon
density as21,24

†�x��x� =
1

�
�kF

h + �x��x�� , �9�

where the holon Fermi wave vector is twice the electron
Fermi wave vector,21 kF

h =2kF. The bosonic fields satisfy the
commutation relations ���x� ,�y��y��= i���x−y�.

Since we are interested in low energies with respect to the
charge energy, the electron operator may be expanded about
the two holon Fermi points at �kF

h ,

�x� = R�x� + L�x� , �10�

where R�x� destroys a holon near the right Fermi point and
L�x� destroys an electron near the left Fermi point. The left
and right holon operators are bosonized as

R,L�x� =
1


2��c

e−i��x�e�i�kF
h+��x��, �11�

where �c is a short-distance cutoff on the order of the inter-
particle spacing a. Combining the results of Eqs. �5�, �7�, and
�9�–�11�, one obtains the bosonized form of the electron an-
nihilation operator for spin s,

�s�x� =
e−i��x�


2��c

�ei�kF
hx+��x�� + e−i�kF

hx+��x���Zl,s�l=�1/���kF
hx+��x��,

�12�

and an analogous expression for the electron creation opera-
tor �s

†�x�. Expression �12�, however, it not quite complete as
it does not account for the discreteness of the charge of the
electron. This can be accomplished by interpreting

Zl,s�l=�1/���kF
hx+��x�� → �

l

Zl,s�� 1

�
�kF

hx + ��x�� − l , �13�

after which the full electron annihilation operator �include
both left- and right-moving parts� becomes16

�s�x� =
e−i��x�


2��c
�

−�

� dq

2�
zs�q�ei�1+q/���kF

hx+��x��, �14�

where

zs�q� = �
l=−�

�

Zl,se
−iql. �15�

The expression for electron annihilation operator �14� is the
key result of the this section, obtained earlier by Matveev et
al.,16 who also showed that in the limit of small energies
compared to E� the expression correctly recovers the stan-
dard LL formulas for the electron annihilation operator. With
Eq. �14� correlation functions involving electron operators
can be expressed in terms of the correlation functions of the
holon and spin sectors at arbitrary temperatures with respect
to E�, but small energies compared to E�. See Appendixes A
and B for examples of the evaluation of the single-particle
Green’s function near different types of boundaries using
bosonization formula �14� and the boundary conditions to be
discussed next.

C. Open and Andreev boundary conditions

In this work we will be primarily interested in two types
of boundary conditions on the electron operators: �1� open or
“hard wall” boundary conditions appropriate for tunnel junc-
tions and �2� Andreev boundary conditions appropriate for
adiabatically contacted �no electron backscattering� super-
conductors. Other, more general, “intermediate” boundary
conditions are possible though less generic.25 To help orient
the reader, in each of the two cases above we will briefly
summarize the result appropriate for the LL regime for the
purpose of drawing contrast with the strongly interacting,
finite-temperature SILL regime. Our discussion of the
boundary conditions extends the results of Ref. 16.

1. Open boundary conditions

Open boundary conditions, or hard wall boundary condi-
tions, result in electron waves that are perfectly reflected at
the boundary. This implies there is no charge current or spin
current through the boundary. For concreteness, let us as-
sume that our boundary is located at x=0 with the interacting
one-dimensional system living on x�0. Then an electron
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traveling to the left with spin s will be reflected to a right-
moving electron with the same spin s,

�L,s�0� = e−i��R,s�0� , �16�

with a phase shift � that depends on details of the boundary
scattering potential.25 From the standard LL bozonization
formulas �in our convention�,

�R/L,s�x� =
1


2��c

e−i�s�x�e�i�kFx+�s�x��, �17�

we see that Eq. �16� implies that �s�0�=const, and therefore
also that ���0�=const and ���0�=const. In computing corre-
lation functions at the boundary, this means that we must
take ���0� and ���0� to be nonfluctuating quantities, allowing
only ���0� and ���0� to fluctuate.

In the strongly interacting case, reflection condition �16�
implies that ��0�=const, where we have used Eq. �12�. Since
the spin site l is related to the � field via Eqs. �9� and �5�, we
have l�0 at x=0. This implies that any correlation function
involving electron operators evaluated at the boundary will
depend only on Zl=0,s or its Hermitian conjugate, and the
fluctuations of the field � at x=0. We will apply these
boundary conditions in a calculation of the single-particle
Green’s function in Appendix A.

For completeness, below we give the expansions of the
bosonic fields for a system of finite length L with open
boundary conditions at x=0 and x=L �Refs. 24, 26, and 27�:

��x� = i�
m=1

� 
2K�

m
sin�m�x

L
�bm − bm

† � + �0�x� ,

��x� = �
m=1

� 
 1

2K�m
cos�m�x

L
�bm + bm

† � + � , �18�

where �0�x�= �x
L N, �bn ,bm

† �=�nm, and �� ,N�= i. For a semi-
infinite system, we take L→� and the discrete sums over m
become integrals over momentum qm=m� /L.

2. Andreev boundary conditions

In a certain sense the Andreev limit is the opposite limit
of hard wall scattering from a SC-M, or SC-LL, or SC-SILL
interface. Whereas open boundary conditions imply that an
incident electron is perfectly reflected, Andreev boundary
conditions imply that an electron is perfectly absorbed by the
SC �with a concomitant reflected hole of the opposite spin�.28

However, compared to open boundary conditions �16� the
Andreev boundary conditions are more subtle as they in-
volve an energy scale, the superconducting gap �, that under
many circumstances cannot be taken to be infinitely large
relative to the energy scales of interest �such as kBT, or an
applied voltage� in the interacting one-dimensional system.
One of the most important consequences of a finite � is an
energy-dependent reflection coefficient, which ultimately
leads to the proximity effect in the normal material.29 In the
context of interacting one-dimensional systems, Andreev
boundary conditions have been discussed by a number of
authors.25,30–35 The conclusion of these works is that when a

left-moving electron with spin s is reflected as a right-
moving hole with the opposite spin, there is an energy-
dependent phase shift eiq� �proportional to the momentum
difference q with respect to the Fermi point�33 that multiplies
a factor30 ei� that encodes the phase � of the superconducting
order parameter �assumed nonzero for x�0�,25

�L,s�0� = �− 1� f�s�iei�eiq��R,−s
† �0� , �19�

where ��1 /� is the superconducting coherence length. The
function f�s�=0 for s=↑ and f�s�=1 for s=↓. Boundary con-
ditions �19� are valid only at energy scales much smaller than
�, which we will assume throughout this work.

Applying boundary conditions �19� to the LL case �with
bosonized electron operator below Eq. �16�� gives ����s
−�−s=const and ����s+�−s=const. Therefore, we find that
much like the situation of perfect reflection there is no spin
current through the interface, but there is a net charge cur-
rent. Moreover, analysis of singlet superconductivity and
spin-density wave correlation functions using Eq. �19� in the
LL regime shows that there are suppressed spin fluctuations
near �distances less than �� the interface.33 It is perhaps
worth noting that if the SC-LL interface has a very weak
electron backscattering, the interactions in the LL tend to
renormalize the interface scattering.25,32,34

For strongly interacting electrons boundary condition
�19� implies ��0�=const and �lZl,s����0� /�− l�
=�lZl,−s

† ����0� /�− l�⇒Zl,s=Zl,−s
† at the interface, where we

have again used Eq. �12� and also Eq. �13�. We show in
Appendix B that we recover our earlier results15 for SC-SILL
junctions in the Andreev limit using this formalism.

Finally, for completeness and for unification of our nota-
tion, below we give the expansions of the bosonic
fields15,30,36 for Andreev boundary conditions on a system of
length L �see Fig. 3� with superconducting order-parameter
phase difference �=�1−�2:

��x� = �
m=1

� 
2K�

m
cos�m�

L
�x +

�

2
��bm + bm

† � + �0,

��x� = i�
m=1

� 
 1

2K�m
sin�m�

L
�x +

�

2
��bm − bm

† � + ��x� ,

�20�

where ��x�=��J�+ �
� � x

L , �bn ,bm
† �=�nm, and ��0 ,J��= i. The

topological number J�= �N↑+N↓� /2+1 and the total spin of
the system M ��N↑−N↓� /2 must satisfy the constraint J�
+M =even.30 We have also included the proximity effects33

via the length � in the field expansions that appeared earlier
in general expression �19� for the boundary conditions ap-
propriate to Andreev reflection.37

Note that compared to the field expansions for open
boundary conditions �18�, the expansions for Andreev
boundary conditions �20� have � and � “switched.” This can
be understood in simple physical terms: � and � are conju-
gate fields so if one is a constant, the other is strongly fluc-
tuating. Thus, the switching of the fields comes from “oppo-
site” natures of the two boundary conditions in the charge
sector. For open boundary conditions there is no charge cur-
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rent through the boundary, while for Andreev boundary con-
ditions the charge current on either side of the boundary is
unchanged by its presence because there is no electron back-
scattering there. Had we been concerned with the bosoniza-
tion of the spin sector, we would have found that due to the
absence of spin current through the boundary, that sector
would have expansions appropriate for open boundary con-
ditions similar to Eq. �18�.15,30,36

Having spent the time to develop the formalism used in
our calculations, we now turn our attention squarely to the
physics of hybrid junctions involving spin-incoherent Lut-
tinger liquids. We first discuss a junction consisting of a fer-
romagnet tunnel coupled to a spin-incoherent Luttinger liq-
uid.

III. FM-SILL TUNNEL JUNCTIONS

A. Spin pumping

We consider the setup shown schematically in Fig. 1,
whereby a ferromagnet is coupled via a tunnel junction to a
spin-incoherent Luttinger liquid. A similar situation was con-
sidered by Bena and Balents38 in the context of a FM-LL
junction. They found that when the magnetization m� of the
FM acquires a time dependence �perhaps by the application
of external fields�, spin current is pumped into the adjoined
LL at the rate

�I��t�� = − A1m� �
dm�

dt
+ A2

dm�

dt
, �21�

where A1 and A2 are temperature-dependent parameters de-
pending on the interface tunneling and interactions in the LL.
Below we show that an identical expression is obtained for a
SILL and we derive explicit expressions for A1 and A2 in this
case. We schematically indicate how the temperature depen-
dence crosses over from the LL to the SILL case. We note
that Eq. �21� was earlier derived for a noninteracting metal
attached to a FM. In this case, A1 and A2 are temperature
independent to lowest order.39–41 Thus, the temperature de-
pendence of A1 and A2 encodes information about the inter-
actions and may also indicate whether the attached 1-d sys-
tem is in the LL or SILL regime. We now turn to a derivation
of these results.

We assume that the ferromagnet is itinerant, such as Fe or
Co, and can be described by a Stoner-type model in which
there is a different density of states for spin-up and spin-
down electrons. The different density of states can be ab-

sorbed into distinct effective tunneling matrix elements ts for
spin-up and spin-down electrons.42,43 This also implies that
the local action44 describing the spin-up and spin-down elec-
trons are identical to that of noninteracting electrons,

SFM =
1

�
�
�n

�
s=↑,↓

��n�
2�

��m
s ��n��2, �22�

where � is the inverse temperature and �m
s ��n� are the

bosonic fields describing local fluctuations at the tunneling
point, x=0, of spin-up and spin-down electrons in the FM.
For the SILL we have the following spin-charge separated
form of the local action:

SSILL =
1

�
�
�n

K���n�
2�

�����n��2 + SSILL
� , �23�

where 0�K��1 is the Luttinger parameter of the charge
sector of the SILL, ��= ��↑+�↓� /
2 is the bosonic charge
field, and SSILL

� is the action for the spin sector which will
actually play no role in the evaluation of correlation func-
tions in the spin-incoherent regime as it effectively drops out,
leading to “superuniversal spin physics.”9

For an arbitrary spin-quantization axis relative to the mag-
netization m� , it is useful to define

û� = �1 � m̂ · �� �/2, �24�

which projects the spin-quantization axis onto the magneti-
zation direction m̂. Here u� is a 2�2 matrix and �� are the
Pauli spin matrices. The tunneling Hamiltonian then takes
the form43,45

Htun
gen = F†W� + �†W†F , �25�

where F �F†� annihilates �creates� an electron in the FM and
� ��†� annihilates �creates� an electron in the SILL. The
tunneling is assumed to occur at x=0 as shown in Fig. 1. The
2�2 tunneling matrix W is then

W = �
s=�

tsûs. �26�

Tunneling Hamiltonian �25� can be expressed more explicitly
as

Htun = �
s

u1Fs
†�s + m� �t� · �

s,s�

u2Fs
†
�� s,s�

2
�s� + H.c., �27�

where m� �t� is the time-dependent magnetization of the ferro-
magnet, and u1= �t++ t−� /2 and u2= �t+− t−� / �m� �. �From here
onward we will assume �m� �=1.� The spin current operator is

obtained from the relation I��t�= dM�

dt =− i
� �M� ,Htun�, where M�

= 1
2�s

†�� ss��s� is the spin density in the SILL at the boundary
and summation over repeated spin indices is understood. It
follows then that the spin current operator is given by

m H
SILL

x=0 x=L

FM

FIG. 1. Schematic of the model we study. A ferromagnet is
tunnel coupled at x=0 to a spin-incoherent Luttinger liquid of
length L. As the magnetization vector m� precesses about an effec-

tive magnetic field H� , spin is pumped into the SILL. Spin accumu-
lation in the SILL will lead to renormalization of the magnetization
dynamics.
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I��t� =
iu1

2
Fs

†�� ss��s� +
iu2

4
m� Fs

†�s +
u2

4
Fs

†m� � �� ss��s� + H.c.

�28�

The spin current, �I��t��=− i
��dt���t− t����I�t� ,Htun�t����, is

obtained38 from second-order time-dependent perturbation
theory which gives

�I��t�� = m� �t�Im�u2
�u1�Re�C�0�� −� d�

h
C���e−i�t

� �Im�u2
�u1�m� ��� +

�u2�2

2
m� ��� � m� �t� , �29�

where C��� is the Fourier transform of the retarded Green’s
function C�t− t��=−i��t− t����Fs

†�t��s�t� ,�s
†�t��Fs�t����. If

we assume that the typical frequencies of the magnetization
precession are in the gigahertz range41 �which corresponds to
energies of roughly 100 mK� or smaller, then this is a small
energy scale in the problem and we may safely expand C���
for small �. It can be easily checked that the zero-frequency
terms cancel exactly, leaving only the contributions linear in
�, provided we drop terms proportional to �2 and all higher
powers. Upon integration over frequency, the linear fre-
quency terms are converted to time derivatives yielding ex-
pression �21� where the coefficients A1 and A2 are given by

A1 = −
i

h
C��0�

�u2�2

2
, A2 = −

i

h
C��0�Im�u2

�u1� . �30�

Since only the imaginary part of C��� is odd with respect to
frequency, only this piece will contribute to A1 ,A2 and those
parameters will therefore be real quantities. The final step is
to compute the temperature dependence of C���=0� in the
spin-incoherent regime.

Since we are working within linear response, the commu-
tator in C�t�=−i��t���Fs

†�t��s�t� ,�s
†�0�Fs�0��� is evaluated in

the state where there is no tunneling between the ferromag-
net and the SILL, and a hard wall at x=0. By writing C�t�
=−i��t���Fs

†�t�Fs�0����s�t��s
†�0��− �Fs�0�Fs

†�t����s
†�0��s�t���,

and noting that the long-time behavior of both terms has
the same functional dependence, we can easily extract the
long-time behavior9 of C�t� using Eqs. �22� and �23�. �A
more careful calculation that yields the same result is given
in Appendix A.� At finite temperatures �small with respect
to the Fermi energy of the ferromagnet and charge
energy of the SILL, but large compared to
�v� /L�, we have �Fs

†�t�Fs�0���
��kBT/��

sinh��kBTt/�� and ��s�t��s
†�0��

��
��kBT/��

sinh��kBTt/�� �
1/�2K��. The crucial difference with the Lut-

tinger liquid is that the exponent for the correlations
��s�t��s

†�0�� have changed: in the case of a LL 1 / �2K�� is
replaced by �1 /K�+1� /2. The remainder of the computations
carry through exactly as they would for a LL and we find for
��
kBT

Im�C���� � ���kBT��
SILL

, �31�

where �SILL= 1
2K�

−1. This implies C��0��T��T� quite gener-
ally so that

A1 � T��T� �u2�2

2
, A2 � T��T� Im�u2

�u1� , �32�

where ��T� interpolates between the LL and SILL regimes as
the temperature is swept through the spin energy E�	J. The
temperature dependence of the exponent ��T� is shown sche-
matically in Fig. 2.

It is interesting to note that ��0 for 0�K��1 in the
Luttinger liquid regime, implying that less spin current is
pumped as the temperature decreases. On the other hand, as
long as the system remains in the spin-incoherent regime the
opposite behavior may be obtained if K��1 /2: since �SILL

�0 more spin current is pumped as the temperature is low-
ered �for T�J�. This is related to the diverging density of
states at the boundary9,24,46 when K��1 /2. In gated cleaved-
edge overgrowth quantum wires it appears possible to lower
K� down to values on the order of 1/3 and so it may be
possible in the spin-incoherent regime to tune between the
positive and negative exponent regimes.6 This qualitative
difference should be easily seen in experiment.

B. Renormalization of magnetization dynamics

Having computed the spin current pumped into the SILL
by a time-dependent magnetization vector, it is important to
ask how the spin accumulation in the SILL in turn affects the
magnetization motion. We address this question by comput-
ing the renormalization of the Gilbert damping constant due
to the spin flow into the SILL. We again closely follow the
notation of Bena and Balents38 to clearly establish a connec-
tion to the LL case. The Landau-Lifshitz-Gilbert equation for
magnetization m� precessing around effective magnetic field

H� is

dm�

dt
= − �m� � H� + �0m� �

dm�

dt
−

�

Ms
I�, �33�

where the spin current I�= I�0− I�b flows �I�0 is given by Eq. �21�
for I�b�0 and is nonzero only for time-dependent m� � into the
SILL and Ms is the saturation magnetization of the ferromag-
net. Here � is the gyromagnetic ratio which is typically equal

(1/K +1)/2−1ρ

1/(2K )−1ρ

TJ

δ(Τ) spin−coherent

spin−incoherent

FIG. 2. Temperature dependence of the exponent � appearing in
parameters �32� that describe pumped spin current �21� due to time-
dependent motion of a magnetization vector near an interacting act-
ing one-dimensional system at finite temperature. For temperatures
T less than spin exchange J=E�, the characteristic spin pumping
temperature dependence in the spin-incoherent regime crosses over
to the Luttinger liquid form computed in Ref. 38. Note that in the
SILL, ��T��0 for K��1 /2 and the qualitative temperature depen-
dence of the pumped spin current is remarkably different from a
LL.
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to its free-electron value,41 �=2�B /�, in transition-metal fer-
romagnets, and �0 is the dimensionless Gilbert damping pa-
rameter in the absence of the spin current. Its value is typi-
cally on the order of 10−2. The spin backflow due to spin
accumulation in the interacting 1-d system can be described
by boundary conditions on left- and right-moving spin cur-
rents and is expressed as43,45

I�b =
�� s

�s
I��T���s,T� −

Kexch

4�
�� s � m� , �34�

where �� s is the spin chemical potential in the wire related to

the magnetization by �� s�x�=M� �x� /��T�, with ��T� as the
�generally temperature-dependent� spin susceptibility, and
Kexch describes the effective exchange coupling between
electrons in the SILL and the FM.47 The current I��T���s ,T�
arises from the electron-tunneling contribution to the spin
current.48 Note that backscattered spin current �34� contains
two terms: �i� a term arising from electron transfer from the
FM to the interacting 1-d system and �ii� a second term aris-
ing from exchange between the local spin density and the

precessing magnetization vector m� . Since I�= I�0− I�b this im-
plies that the spin current itself has a contribution due purely
to exchange effects, even in the absence of electron
transfer.45

Our goal in this section is to express Eq. �33� as

dm�

dt
= − ��m� � H� + �m� �

dm�

dt
, �35�

and determine the renormalized parameters �� and �. From

Eq. �33� it is evident that we must find I�= I�0− I�b. We have

already computed I�0 �Eq. �21�� in Sec. III A. Now we must

determine I�b �Eq. �34��, which depends on �� s and
I��T���s ,T�. We start with �� s, which is a function of the spin
dynamics in the interacting 1-d system.

It has earlier been shown that SU�2�-invariant electron
backscattering leads to diffusive spin behavior in the weakly
interacting regime.43,49 In the strongly interacting regime
where the spin sector may effectively be described by a
Heisenberg spin chain coupled to phonon distortions9,14,16,50

the spin dynamics has also been shown to be diffusive.51 To
be on safe ground with our assumption of diffusive spin be-
havior, we must implicitly keep the spin-phonon coupling
discussed in Refs. 9 and 50. Since this coupling is finite
when J is finite, we must not take J→0 �as we safely could
for the single-particle Green’s function21 or the supercon-
ducting pair correlations15�. Under the assumption of finite J
in the strongly interacting limit, we see that in both cases of
weak and strong interactions, the mean free path l�v� /T.
Following the arguments20,52 that the spin-incoherent regime
can be approached from “below” �T�J�, we expect the dif-
fusion length l to saturate at the interparticle spacing a for
T�J. Since the diffusion constant Ds� lv�, this implies that
the diffusion constant in the SILL becomes independent of
temperature and takes the value Ds	av�. Note that in the
limit v�→0, there is no spin diffusion, as the spin excitations
cannot propagate in the system. Spin will simply pile up at
the boundary of the FM without moving further into the

interacting 1-d system. Unlike our earlier results for the tem-
perature dependence of pumped spin into the SILL, Eq. �32�
with �SILL=1 / �2K��−1, which were valid for vanishing spin
velocity, here our results are qualitatively dependent on
keeping v� finite, although still small enough to be in the
spin-incoherent regime. Essentially one must keep the “first
correction” in J /T to describe spin transport. As we men-
tioned above, for correlations such as those described by the
single-particle Green’s function or superconducting pair cor-
relations, we do not need to keep J finite in order to capture
the leading effects of spin-incoherent physics. A full self-
consistent calculation capturing the detailed temperature de-
pendence of the spin transport in the presence of spin-
phonon coupling is highly desirable.

We also assume that the finite-length SILL is character-
ized by a spin-flip time �sf �due to impurities, spin-orbit ef-
fects, etc�. The diffusion equation for spin in the SILL is then

i��� s�x� = Ds�x
2�� s�x� − �sf

−1�� s�x� , �36�

with the boundary conditions �x�� s=−� 1
Ds��T� �I

� at x=0 and
vanishing spin current �x�� s�x�=0 at x=L. See Fig. 1 for the
setup. The solution to this equation is simple to obtain and is
given by

�� s�x� =
cosh� �L − x��
 sinh� L�

� 1

Ds��T�
I��x = 0� , �37�

where  =
 i�−�sf
−1

Ds
. If the precession frequency � is small

compared to the inverse spin-relaxation time, then to a good
approximation  	1 /
Ds�sf. At the boundary x=0 we have

�� s=�I�, where �=coth� L� 1
 Ds��T� . Note that �x�� s�x�

�e− xI��x=0�	e−x/
Ds�sfI��x=0� so the spin current decays ex-
ponentially with distance into the SILL on a length scale set
by the product of the diffusion constant and the spin-
relaxation time. For a long spin-relaxation time, this length
scale can be large compared to the interparticle spacing.

We have now determined all parts of spin backflow �34�,
except the tunneling current I��T���s ,T�, which we now do.
The tunneling current is proportional to the imaginary part of
the Fourier-transformed correlation function43,45 C��� de-
fined below Eq. �29�,

I��T���s,T� � �u1�2Im�C��s/2�� � �u1�2�kBT���T�+1sinh� �s

4kBT


��!�1 +
��T�

2
+ i

�s

4�kBT
�2

� �s�u1�2�kBT���T��!�1 +
��T�

2
�2

, �38�

where we have used the results of Appendix A and taken the
limit �s
kBT. Evidently, the main effect of the spin-
incoherent physics is to change the exponent ��T� to the
spin-incoherent value, �SILL=1 / �2K��−1, so that we have

I��T���s,T� � �s�u1�2�kBT�1/�2K��−1 �39�

in the spin-incoherent regime. Let us define T
� I��T���s ,T� /�s� �kBT��

SILL
, which is temperature depen-
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dent and �s independent. At this point the determination of
�� and � is identical to the LL case.38 We find

�� =
�

1 + ��B1A2 − B2A1�/Ms
, �40�

and

� =
�0 + ��B1A1 + B2A2�/Ms

1 + ��B1A2 − B2A1�/Ms
, �41�

where B1= �1+�T� / ��1+�T�2+ ��Kexch�2 / �16�2��, B2
= ��Kexch� / ��1+�T�2+ ��Kexch�2 / �16�2��, and A1 ,A2 are given
in Eqs. �30� and �32�. The temperature dependence in B1 ,B2
is entirely contained in T and �. See Table I below for a
comparison of the LL and SILL regimes.

As with the case of a LL, for a SILL we expect there to be
little renormalization of �� relative to �. But the smallness of
the Gilbert damping �0 means this may obtain a significant
temperature-dependent correction depending on �SILL.

C. Other FM hybrid structures involving a SILL

One could easily imagine other scenarios such as a FM-
SILL-FM junction, a FM-SILL-M junction, or even a FM-
SILL-SC junction. However, because the spin transport is
generally diffusive, for junctions whose length L is long
compared to 
Ds�sf, the two contacts to the SILL will more
or less behave independently from the point of view of spin
transport. To the extent that the two leads are coupled, it is
evident from the discussion of Sec. III B that most of the
physics �and corresponding general formulas� present for a
LL system also applies to the SILL system only with some
modifications in the temperature dependence of parameters
appearing in the theory. While this may seem like a some-
what trivial result, it is not. The temperature dependence
serves as a means to determine whether spin-incoherent
physics is present in the system. In particular, we note quite
generally that if 1 /2�K��1 the temperature dependence of
many quantities �e.g., T, A1, A2, and those derived from
them� change qualitatively relative to the expectations for a
LL. Such qualitative differences should be observable in ex-
periment.

It is worthwhile to step back and emphasize some of the
essential differences between the SILL and LL cases. First,
we note that the different temperature dependences can be
traced to three quantities: �1� the correlation function C�t�
defined below Eq. �29�, �2� the temperature dependence of
the spin susceptibility �, and �3� the temperature dependence
of the spin-diffusion constant Ds. So long as the SILL is
tunnel contacted to the FM, the correlation function C�t� will

always appear at lowest order in perturbation theory and
carry along with it the characteristic temperature dependence
of the SILL. This quantity appears in both the description of
the pumped spin current and the magnetization dynamics. On
the other hand, when we are specifically interested in how
the spin propagates in the SILL �as we saw for backscattered
spin current �34�� the diffusion constant Ds enters, and also
the spin susceptibility via the Einstein relation for the spin
conductivity, �s=�Ds. We remark that the spin transport is
generically diffusive in the spin-incoherent regime, while it
may be either ballistic or diffusive in the LL regime.43,49

Having now flushed out what we feel are the central consid-
erations and results for FM-SILL hybrid structures, we now
turn our attention to SC-SILL hybrid structures.

IV. SC-SILL HYBRID STRUCTURES

Throughout this work, we assume that all energy scales
are small compared to the superconducting gap � unless ex-
plicitly stated otherwise, such as in the limit of a short junc-
tion �defined below�. We are primarily interested in the case
where the superconductor is contacted via a tunnel junction
with a spin-incoherent Luttinger liquid.

A. SC-SILL junctions

Let us begin our discussion of SC-SILL hybrid systems
by considering the simplest case: where the FM in Fig. 1 is
replaced by a SC. Earlier we studied the properties of such a
junction in the Andreev limit.15 We found a number of re-
markable properties, including a completely universal �inde-
pendent of the charge and spin Hamiltonians� tunneling den-
sity of states in the spin-incoherent regime.15 In the opposite
limit of a tunnel contact between the SC and SILL, no prox-
imity effects of the SC are felt other than those perturbative
in the tunneling53 �in contrast to the Andreev limit, where the
behavior of the pair correlations and tunneling density of
states follows directly from the form of the field expansions
imposed by the boundary conditions15�. As the proximity ef-
fects are already weak in the Andreev limit �they decay ex-
ponentially fast with distance, unlike the power-law decay in
the LL �Ref. 33��, we do not pursue the very weak proximity
effects in the spin-incoherent regime in the limit of a weak
tunneling SC-SILL junction.

On the other hand, it is worthwhile to briefly discuss the
behavior expected in opposite limit of nearly perfect An-
dreev reflection with weak �perturbative� electron back-
scattering at the SC-SILL interface. In the LL context, this
was addressed by Vishveshwara et al.31 in a SC-LL-M sys-
tem who found dips in the conductance of the junction as a
function of gate voltage. These dips correspond to multiple
electron reflections off the SC interface and occur at voltages
corresponding to integer values, eV=n�� /�, of the inverse
electron traversal time, �=2L /v, where n is an integer count-
ing the number of traversals in the LL.31 For a SC-SILL-M
system we would expect similar qualitative effects, although
with an overall suppression in the conductance.13–15 Finally,
we briefly remark that the conductance per channel of an
adiabatic SC-SILL junction should drop to 1/2 the value ex-

TABLE I. Temperature dependence of key quantities in LL-FM
and SILL-FM hybrid systems. Here c� is a constant that depends on
L, �sf, and Ds.

� Ds � � T ,A1 ,A2

SILL 1
2K� −1 const 1

T T T�SILL

LL 1
2 � 1

K� +1�−1 1
T const coth�c�
T�
T T�LL
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pected for a SC-LL junction:33,35 GSC-SILL= 1
2 �2K��

2e2

h . Recall
that the conductance of the adiabatic SC-LL interface,
GSC-LL= �2K��

2e2

h , generalizes the result for the adiabatic
SC-M interface,54 GSC-M=2 2e2

h , realized for K�=1.

B. SC-SILL-SC tunnel junctions

We now turn our attention to the final topic of this work,
SC-SILL-SC junctions of the types shown in Fig. 3. Our
primary focus will be on the behavior of the ac and dc Jo-
sephson effects in such a hybrid structure. In the context of
SC-LL-SC structures there have already been a number of
theoretical works25,30,36,55–61 and some experimental
results.62–66

Earlier we studied the dc Josephson effect in a junction
such as that shown in Fig. 3�a� only with Andreev boundary
conditions at the interfaces of the SILL with the SCs.15 We
found that in spite of the fact that the pair correlations decay
exponentially with distance from the boundary of the SC, the
Josephson critical current scaled inversely with the length of
the SILL and was reduced by a factor of 2 relative to either
the SC-LL-SC or SC-M-SC case �which have identical criti-
cal currents that also scale inversely with the length�.25,30 We
remarked that this “robustness” is essentially related to the
fact that the superconductor phase difference only couples to
the charge degrees of freedom in the SILL, which remain
completely coherent. This effect can also be taken to support
the notion67 that in some sense superconductors are spin-
charge separated.68 Yet another perspective on this result can
be obtained by noting that the Andreev boundary conditions
on a system of finite length can be mapped onto a system
with periodic boundary conditions of twice the length.30 In
this way, the Josephson response becomes equivalent to the
problem of persistent currents for spinless electrons in a ring
threaded by magnetic flux, with the superconductor phase
difference being simply related to the flux. Therefore, the dc
Josephson current for Andreev boundary conditions is essen-
tially given by the physics of spinless electrons, which is
why spin-incoherent physics does not manifest in a dramatic
way. The factor-of-2 reduction in the critical current and Jo-
sephson period are a direct consequence of the mapping of
the SILL onto spinless electrons.

We now turn our attention to the case of open boundary
conditions at the interfaces between the SCs and SILL. In
this case phase information must be carried between the two
superconductors by Cooper pair tunneling between them.
Because the pairs must hop from one SC onto the SILL, then
onto the other SC, the Josephson current will occur at fourth
order in this tunneling process. Moreover, because the Coo-
per pair tunneling process creates a pair of electrons locally
in the SILL near the barrier, many Fourier modes of the
electron operator will come into play. This is in contrast to
the case of Andreev boundary conditions where only the zero
mode enters in the evaluation of Josephson current.15,30 This
crucial difference will turn out to dramatically suppress the
Josephson response relative to what one would have for a LL
when the SILL is tunnel coupled to SCs. In short, we that
find the critical current decays as an exponential of the junc-
tion length �compared to a power of the inverse junction
length for a LL at zero temperature� with the characteristic
decay length as the interparticle spacing.

1. dc Josephson effect

The SC-SILL-SC tunnel junctions shown in Fig. 3 are
modeled by the following Hamiltonian: H=HS1+HS2
+HSILL+HT, where HS1/2 are s-wave BCS Hamiltonians for
the superconductors and HSILL is the sum of Eqs. �8� and �2�.
The tunneling Hamiltonian HT is given by

HT = �
s

T1�s
S1�x = 0��s�x = 0� + T2�s

S2�x = L��s�x = L� + H.c.

�42�

We assume that the SCs support a phase difference of �
=�2−�1 and have the same superconducting gap �.

The Josephson current is obtained from the relation

J = − 2ekBT
� ln Z

��
, �43�

where −e is the electronic charge and Z is the partition func-
tion. We employ imaginary time perturbation theory, where
terms dependent on � appear in fourth order,36

ln Z =� d�1d�2d�3d�4T1
2�T2

��2FS1
† ��1 − �2�

�"�0,L;�1,�2,�3,�4�FS2��3 − �4� + H.c.

+ similar terms, �44�

where "�0,L ;�1 ,�2 ,�3 ,�4� is a two-particle �cooperon�
propagator in the one-dimensional interacting system. The
“similar terms” account for time-ordered permutations and
spin projections �there are 23 of them, 4! all together�. The
propagation of Cooper pairs in the superconductors is de-
scribed by the time-ordered anomalous Green’s function FS,

FSi
�� − ��� � �T��↓

Si����↑
Si�����

=
�Ni�0�
�

�
n

e−i�n��−��� �ei�Si


�n
2 + �2

, �45�

where the expectation value is taken with respect to HSi and

χ1

χ2

χ2

χ1

(a)

SILL

L

(b)

FIG. 3. Schematic of two ways a superconductor can contact a
spin-incoherent Luttinger liquid of length L. The phase of the su-
perconducting order parameter at the left contact is �1 and at the
right contact is �2. We assume there is a tunnel barrier between the
SC and SILL. In �a� the SILL is “end contacted” and the zero modes
�finite length� of the SILL generally come into play, while in �b� the
SILL is “bulk contacted” and the zero modes play no role since the
system length is effectively infinite.
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the electron operators in Eq. �45� are evaluated at x=0 for S1
and x=L for S2.

Of the 24 terms �plus their Hermitian conjugates� that
appear in the partition function �Eq. �44��, physical consid-
erations aid us in choosing the most relevant ones depending
on the length of the SC separation distance L. There are two
important length scales in the junctions we study that give
rise to corresponding time scales: the superconducting coher-
ence length � and the junction length L.69 We define “long”
to mean L	� and “short” to mean L
�. We now turn to a
discussion of the general expression for "�0,L ;�1 ,�2 ,�3 ,�4�
in the limit of long and short junctions.

For long junctions the tunneling into the SILL is “fast”
and the propagation of the Cooper pairs is “slow.” The rel-
evant two-body propagator is

"long�0,L;�1,�2,�3,�4�

= ��s�0,�1��−s�0,�2��−s
† �L,�3��s

†�L,�4�� , �46�

where �s is the bosonized electron annihilation operator
given by Eq. �14� and the averaging is taken with respect to
HSILL. We have ��1−�2���, ��3−�4���, and ��1−�4�	��2
−�3��L.

In the opposite limit of a short junction L
�, the propa-
gation through the SILL is fast compared to the slow tunnel-
ing of the Cooper pairs, so the two-particle propagator ap-
proximately separates into a product of two single-particle
Green’s functions36

"short�0,L;�1,�2,�3,�4� 	 ��s�0,�1��s
†�L,�2��

���−s�0,�3��−s
† �L,�4��

	 Gs�L,�1 − �2�G−s�L,�3 − �4� ,

�47�

where we have ��1−�2���, ��3−�4���, and ��1−�3�	��2
−�4��L �note the reordering of electron operators relative to
Eq. �46��.

a. End-contacted SILL when L	� . We first consider the
case of an end-contacted SILL, shown in Fig. 3�a�. For this
geometry expansions �18� of the holon field operators are the
appropriate ones. Our assumption that all energy scales are
small compared to � �specifically kBT
� and �v� /L
��
enables us to approximate the anomalous Green’s function
�45� with a delta function in time, FSi

��−���
	�Ni�0�ei�i���−���, where Ni�0� is the density of states of
the SC Si at the Fermi energy in its normal state. This ap-
proximation forces the times the electrons tunnel into or out
of the SILL to coincide, �1=�2 and �3=�4. Without loss of
generality, we let �3=0 and define ���1. Using the expres-
sion for the electron operator �Eq. �14��, propagator �46�
reads

"long�0,L;�,0� = � 1

2��c
2

�
l1,l2,l3,l4

�
−�

� dq1

2�
�

−�

� dq2

2�

��
−�

� dq3

2�
�

−�

� dq4

2�
e−i�q1l1+q2l2−q3l3−q4l4�

��e−i��0,��Zl1,se
i�1+q1/���kF

h ·0+��0,���

�e−i��0,��Zl2,−se
i�1+q2/���kF

h ·0+��0,���

�e−i�1+q3/���kF
hL+��L,0��Zl3,−s

† ei��L,0�

�e−i�1+q4/���kF
hL+��L,0��Zl4,s

† ei��L,0�� . �48�

The calculation of the Cooper pair propagator is carried out
in the same manner as that of the Green’s function presented
in Appendix A. We first evaluate the expectation value of the
spin chain site creation/annihilation operators,

#�0,L� � �Zl1,sZl2,−sZl3,−s
† Zl4,s

† � , �49�

in the spin-incoherent regime. To this end it is convenient to
fully exploit the symmetries and boundary conditions of the
problem. We first note that the open boundary conditions at
x=0,L force �=const at x=0,L. As before, we take this con-
stant to be zero so that all � fields effectively drop out of Eq.
�48�. The momentum integrals in Eq. �48� can then be done
trivially to give delta functions on the sites li, which sets l1

= l2=0 and l3= l4=kF
hL /�. Therefore, we have

#�0,L� = �Z0,sZ0,−sZkF
hL/�,−s

† ZkF
hL/�,s

† � , �50�

which in the spin-incoherent regime can be evaluated quite
simply by appealing to the physics of the spins. Here #�0,L�
measures the amplitude for two spins of opposite orienta-
tions introduced at x=L to arrive at x=0. In general, Eq. �50�
can only be evaluated analytically in two limits: �i� the Lut-
tinger liquid limit in which the correlations reduce to the
familiar form obtained via standard1 bosonization techniques
�see Ref. 16 for details� and �ii� the spin-incoherent limit. For
intermediate temperatures, one must resort to numerical
methods. It is not clear to the authors which methods are best
suited to their evaluation, but density matrix renormalization
group �DMRG� is an obvious candidate. We hope those with
expertise will take up the evaluation of such correlation func-
tions which involve removing and adding sites to a spin
chain. Numerical evaluation of correlations such as Eq. �50�
and simpler versions involving only the addition of one site
and the removal of one site �see Appendixes A and B, and
Refs. 16 and 17� will take us a long way toward understand-
ing the detailed crossover behaviors with temperature in
strongly correlated one-dimensional systems.

Deep in the SILL regime where all the spins are random-
ized and spin exchange is highly suppressed, one can evalu-
ate correlation function �50� following the physical argu-
ments outlined in Refs. 9 and 21. The basic picture is that
when a new site is added to the chain, the other sites shift
down one register to accommodate it. When a site is then
removed further down the chain. it leaves the “final” chain
shifted by one site �for spins in between position of addition
and removal� relative to the “initial” chain. In order for the
final and initial states to not be orthogonal, all spins in be-
tween the addition site and the removal site must be parallel.
�Otherwise the states would be orthogonal—see Ref. 9 for
further discussion of this point.� This occurs with probability
� 1

2 �N, where N is the number of sites. The argument is the
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same for adding two sites of opposite spin at one location
and them removing them at another as in Eq. �50�. Expressed
in terms of the holon Fermi wave vector and the length L
between the initial and final sites, one then has

#�0,L� = �1

2
kF

hL/�
= e−�kF

hL/��ln 2, �51�

from which it follows that

"end
long�0,L;�,0� = e−�kF

hL/��ln 2�e−i2��0,��ei2��L,0�� . �52�

The remaining correlations over the charge degrees of free-
dom can be computed using expansions �18� and the identity
eA+B=eAeBe−�A,B�/2 valid when �A ,B� commutes with both A
and B. The final result is

"end
long�0,L;�,0� = e−�kF

hL/��ln 2� �

1 + e−�e−v���/L1/K�

, �53�

where �
1 is a short-distance cutoff that ensures ultraviolet
convergence of the integrals over the charge fluctuations in
the wire. Up to unimportant phase factors and other overall
multiplicative constants, the Josephson current in the wire is
then

Jend
long��� � G1G2e−�kF

hL/��ln 2� L

�c
sin���

� �
0

�

dx� �

1 + e−�e−x1/K�

, �54�

where the integral has been cut off at times �=L /v�, the time
it takes for charge to propagate between the two ends of the
SILL. Compared to the LL case, the most important differ-
ence is that the critical current scales as an exponential of the

length, Jend
long �critical�e−�kF

hL/��ln 2� L
�c

�, rather than as a power

law �
�c

L �2/K�−1 in the LL regime.55 A measurement of the
length dependence of the critical current then serves as clear
signature of spin-incoherent physics �or lack thereof�, pro-
vided one has some knowledge of the density to infer kF

h

=2kF=� /a. We also note that the superconducting phase dif-
ference � appears as an argument to the sine function, rather
than the sawtooth form we found for Andreev contacts.15 The
sine form follows from the assumption of tunneling
contacts.25,57,58

b. Bulk-contacted SILL when L	� . We now consider the
case of a bulk-contacted SILL, shown in Fig. 3�b�. For this
case, we assume that the perturbations induced by the con-
tacts are irrelevant, which is so for K��1 /2.20 Otherwise, if
the perturbations induced by the contacts are relevant, this
case reduces to an end-contacted SILL discussed above.

Starting again with Eq. �48� we note that translational
symmetry implies that the spin correlations satisfy

#�0,L� � �Zl1,sZl2,−sZl3,−s
† Zl4,s

† � = �Zl1−l4,sZl2−l3,−sZ0,−s
† Z0,s

† � ,

�55�

which allows us to shift the sums l̃1= l1− l4 and l̃2= l2− l3 in
Eq. �48�. The summation over l3 leads to a delta function
setting q2=q3 and the summation over l4 leads to a delta
function setting q1=q4. Making the change of variables q
= �q1+q2� /2 and q̃=q1−q2, one can do the integration over q̃

which sets l̃1= l̃2. The result is

"bulk
long�0,L;�,0� = � 1

2��c
2

�
l
�

−�

� dq

2�
e−i2ql#�0,L�

�e−i2�1+q/��kF
hL

��ei2��1+q/�����0,��−��L,0��−���0,��−��L,0���� .

�56�

Expression �56� is valid quite generally under the assumption
that the contacts are irrelevant perturbations and do not lead
to the end-contacted result described earlier. If we now spe-
cialize to the spin-incoherent case, we have

#�0,L� = �Zl,sZl,−sZ0,−s
† Z0,s

† � = �1

2
�l�

. �57�

Substituting Eq. �57� into Eq. �56� and integrating over mo-
mentum,

"bulk
long�0,L;�,0� = � 1

2��c
2

�
l
��1

2
�l�1

2
��l +

kF
h

�
�L + ��L,0�

− ��0,����ei2����0,��−��L,0��−���0,��−��L,0���� .

�58�

Finally recalling that for L	a we can replace the sum over l
by an integral,21 we find

"bulk
long�0,L;�,0� = � 1

2��c
21

2
e−�kF

hL/��ln 2�e−�kF
h /�����L,0�−��0,���ln 2

�ei2����0,��−��L,0��−���0,��−��L,0���� , �59�

which can be evaluated �up to phase factors� to give

"bulk
long�0,L;�,0� � � 1

2��c
2

e−�kF
hL/��ln 2� �c

2

L2 + v�
2�2�K�

,

�60�

where �K�
= 1

2K�
−

K�

2 �� ln 2
� �2−4�. The Josephson current in the

wire is then

Jbulk
long��� � G1G2e−�kF

hL/��ln 2��c

L
2�K�

−1

sin���

� �
0

�

dx� 1

1 + x2�K�

, �61�

where we have again cut off the integral at times �=L /v�.

JUNCTIONS OF SPIN-INCOHERENT LUTTINGER… PHYSICAL REVIEW B 79, 115425 �2009�

115425-11



Evidently, the critical current again scales as an exponential

of the length, Jbulk
long �critical�e−�kF

hL/��ln 2�
�c

L �2�K�
−1, rather than a

power law55 �
�c

L �2/K�−1 in the LL regime. This Luttinger liquid
result corrects the result originally obtained by Fazio et
al.36,56 by taking into account the proximity effect. Compar-
ing the critical currents of the end-contacted case �Eq. �54��
with the bulk-contacted case �Eq. �61��, one sees that the
length dependences are not materially different: they only
differ in the inconsequential power law that multiplies the
exponential.

c. End-contacted SILL when L
� . To compute the Jo-
sephson current we must evaluate the single-particle Green’s
functions that appear in Eq. �47�. Since � is a property of the
SC which we assume is tunnel contacted to the SILL, it is
independent of the properties of the SILL. We will further
assume a
L
�, the opposite limit of the wire length being
shorter than the interparticle spacing not well motivated
physically. The single-particle Green’s functions appearing
in Eq. �47� can readily be evaluated following the method of
Appendix A. This gives

Gs
end =

1

2��c
�1

2
kF

hL

�e−i�����−��L���

=
1

2��c
e−�kF

hL/��ln 2� �

1 + e−�e−v���/L1/4K�

, �62�

which immediately leads to the Josephson current

Jend
short��� � �G1G2e−2�kF

hL/��ln 2� L

�c
2

sin���

� ��
0

�

dx� �

1 + e−�e−x1/4K��2

, �63�

with a critical current Jend
short �critical�e−2�kF

hL/��ln 2� L
�c

�2.
d. Bulk-contacted SILL when L
� . For a bulk-contacted

SC in the short-wire limit, we again apply formula �47�
where the Green’s functions are those appropriate for an in-
finite system, computed earlier in the literature in Refs. 9 and
21. The result is

Jbulk
short��� � �G1G2e−2�kF

hL/��ln 2��c

L
2!K�

−1

sin���

� ��
0

�

dx� 1

1 + x2!K��2

, �64�

which evidently has the critical current Jbulk
short �critical

�e−2�kF
hL/��ln 2�

�c

L �2!K�
−1.

Comparing the results for bulk- and end-contacted cases,
as well as short versus long wires, we find the most impor-
tant result is how the Josephson critical current scales with
the length of the wire. Suppressing the relatively unimportant
power-law decay that multiplies the dominant exponential
decay, we find

Jlong�critical � e−�kF
hL/��ln 2, �65�

Jshort�critical � e−2�kF
hL/��ln 2, �66�

so that the decay of critical current with the length of the
SILL is twice as fast as for a short wire. This originates in the
fact that for a short wire electrons propagate independently
so the spin incoherence affects each electron independently,
rather than a single coherent pair as in the case of the long
wire. It is also worth emphasizing that the assumption of
tunneling contacts always results in a Josephson current that
is proportional to the product of the bare conductances of the
two contacts with a sinusoidal dependence on the phase dif-
ference of the superconducting order parameter, J���
�G1G2 sin���. Therefore it is the length dependence of criti-
cal current �66� that provides a smoking gun signature of
spin incoherence in the dc Josephson effect with tunnel con-
tacts. For Andreev �adiabatic� contacts, the length depen-
dence is identical to those of a LL or noninteracting one-
dimensional system.15 Instead, the SILL physics is manifest
clearly in the flux dependence of the Josephson current
which takes on a sawtooth form of half the usual period.15

2. ac Josephson effect

The ac Josephson effect occurs when there is a finite volt-
age V across the SC-SILL-SC system. The Josephson phase
acquires a time dependence �̇=2eV leading to a Josephson
current that oscillates in time. A subgap dissipative current is
also induced, but at small voltages this can be estimated to
be small.36 As in the case of the dc Josephson effect, the
qualitative features of the ac Josephson effect also depend on
whether the wire is short or long, as defined in the dc case.

a. Long-wire case. We have seen that the qualitative fea-
tures of the dc Josephson current in the spin-incoherent re-
gime for bulk and end contacts are not very different. That is
also true of the ac Josephson effect. The ac Josephson current
can be computed from36

J�t� = 4�2evF
2 G1G2

�4e2�2

� Re��
�

�e�i2eVt�
0

�

dt�e$ieVt�"�t��� , �67�

where "�t� is the Cooper pair propagator �Eq. �46�� evalu-
ated at real times. The ac Josephson current can be decom-
posed into sinusoidal and cosinusoidal components,

J�t� = 4�2evF
2 G1G2

�4e2�2 �Js sin 2eVt + Jc cos 2eVt� , �68�

where

Js = − Im��
0

�

dt��e−ieVt�"�t�� + e+ieVt�"�t���� , �69�

Jc = Re��
0

�

dt��e−ieVt�"�t�� − e+ieVt�"�t���� . �70�

In the Luttinger liquid regime Js and Jc oscillate with voltage
across the junction, as does the amplitude Ja=
Js

2+Jc
2.36 The
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frequency of the oscillations of Ja with voltage depends on
the relative spin and charge velocities. One period occurs
when the spin and charge parts differ by 2�, that is, when
eV=2� / �L /v�−L /v��.36 In the spin-incoherent regime, we
have v�→0, implying that vanishing voltages will lead to
oscillations and they may cease to be observed. The lack of
amplitude oscillations will persist into the spin-incoherent
regime, which has effectively only one velocity, the charge
velocity. On the other hand, if v� is not too different from v�
�say, v�=v� /10�, then one can expect to find a temperature
dependence of the voltage oscillations that reveals spin-
incoherent physics in a way analogous to Coulomb drag50 or
charge fluctuation noise.70 At temperatures below the spin
energy, there will be amplitude oscillations in the Josephson
current as a function of voltage, while for temperatures
above the spin energy there will be no such oscillations be-
cause the spin mode effectively does not propagate. This
“washing out” of the high-frequency �because of the ratio
v� /v�
1� oscillations with temperature is the signature of
spin-incoherent physics in the ac Josephson effect.

b. Short-wire case. For a short wire, the voltage depen-
dence is independent of the properties of the 1-d system,36 be
it a LL or a SILL. In this case the ac Josephson current is

J�t� =
2

�
K�eV/2��Jc�0�sin�2eVt� , �71�

where Jc�0� is the zero-voltage critical current for the short
wire given in Sec. IV B 1, and K�x� is an elliptical integral.

Recall that for a short wire, Jc�0��e−2�kF
hL/��ln 2. Thus, the ac

Josephson effect is only effective at revealing spin-charge
separation in the long-wire limit, and there are no new spin-
incoherent features that appear relative to the LL aside from
the length dependence of the dc critical current that enters in
Eq. �71�.

V. DISCUSSION

In this paper we have touched on what we believe are
some of the most easily observed consequences of spin-
incoherent behavior in ferromagnet/spin-incoherent Lut-
tinger liquid and superconductor/spin-incoherent Luttinger
liquid junctions. For the case of FM-SILL junctions, we
computed the spin current pumped into the SILL as a result
of magnetization dynamics and the effect of spin accumula-
tion in the SILL on the parameters governing the magnetiza-
tion dynamics. We found that for interactions in the SILL
with 1 /2�K��1, the temperature dependence of the spin
current and magnetization dynamics is qualitatively different
from the case of a LL and should thus be observable experi-
mentally. Some of the key differences between FM-SILL and
FM-LL systems are summarized in Table I. The crossover
from FM-LL to FM-SILL in the exponent � governing the
temperature dependence of several key quantities is shown in
Fig. 2.

In the case of SC-SILL junctions our results greatly ex-
tend those obtained earlier by us.15 In that earlier work we
were concerned only with the case of adiabatic �Andreev�

contact of the spin-incoherent Luttinger liquid to the super-
conductor. Here we have developed those results further and
also discussed the opposite limit of tunnel contacts to the SC.
In the tunneling limit we have computed the ac and dc Jo-
sephson responses in the geometries shown in Fig. 3. We find
that in contrast to the case of adiabatic contacts, the tunnel
contacts lead to a Josephson critical current that is exponen-
tially suppressed with the length of the SILL region. This
difference arises from the fact that in the Andreev limit the
dc Josephson effect is determined solely by the zero modes
of the Hamiltonian, while for tunnel contacts the nonzero
modes generally dominate the response. These nonzero
modes enter because in the tunneling process an electron is
created locally near the tunnel barrier and thus requires many
wave vectors to build its wave packet.

With the aim of providing a general discussion of junc-
tions of ferromagnets or superconductors with a strongly in-
teracting one-dimensional system, we have couched many of
our calculations in the recently developed scheme for
bosonizing strongly correlated electron systems.16 This for-
malism is valid for arbitrary temperatures with respect to the
spin energy E�, but requires that the temperatures remain
small compared to the charge energy E�. In order to adapt
that formalism to the systems we discussed here, we ex-
tended those results to express open and Andreev boundary
conditions in a language valid for arbitrary temperatures with
respect to the spin sector. Through several examples, we
showed how various correlation functions could be evaluated
and verified that in the spin-incoherent regime the results
properly reduce to the results obtained using the world-line
picture.21

One of our primary motivations for using the language of
Ref. 16 is to help provide a clear starting point for numerical
studies of the spin-incoherent regime and the many interest-
ing �and probably experimentally relevant� crossovers that
occur between it and the Luttinger liquid regime. Within this
formalism the charge physics can be computed analytically
via a standard bosonization scheme, but the spin sector must
be addressed numerically for temperatures on the order of
the spin energy E�. The types of correlation functions that
must be computed numerically are those that add and remove
a site �or multiple sites� from a spin chain, such as �Zl1,sZl2,s

† �,
that appear in the evaluation of a single-particle �or multipar-
ticle� Green’s function. �See Eq. �A4�, for example.� We
would like to emphasize that numerical studies of strongly
interacting one-dimensional electron systems with appre-
ciable temperature compared to the spin energy is an entirely
untouched area and is now ripe for investigation.

On the experimental side, the lack of a clear experimental
“smoking gun” observation of the SILL remains a key issue
to be addressed. However, there are mounting experimental
indications we are not far away.10–12 Our best numerical
estimates9,24 suggest that many low-density quantum wires
sit right on the edge of the spin-incoherent regime and per-
haps all that is needed is a focused experimental effort to
search for its signatures, rather than any key technical break-
through. One of our aims in this work it to highlight certain
classes of hybrid structures where spin-incoherent physics
should be observable.

Finally, we would like to close with what we regard as
some of the outstanding theoretical issues surrounding the
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spin-incoherent Luttinger liquid. Perhaps the main one is the
behavior on temperature scales kBT	E� that we already al-
luded to above. Related to this is a better understanding of
the crossover between the Luttinger liquid and the spin-
incoherent Luttinger liquid regimes. Both of these will likely
require a numerical attack as there are no obvious analytical
methods available to address them. There is also the issue of
spin-orbit coupling that has so far received no attention. For
very strong spin-orbit coupling is there novel behavior in the
regime E�
kBT
ESO,E�? The subject of noise in hybrid
structures involving a SILL will be discussed in a forthcom-
ing work.71
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APPENDIX A: EVALUATION OF C(�) USING
BOSONIZATION FOR STRONGLY INTERACTING

ELECTRONS

In this appendix we compute the correlator C�t� and its
Fourier transform C��� using the general formalism for
bosonization of strongly correlated electrons in one dimen-
sion developed by Matveev et al.,16,17 who also applied it to
the evaluation of the single-particle Green’s function for an
infinite system and its Fourier transform. We summarized the
main results of the bosonization scheme in Sec. II. The cal-
culation here is for a semi-infinite or finite system with open
boundary conditions, and so is different in detail from what
has been discussed in Refs. 16 and 17, but the basic elements
of the bosonization are the same. This appendix is meant to
illustrate clearly in a specific example which parts of corre-
lation functions can be computed analytically at finite tem-
peratures and which pieces in general require methods yet to
be developed, or a numerical attack. As was already dis-
cussed in Sec. II the chief difficulty lies in computing the
correlations at arbitrary temperatures in the spin sector. It is
hoped that the details given here will provide a good starting
point for those skilled in numerics to enter the study of
strongly interacting one-dimensional systems where there is
currently no quantitative understanding of the regime kBT
	E�
E�. Given the typical values of T ,E� ,E�

present6,10,11,24,72 in quantum wires, this “intermediate”-
temperature regime may turn out to be the most relevant
experimentally.

In the evaluation of spin current �21� �pumped from a
ferromagnet into an adjoined one-dimensional system
coupled via a tunnel junction�, the correlation function

C�t� = − i��t��
s

��Fs
†�t��s�t�,�s

†�0�Fs�0��� �A1�

arises in lowest �second�–order perturbation theory. It con-
tains the difference in the products of single-particle Green’s

functions for both the FM and the interacting one-
dimensional system,

C�t� = − i��t��
s

��Fs
†�t�Fs�0����s�t��s

†�0�� − �Fs�0�Fs
†�t��

���s
†�0��s�t��� , �A2�

where the brackets �·� denote a thermal average computed
with the open boundary conditions described in Sec. II C 1.
The correlators �Fs

†�t�Fs�0�� and �Fs�0�Fs
†�t�� can be com-

puted by standard bosonization methods.1 The result is

�Fs
†�t�Fs�0�� = i�Fs�0�Fs

†�t�� =
i

2��c

��kBT/%c�

sinh��kBTt

�
 ,

�A3�

where %c=�vF /�c is a high-energy cutoff.
Our real objects of interest here are the boundary Green’s

functions Gs
+�t����s�t��s

†�0�� and Gs
−�t����s

†�0��s�t��
evaluated at arbitrary temperature with respect to E�, but
small compared to E�. To evaluate these we make use of
expression �14� for the electron operator. Straightforward
substitution gives

Gs
+�t� =

1

2��c
�

−�

� dq1

2�
�

−�

� dq2

2� �
l1,l2

e−i�q1l1−q2l2�

� �ei��1+q1/����t�−��t��Zl1,sZl2,s
† e−i��1+q2/����0�−��0��� .

�A4�

Open boundary conditions at x=0 prevent fluctuations of the
� field which sets it to a constant, which we take to be 0.
With � set to a constant, the integrals over momentum can be
done trivially resulting in � functions for l1 , l2 which kill
those sums and selects l1= l2=0. The final result is remark-
ably simple,

Gs
+�t� =

1

2��c
�Z0,s�t�Z0,s

† �0���e−i���t�−��0��� . �A5�

Similar manipulations yield

Gs
−�t� =

i

2��c
�Z0,s

† �0�Z0,s�t���e−i���t�−��0��� , �A6�

where we have made explicit the time dependence in the spin
correlators involving Z0,s

† and Z0,s. The general theoretical
challenge is then to compute those correlation functions
which involve adding and removing a site from the spin
chain, which is an interacting many-body problem analogous
to Fermi edge physics73–75 only it involves knowledge of the
Hamiltonian on potentially many energy scales. However,
for E�
E� the time evolution of the spin degrees of freedom
are very slow compared to the charge degrees of freedom,
regardless of temperature, and can be neglected for times
&� /E�. Note that in the limit E�→0, the spin dynamics can
always be neglected. Furthermore, if kBT	E�, then the spins
become essentially noninteracting, and therefore nondynami-
cal. Then the correlation functions simplify considerably. In
the spin-incoherent regime one has17,21,76
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�Z0,s
† Z0,s� =

1

2
, �A7�

and

�Z0,sZ0,s
† � = 1, �A8�

independent of time which can be straightforwardly general-
ized to include an applied external magnetic field.24,46,73,77

The result is

�Z0,s
† Z0,s� = ps, �A9�

�Z0,sZ0,s
† � = 1, �A10�

where ps is the probability of having spin projection s. It
takes the values p↑=1− p↓= 1

e−EZ/kBT+1
, where EZ is the Zeeman

energy. Note that the correlation functions �Z0,s
† Z0,s� and

�Z0,sZ0,s
† � in the spin-incoherent regime are identical to their

values in the infinite system.14 This is because in the spin-
incoherent regime the spins are nondynamical, so the open
boundary conditions which tend to suppress fluctuations
have essentially no effect on the spins which are rendered
nondynamical by kBT	E�.

Finally, we are left to evaluate �e−i���t�−��0���, which is
identical to �Fs

†�t�Fs�0�� and �Fs�0�Fs
†�t�� only with the expo-

nent changed,

�e−i���t�−��0��� =
�− i�1/2K�

2��c � ��kBT/%c��

sinh��kBTt

�
�

1/2K�

, �A11�

where %c�=�v� /�c is a high-energy cutoff for the charge sec-
tor in the SILL.

Combining results �A3�, �A7�, �A8�, and �A11�, we find

C�t� = − i��t��− i�1/2K�� 1

2��c
2

� ��kBT/%̃c�

sinh��kBTt

�
�

�SILL+2

,

�A12�

where �SILL=1 /2K�−1 is given in Table I, and %̃c is
an effective high-energy cutoff given by %̃c
= �%c�%c��

1/2K��2K�/�2K�+1�. For making the following formulas

more compact, we define �̃��SILL+2.
We are now ready to compute the Fourier transform of

Eq. �A12�, C���=�−�
� dtei�tC�t�. Making the change of vari-

ables X=
�kBT

� t, we have

C��� =
�− i�1+1/2K�

�2��c�2 � �

�kBT
��kBT

%̃c
�̃�

0

�

dX
ei���/�kBT�X

�sinh�X���̃
.

�A13�

The integral is standard,

�
0

�

dX
ei���/�kBT�X

�sinh�X���̃
= 2�̃−1!�1 − �̃�

!� �̃
2

− i
��

2�kBT


!�1 −
�̃

2
− i

��

2�kBT
 .

�A14�

The result of the integral can be transformed to a more con-
venient form using the following identities for complex num-
ber z: �=sin��z�!�z�!�1−z� and !�z��=!�z��. This gives

!� �̃
2

− i
��

2�kBT


!�1 −
�̃

2
− i

��

2�kBT
 = �!� �̃

2
+ i

��

2�kBT
�2

�sin��� �̃
2

+ i
��

2�kBT
� 1

�
,

�A15�

where the sine can be expanded to pick out the real and
imaginary parts. Selecting the imaginary part of C��� we
find

Im�C���� �
1

�2��c�2� �

�kBT
��kBT

%̃c

�̃ sinh� ��

2�kBT


��!� �̃
2

+ i
��

2�kBT
�2

, �A16�

which for ��
kBT gives

Im�C���� � ���kBT��
SILL

, �A17�

in agreement with our Eq. �31�, and the general analytical
form earlier obtained by Bena and Balents38 up to the expo-
nent describing the temperature dependence which is
changed in the spin-incoherent regime, as illustrated in Fig.
2.

The calculation above is valid provided that the tempera-
ture is larger than the level spacing of the finite-length wire:
kBT��v� /L. For kBT&�v� /L the finite-length results of
Ref. 26 can readily be generalized to finite temperatures. No
simple power laws emerge, but rather a more complicated
dependence involving hyperbolic trigonometric functions.

APPENDIX B: SC-SILL JUNCTIONS IN THE ANDREEV
LIMIT

In this appendix we show that the bosonization scheme
discussed in Sec. II recovers our earlier results for the single-
particle Green’s function, the tunneling density of states, and
the pair correlations.15

1. Single-particle Green’s function

We are interested in computing the Fourier transform
of the single-particle Green’s function Gs

+�x ,x� , t�
= ��s�x , t��s

†�x� ,0��, where here x and x� measure the dis-
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tance from the boundary with the SC. Taking x=x� and using
general formula �14� we have

Gs
+�x,t� =

1

2��c
�

−�

� dq1

2�
�

−�

� dq2

2� �
l1,l2

e−i�q1l1−q2l2��Zl1,sZl2,s
† �

��ei��1+q1/���kF
hx+��x,t��−��x,t��

�e−i��1+q2/���kF
hx+��x,0��−��x,0��� , �B1�

where the � and � fields have the expansion given in Eq.
�20�. We take the limit L→� as we did in Ref. 15 so that the
zero modes play no role. Since the holon sector is described
by Gaussian theory �8� we can make use of the identity
�eiA�=e−�A2�/2 for operator A and evaluate the correlation
functions at zero temperature with respect to the charge en-
ergy but infinite temperature with respect to the spin energy:
E�	kBT→0	E�→0. That is, we take both the spin energy
and the temperature to zero but always maintain kBT	E�.21

In the spin-incoherent regime, the spin correlations are trans-
lationally invariant so we have �Zl1,sZl2,s

† �= �Zl1−l2,sZ0,s
† �

=1 /2�l1−l2�. Making a change of variables l= l1− l2, the sum-
mation over the sites of the spin chain results in a delta
function, 2���q1−q2�, which immediately kills one of the
momentum integrals and sets q1=q2. We relabel the remain-
ing momentum variable q,

Gs
+�x,t� =

1

2��c
�

−�

� dq

2� �
l=−�

�

�2−�l�e−iqlei��1+q/����x,t�−��x,t��

�e−i��1+q/����x,0�−��x,0��� . �B2�

Next, we define a variable Y =1+q /� and re-express the in-
tegration in terms of this variable,

Gs
+�x,t� =

1

2��c
�

−�

� dY

2 �
l=−�

�

�2−�l��− 1�le−il�Y

�ei�Y��x,t�−��x,t��e−i�Y��x,0�−��x,0��� . �B3�

Finally, noting that ���l− ���x , t�−��x ,0���
=�−�

� dY
2�e−i��l−���x,t�−��x,0���Y we see that Eq. �B3� correctly re-

produces Eq. �4� of Ref. 15 after we recall the relations
�� /
2=� and 
2��=�.9,20 The identical result therefore fol-
lows for the Green’s function and the tunneling density of
states derived from it.

2. Pair correlations

Here we compute the pair correlation, F�x�=
−��↑�x��↓�x��, a distance x from the superconductor bound-
ary. By direct substitution of Eqs. �14� and �15� we have

F�x� = −
1

2��c
�

−�

� dq1

2�
�

−�

� dq2

2� �
l1,l2

e−i�q1l1−q2l2�

� �e−i��x�Zl1,↑e
i��1+q1/���kF

hx+��x��−��x��

�e−i��x�Zl2,↓e
i��1+q2/���kF

hx+��x��−��x��� . �B4�

At the boundary, we showed in Sec. II C 2 that Andreev re-
flection implies that Zl,↑=Zl,↓

† . Since l=��x=0� at the bound-
ary may fluctuate, we expect also that the result Zl,↑=Zl,↓

†

approximately holds near �within �� of the boundary. Hence,

F�x� 	 −
1

2��c
�

−�

� dq1

2�
�

−�

� dq2

2� �
l1,l2

e−i�q1l1−q2l2�

� �e−i��x�Zl1,↑e
i��1+q1/���kF

hx+��x���

�e−i��x�Zl2,↑
† ei��1+q2/���kF

hx+��x���� . �B5�

We now assume that we are in the spin-incoherent regime
where the spin correlations are translationally invariant:
�Zl1,sZl2,s

† �= �Zl1−l2,sZ0,s
† �=1 /2�l1−l2�. Then repeating the steps

used above to compute the single-particle Green’s function
�changing the summation variable l= l1− l2 and killing the
momentum integral with � function�, we find

F�x� 	 −
1

2��c
�

−�

� dq

2��
l

�e−iql2−�l�ei2�q/���kF
hx+��x��e−i2��x�� .

�B6�

We then make use of the integral representation of the �

function, �−�
� dq

2��le
−iq�l−�2/���kF

hx+��x���=��l− 2
� �kF

hx+��x��� to
obtain

F�x� 	 −
1

2��c
�

l
�2−�l���l −

2

�
�kF

hx + ��x��e−i2��x�� ,

�B7�

which for x	a ,�c can be evaluated by taking the discrete
sum to an integral: �l→�dl. Doing so we recover result �9�
of Ref. 15 after again recalling the relations �� /
2=� and

2��=�.9,20
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