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Due to Klein’s tunneling the electronic states of a quantum dot in graphene have finite widths and an
electron in quantum dot has a finite trapping time. This property introduces a special type of interdot coupling
in a system of many quantum dots in graphene. The interdot coupling is realized not as a direct tunneling
between quantum dots but as coupling through the continuum states of graphene. As a result the interdot
coupling modifies both the positions and the widths of the energy levels of the quantum dot system. We study
the system of quantum dots in graphene theoretically by analyzing the complex energy spectra of the quantum
dot system. We show that in a double-dot system some energy levels become strongly localized with an infinite
trapping time. Such strongly localized states are achieved only at one value of the interdot separation. We also
study a periodic array of quantum dots in graphene within a tight-binding mode for a quantum dot system. The
values of the hopping integrals in the tight-binding model are found from the expression for the energy spectra
of the double quantum dot system. In the array of quantum dots the states with infinitely large trapping time are
realized at all values of interdot separation smaller than some critical value. Such states have nonzero wave
vectors.
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I. INTRODUCTION

Electronic properties of elusive purely two-dimensional
form of carbon called graphene1 are being intensively stud-
ied since the discovery of the anomalous quantum Hall
effect.2–4 Graphene is a gapless semiconductor, in which the
conduction and the valence bands are touching in two in-
equivalent points, corresponding to two valleys. Due to
unique band structure of graphene, the charge carriers are
massless chiral fermions,5 i.e., massless “relativistic” elec-
trons. Such electrons can cross large potential barriers with
almost unity probability.6 This unusual effect is called
Klein’s paradox6,7 and is related to the fact that electrons in
graphene can have both positive and negative energies. Fur-
thermore, when a propagating electron reaches the potential
barrier it penetrates through it and emerges with the negative
energy, i.e., in a hole state. Therefore, the Klein’s tunneling
introduces an efficient escape channel from any trapping po-
tential. As a consequence of this unique property, the control
of electron behavior by means of electrical confinement po-
tentials becomes a challenging task.

It also follows from the Klein’s paradox that there are no
conventional quantum dots in graphene, i.e., quantum dots,8

which can localize electrons within finite spatial regions.
Therefore, from fundamental point of view, it is desirable to
find a feasible and controllable way to realize the quantum
dot trapping potential for relativistic electrons in graphene.
This is particularly important for future electronic applica-
tions of graphene in photodetectors,9 quantum information
processing, quantum computers,10 etc. Since the conven-
tional quantum dots cannot be realized in graphene, we need
to consider the spatial confinement potentials, which cannot
localize but trap an electron for a long enough time. If the
trapping time is longer than the time required by a corre-
sponding application, then we can consider the electron in

such confinement potential as the localized electron. The
trapping of an electron in graphene quantum dots can be
achieved by introducing a transverse momentum,11–13 which
is determined by the electron angular momentum13 in a cy-
lindrically symmetric quantum dot. The transverse momen-
tum introduces an effective electron mass and, as a result, the
trapping potential. The width and the height of the trapping
potential strongly depend on the electron angular momentum
and on the smoothness of the confinement potential.13 In this
case only the electrons with large angular momentum can be
trapped by a smooth enough confinement potential.

Another mechanism of electron trapping is due to inter-
ference effects.14,15 The trapping in this case can be realized
for the electrons with both large and small angular momenta
and for the confinement potential with both smooth and
sharp boundaries. The trapping properties of the potential
becomes very sensitive to the whole structure of the confine-
ment. If the confinement potential satisfies special
conditions15 then the electron can be strongly localized, i.e.,
the trapping time is infinitely large.

One of the directions of conventional quantum dot re-
search is related to coupled quantum dots, i.e., “artificial
molecules.” The coupled quantum dots have been proposed
as building blocks of quantum computing.16 Recently the
problem of coupled quantum dots in graphene has been ad-
dressed in the literature.17 In this relation it is very important
to understand the trapping properties of the coupled quantum
dots. In the present paper we address this problem. We con-
sider the effect of the coupling of quantum dots on the elec-
tron trapping time.

In the conventional coupled quantum dot systems18 there
are two types of interdot coupling. The first one is a direct
interdot tunneling, which shifts the energy levels of the indi-
vidual quantum dots. The second type of coupling is realized
in systems, where the states of the quantum dots are degen-
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erate with the continuum states, e.g., the continuous states of
the leads in resonant tunneling experiments.19,20 In this case
the states of the quantum dots have finite widths, which are
the widths of the tunneling conductance maxima. Then the
second type of coupling is the coupling through the con-
tinuum states of the leads. This type of coupling has inter-
ference nature and affects the width of the quantum dot
levels.20 As a result some levels of the coupled quantum dots
become narrow and the other levels become broad. Therefore
in the conventional quantum dot systems, the real part of the
interdot coupling matrix elements are determined by the di-
rect interdot tunneling, while the imaginary part is due to
coupling through the continuum states.

In the graphene quantum dot system there is no direct
tunneling between two spatially separated quantum dots. The
levels of the quantum dots in graphene are degenerate with
the continuum states. Therefore the interdot coupling in
graphene should be described as the coupling through its
continuum states. In this case the coupling matrix elements
have both real and imaginary parts, and we should expect
that the interdot coupling in graphene affects both the posi-
tion and the width, i.e., the electron escape rate, of the levels
of the dot system. We show below that the interdot coupling
in graphene can result in strong suppression of the escape
rates from the dot system and under some conditions the
escape rate can be even zero. This suppression is the result of
interference effect and is sensitive to the shape of the con-
finement potential. Below we discuss the properties of the
trapped states in a double quantum dot system and in peri-
odic array of quantum dots.

The trapped states or decaying states of the quantum dot
system are revealed as peaks, i.e., resonances, in the scatter-
ing cross section or as the first-order poles of the scattering
matrix in the complex energy plane. The poles are complex,
where the real part corresponds to the energy of the reso-
nance and the inverse of the imaginary part describes the
lifetime of the decaying state. In the present paper we use
different approach to the problem of resonances, i.e., trapped
states, of the quantum dot system. This approach was origi-
nally introduced by Gamow in Ref. 21. In this approach the
resonances are described by eigenfunctions, Gamow’s vec-
tors, with complex eigenvalues. The real part of the complex
eigenvalue is associated with the energy of the resonance,
and the inverse of the imaginary part of the eigenenergy is
associated with the lifetime of the decaying state. Therefore
the resonances in this approach have complex energy and are
considered as the long-lived states in the decay process.22

Such states can be found as the time-independent solutions
of the Schrödinger equation with purely outgoing boundary
conditions. The stationary solutions with such boundary con-
ditions exist only at complex eigenenergies.

The paper is organized as follows. In Secs. II and III we
discuss the double quantum dot system in graphene. In Sec.
II we introduce the main system of equations, which deter-
mines the complex energy spectra of the double-dot system.
The system of equations is solved numerically. The results of
calculations and the discussion of the results are presented in
Sec. III. In Sec. IV we consider a periodic array of quantum
dots and introduce the tight-binding model, which describes
the periodic system of quantum dots. Within the tight-

binding model we obtain the complex energy spectrum of the
array of quantum dots.

II. DOUBLE QUANTUM DOT SYSTEM: MAIN
EQUATIONS

The coupled quantum dots system is shown schematically
in Fig. 1. We consider two identical cylindrically symmetric
quantum dots, which are characterized by radius R. The dis-
tance between the centers of the quantum dots is d. Then the
system under consideration consists of three regions: region I
�quantum dot 1�, region II �quantum dot 2�, and region III
�see Fig. 1�. To describe the system it is convenient to intro-
duce the polar coordinates for each quantum dot: r1 and �1
for the first quantum dot and r2 and �2 for the second quan-
tum dot �see Fig. 1�. We assume that the quantum dots have
sharp boundaries14,15 and the corresponding confinement po-
tential has the following form:

V�r�� = �− V1 if r1 � R region I

− V2 if r2 � R region II

0 if r1,r2 � R region III,

�1�

where V1 ,V2�0.
With the confinement potential �Eq. �1�� the Hamiltonian

of a single electron in graphene is given by an expression5,23

H =
�

�
��� . p�� + V�r�� , �2�

where �� are the Pauli matrices, p� =−i� /�r�, and �
=�3a0�0 /2 is the band parameter. Here a0=0.246 nm is the
lattice constant and �0�3.03 eV is the transfer integral be-
tween the nearest-neighbor carbon atoms.24 In expression �2�
for the Hamiltonian of the system we consider a single valley
only, taking into account that the energy spectrum is a double
valley degenerate. In addition to the valley degeneracy each
level has double spin degeneracy. Therefore, each energy
level, we discuss below, has a fourfold degeneracy.

We define the trapped states of the quantum dot system as
the long-lived states in the decay process.22 In this case the
trapped states of the system is the time-independent solution
of the Schrödinger equation, which is characterized by the
outgoing boundary conditions at infinity and a complex en-
ergy, E. The escape rate from the quantum dots and the trap-
ping time of the corresponding state are determined by the

R R

d

Region III
Region IIRegion I

�

� �

r r21

1

1

� 2�

P

FIG. 1. The geometry of the coupled graphene quantum dots.
The quantum dots have the same radius R. Here d is the distance
between the centers of the quantum dots �interdot distance�. To
characterize the position of point P we introduce the polar coordi-
nates r1 ,�1 and r2 ,�2 for each quantum dot.

PRABATH HEWAGEEGANA AND VADYM APALKOV PHYSICAL REVIEW B 79, 115418 �2009�

115418-2



imaginary part of the energy. For example, the trapping time
is �=� / Im�E�, where Im�E� is imaginary part of the energy
of the level and � is the reduced Planck constant. Within this
approach the solution of the Schrödinger equation in region
III should have only outgoing waves.

To find the solution of the Schrödinger equation corre-
sponding to Hamiltonian �2� we introduce the basis states,
which have the same form as single quantum dot states.15

The form of the wave function corresponding to a single
quantum is described in Appendix A and in Ref. 15. Then the
general solution of the Schrödinger equation for the double-
dot system has the following form:

	I�r1,�1� = �
m

Am	J
m−1/2
�
1r1/R�ei�m−1/2��1

iJ
m+1/2
�
1r1/R�eim�1
� �3�

in region I �r1�R�, where 
1=R�E+V1� /� and Jn is the
Bessel function of the nth order;

	II�r2,�2� = �
m

Cm	J
m−1/2
�
2r2/R�ei�m−1/2��2

iJ
m+1/2
�
2r2/R�eim�2
� �4�

in region II �r2�R�, where 
2=R�E+V2� /�, and

	III�r1,r2,�1,�2� = �
m

Bm	H
m−1/2
�
r1/R�ei�m−1/2��1

iH
m+1/2
�
r1/R�eim�1
�

+ �
m

Dm	H
m−1/2
�
r2/R�ei�m−1/2��2

iH
m+1/2
�
r2/R�eim�2
�

�5�

in region III �r1 ,r2�R�, where 
=RE /� and Hn is the Han-
kel function of the nth order of the first kind. Here m
= �1 /2, �3 /2, . . . is an orbital angular momentum, defined
for each quantum dot separately. In these expressions we
took into account that the wave function should be finite at
r1=r2=0 and outside the quantum dot system we have out-
going waves.

The wave function should be continuous at the boundary
between regions I and III �r1=R� and at the boundary be-
tween regions II and III �r2=R�. The continuity condition, for
example, at the boundary between regions I and III have the
form

	I�R,�1� = 	III�R,r2��1�,�1,�2��1�� , �6�

where

r2��1� = �R2 + d2 − 2dR cos �1,

�2��1� = sin−1�R sin �1

r2��1�  . �7�

Taking into account expressions �3� and �5� for the wave
function in the regions I and III and integrating boundary
condition �6� over the boundary surface, we obtain the fol-
lowing equation:

J
m−1/2
�
 + �1�

J
m+1/2
�
 + �1�
=

BmH
m−1/2
�
� + �
m�

Dm�m,m�
�−�

BmH
m+1/2
�
� + �
m�

Dm�m,m�
�+�

. �8�

The similar equation can be derived from the continuity con-
dition at the boundary between regions II and III,

J
m−1/2
�
 + �2�

J
m+1/2
�
 + �2�
=

�
m�

Bm�m,m�
�−� + DmH
m−1/2
�
�

�
m�

Bm�m,m�
�+� + DmH
m+1/2
�
�

, �9�

where �1�RV1 /�, �2�RV2 /�, and

m,m�
��� = �

0

2�

H
m��1/2
�
r2��1�
R


� e−i��m�1/2��1−�m��1/2��2��1��d�1. �10�

The solution of the system of Eqs. �8� and �9� determines
the complex energy of the electronic states in the double
quantum dot system, where the coefficients m,m�

��� describe
the interdot coupling. In the limit of large interdot separation,
d, the interdot coupling terms become small and Eqs. �8� and
�9� transform into eigenvalue equations for two uncoupled
single quantum dots.15 At finite interdot separation the coef-
ficients m,m�

��� introduce the coupling between the states with
different angular momentum, m. In Eqs. �8� and �9� the sum-
mation runs over all possible values of angular momentum,
m�. Below we consider the small values of angular momen-
tum, m, and to make the system of Eqs. �8� and �9� finite we
restrict the values of m in Eqs. �8� and �9� by inequality:

m
�5 /2. Under this restriction we solve the system of Eqs.
�8� and �9� numerically to find the complex energy spectra of
the double-dot system.

III. DOUBLE QUANTUM DOT SYSTEM: RESULTS AND
DISCUSSION

At large interdot separation the interdot coupling is small
and the double quantum dot system becomes the system of
uncoupled quantum dots. The energy spectra of each of the
quantum dots is determined from the eigenvalue equation,15

J
m−1/2
�
 + ��

J
m+1/2
�
 + ��
=

H
m−1/2
�
�

H
m+1/2
�
�
. �11�

This equation can be obtained from Eqs. �8� and �9� at zero
interdot coupling, m,m�

��� =0. The solution of this equation is a
complex energy spectrum, where the imaginary part of the
energy determines the electron trapping time in the quantum
dot. For identical quantum dots, i.e., �=�1=�2, the energy
spectra of two quantum dots become degenerate. At finite
interdot separation we should expect the splitting of the de-
generate energy levels. Since the coefficients m,m�

��� , which
determines the interdot coupling, are complex then the finite
interdot coupling modifies both the real and imaginary parts
of the electron energy.
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To describe the effect of interdot coupling on the trapping
properties of the double quantum dot system, we trace the
splitting of the degenerate levels of double quantum dots
with decreasing the interdot separation, d. We characterize
the states at finite values of d by the angular momentum of
the original quantum dot states at large interdot separation.
The results of calculations are shown for the angular mo-
menta m=1 /2 and m=3 /2 in Fig. 2. For each value of m we
show only one set of energy levels, which corresponds to the
lowest escape rate, i.e., the lowest imaginary part of the en-
ergy, at large interdot separation.

We can see from Fig. 2 that at finite interdot separation, d,
the interdot coupling introduces the splitting of the degener-
ate energy levels of the double-dot system. The splitting oc-
curs both for the real and imaginary parts of the energy. The
escape from one of the states of the double quantum dots is
suppressed, i.e., the imaginary part of the energy decreases.
The most important property of this dependence is that at
finite value of d, d�4R, the imaginary part of the energy
becomes zero. It means that the electron at this level be-
comes strongly localized, i.e., the trapping time is infinitely
large. In addition to suppression of the escape rate from one
of the levels of the double-dot system we can see an en-
hancement of the escape rate from another level. This fact
illustrates the splitting of the degenerate levels due to inter-
dot coupling. The splitting of the real part of the energies has
almost linear dependence on the interdot separation, d.

In Fig. 2 the states with positive and negative imaginary
parts are shown. In general, the solutions of the eigenenergy
equation, which describes the Gamow’s states, always come
in complex conjugate pairs. One of the states in this pair
corresponds to the decaying state, and another state describes
the growing state. In physical applications we are interested
only in the decaying states. In Fig. 2 we show only one set of
energies, which has smooth dependence on the parameters of
the system. We also have complex conjugate set of energies,
which is not shown in the figure. The energies shown in Fig.
2 have both positive and negative imaginary parts. In this

case to define the lifetime of the trapped state we need to
consider the absolute value of the imaginary part of the en-
ergy. Namely, the lifetime is determined by the inverse of the
absolute value of the imaginary part.

The suppression of the escape rate of an electron from the
double quantum dot system is due to interference effects.
Therefore, this behavior is sensitive to the parameters and the
positions of the quantum dots. The exact value of the interdot
separation, at which the strongly localized state is realized,
depends on the actual structure of the quantum dots.

The results shown in Fig. 2 correspond to the quantum dot
system with two identical quantum dots. In this case the
interdot coupling has the strongest effect on the electron en-
ergy spectra and on the electron trapping time. This is be-
cause the energy spectra of two quantum dots at large inter-
dot separation are identical. If the quantum dots have
different parameters, e.g., different strength of the confine-
ment potential, then the effect of the interdot coupling is
suppressed. The results of calculations for the double quan-
tum dot system with the different values of the confinement
potential strength, �1��2, are shown in Fig. 3. We can see
that at large interdot separation, d, the energies of two quan-
tum dots are different. With decreasing the distance, d, the
interdot coupling introduces an additional splitting of the en-
ergy levels. The imaginary part of one of the levels of the
double-dot system becomes smaller, i.e., the electron in this
state becomes more localized. We can see from Fig. 3 that
the effect of the interdot coupling on the energy spectra is
less than in the case of the identical quantum dots. As a
result, the state with zero imaginary part is achieved at
smaller values of the interdot separation, d�3R.

The data shown in Fig. 3 illustrate the possibility of ex-
perimental control of the electron trapping in the quantum
dot system. Namely, if we keep the same separation between
the dots and change the strength of the confinement potential
for one of the dots ��1 or �2�, then we can switch between the
states with different trapping times. For example, if the in-
terdot separation is d�4R and we start from the identical
quantum dots and then change the confinement potential of
one of the dots, then the electron state transforms from the
highly trapped to the weakly trapped state.

We can illustrate the finite trapping time of an electron in
terms of the widths of the peaks in the electron density of
states. The width of the peak is determined by the imaginary
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FIG. 2. ��a� and �b�� The imaginary parts of the energies, Im�
�,
of the quasilocalized states are shown as functions of d /R for
double quantum dot system in graphene for different values of an-
gular momentum, m, �as indicated�. ��c� and �d�� Same diagram for
the real part of the energy, Re�
�. For all the panels �1=�2=20. The
lifetime of the trapped state is determined by the inverse of the
absolute value of the imaginary part of the complex energy.
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FIG. 3. The imaginary parts of the energies, Im�
�, of the
quasilocalized states are shown as functions of d /R for double
quantum dot system for angular momentum, m=3 /2, and different
strength of confinement potentials, �1 and �2 �as indicated�.
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part of the energy of the corresponding state. Therefore, the
strongly trapped states correspond to sharp peaks in the elec-
tron density of states. The density of states can be expressed
through the real and imaginary parts of the energies by the
following equation:25

g�
� =
1

�
�

j


Im�
 j�

�
 − Re�
 j��2 + �Im�
 j��2 . �12�

The density of states is shown in Fig. 4 for the double quan-
tum dot system of identical quantum dots, i.e., �1=�2=20. In
this figure only the states with m=3 /2, which correspond to
the results shown in Figs. 2�b� and 2�d�, are taken into ac-
count. At large interdot separations �Fig. 4�a�� there is a
broad peak, which corresponds to two degenerate states of
the quantum dots. With decreasing the interdot distance, d,
the formation of two peak structure is observed. Here the
low-energy peak is narrow and the higher-energy peak is
broad. Finally at d /R�4 the width of the lower-energy peak
becomes very small, which illustrates almost zero escape rate
of the electron from the double quantum dot system.

IV. ARRAY OF QUANTUM DOTS

In Sec. III we illustrated the appearance of the strongly
localized states of the electron in the double quantum dot
system. Such states exist only at specific values of the inter-
dot separation. Additional degree of freedom can be intro-
duced into the dot system if we increase the number of
coupled quantum dots. One of the examples of such system
is the periodic array of identical quantum dots. Such array is
characterized by the radius of each quantum dot, R, and the
interdot distance, d �see Fig. 5�a��. Here the interdot distance,
d, becomes the period of the quantum dot array system.

At large interdot distance, d�R, all quantum dots have
the same energy spectrum. When the interdot distance de-
creases the interdot coupling results in splitting of the degen-
erate energy levels and formation of the band structure. To
analyze this energy structure we consider only one electron

state per quantum dot. This state is characterized by the an-
gular momentum, m, and the complex energy, 
m. We intro-
duce the interdot coupling through the tight-binding model,
which is described by the following tight-binding Hamil-
tonian,

Ht = �
i


mai
†ai + �

i

tmai
†ai+1 + H.c., �13�

where ai is the annihilation operator of an electron in the
state with energy 
m at the quantum dot i and tm is the inter-
dot hopping integral. The value of the hopping integral can
be found from the application of Hamiltonian �13� to a
double-dot system. For the double-dot system the energy
spectra is found from the solution of the system of Eqs. �8�
and �9�. In this system of equations we consider only one
level per dot and then compare the corresponding energy
spectrum with the energy spectrum of the tight-binding
model. This comparison gives the following value for the
hopping integral in the tight-binding model,

tm = −

m
m,1

2m�

m,m
�+� J
m−1/2
�
m,1� − m,m

�−� J
m+1/2
�
m,1�

H
m+1/2
�
m�J
m−1/2
�
m,1�
,

�14�

where 
m,1=R�Em+V� /�=
m+�. The details of derivation of
the hopping integral can be found in Appendix B.

The states of Hamiltonian �13� are characterized by a
wave vector, k, and the corresponding energy spectrum has a
form
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FIG. 5. The imaginary part of the energy, Im�
�, is shown as a
function of the wave vector k for different values of d /R �as indi-
cated�. Here �0=20 and m=3 /2. The lifetime of the trapped state is
determined by the inverse of the absolute value of the imaginary
part of the complex energy.
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�k� = 
m + 2tm cos�kd� , �15�

where the wave vector k is defined within the interval 0
�k�2� /d.

Both the energy 
m and the hopping integral tm are com-
plex. Then the energy spectrum, 
�k�, of the quantum dot
system is complex, and the imaginary part of the energy
determines the escape rates of an electron from the quantum
dot array.

In Fig. 5�b� the imaginary part of the energy spectrum is
shown as a function of the wave vector, k, at m=3 /2 and
different values of the period, d. We can see from the figure
that if the period, d, is less than some critical value, d�8R,
then there are always two states with zero imaginary part of
the energy, which means that electron trapping time at these
states is infinitely large. This property is different from the
double quantum dot system, where the state with large trap-
ping time can be realized only at one value of the interdot
distance.

The manifestation of the specific behavior of the imagi-
nary part of the energy spectra could be the formation of the
charge-density wave in the periodic array of quantum dots in
graphene. Indeed, if initially all quantum dots are occupied
by electrons, then after some time the electrons at the states
with small trapping time will escape from the quantum dot
system. Finally, only the states with large trapping times will
be occupied. Such states have nonzero momentum and the
occupation of these states results in the charge-density wave.

V. CONCLUSION

The unique feature of the quantum dots in graphene is that
the discrete electron energy spectra of the quantum dot is
degenerate with the continuum spectra of graphene. As a
result the states of the quantum dot have finite width and the
electrons at these states have finite lifetime. In this case the
interdot coupling in the system of many quantum dots in
graphene can be described as the combination of the follow-
ing processes: �i� the electron escapes from a quantum dot
into the continuum states of graphene; �ii� then the electron
freely propagates outside the quantum dots; �iii� and finally
the electron is trapped by another quantum dot. This type of
processes introduce interdot coupling, which has both real
and imaginary parts. As a result, the interdot coupling
changes both the positions and the widths of the energy lev-
els of the quantum dots. For some states of the quantum dot
system the width of the energy levels, i.e., the escape rate
from the quantum dots, is suppressed and can be even zero.
For the double quantum dot system such states with infinitely
large trapping time is realized only at one value of the inter-
dot distance. This distance depends on the parameters of the
quantum dots, e.g., the radius of the dot, the strength of the
confinement potential, and the shape of the quantum dot.

For a periodic array of quantum dots in graphene the in-
terdot coupling results in the band structure of the energy
spectra. In this case the strongly localized states with zero
width exist at all values of interdot separation smaller than
some critical value. The states with infinitely large trapping
time have nonzero wave vector.

In the above analysis we assumed that the quantum dots
have very special form. Namely, for each quantum dot the
confinement potential is cylindrically symmetric with sharp
boundaries �see Eq. �1��. In reality there is always deviation
from the cylindrically symmetric shape of the quantum dot,
and the confinement potential is always smooth. The fact that
the potential is smooth does not affect qualitatively the re-
sults we presented above. Even in smooth potential the elec-
tron can be strongly localized due to interference of the elec-
tron waves within the quantum dot. Similar to the quantum
dot with sharp boundary such localization occurs at one en-
ergy only and only at special sets of parameters of the con-
finement potential. Then in the system of coupled quantum
dots with smooth boundaries we should expect the same re-
sults as for the quantum dots with sharp boundaries. The
smoothness of the confinement potential modifies only the
quantitative results, e.g., the interdot distance at which the
strong trapping is observed in double quantum dot system or
the wave vectors at which the strong trapping is observed in
the array of quantum dots.

The deviation of the shape of the quantum dot from cy-
lindrically symmetric one introduces an additional escape
channels from the quantum dot due to mixture of the states
with different angular momentum. In Ref. 15 it was shown
that if the radius of the quantum dot changes within the
interval �R−�R ,R+�R�, e.g., for elliptical quantum dot, then
the imaginary part of the energy, which determines the es-
cape rate from the quantum dot, is

Im�
� =
�

��m − 1/2�!�2�1 −
1

2m
2m+1

�V0�R/��2m �16�

for m�1 /2 and

Im�
� =
�V0�R

� ln�V0�R/��
�17�

for m=1 /2. To observe strongly trapped states in a system of
coupled quantum dots the imaginary part of the energy of a
single dot should be small enough. For example, from Fig. 2
we can conclude that the upper limit for imaginary part of a
single dot is around 0.2 for m=3 /2. Then from Eq. �16� we
can find the maximum possible deviation of the quantum dot
from the cylindrically symmetric form

�R � 0.7
�

V0
. �18�

Since RV0 /�=20 then we can express the above value as a
relative deviation of the radius of the quantum dot

�R

R
� 0.04. �19�

For example, if the radius of the quantum dot is 50 nm, then
the radius cannot be changed more than by 2 nm.
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APPENDIX A

The wave function, 	�r��, corresponding to Hamiltonian
�2�, is a two-component function.15 For cylindrically sym-
metric confinement potential,

V�r� = � 0 if r � R

− V0 if r � R ,
� �A1�

where V0�0, the two-component wave function has the fol-
lowing form:

	�r,�� = ei�m−1/2��	 �1�r�
�2�r�ei� � , �A2�

where r and � are cylindrical coordinates and m
= �1 /2, �3 /2, . . . is orbital angular momentum. With this
form of the wave function the Schrödinger equation, corre-
sponding to the Hamiltonian in Eq. �2�, becomes

V�r��1 − i�
d�2

dr
− i�

m + 1/2
r

�2 = E�1, �A3�

V�r��2 − i�
d�1

dr
+ i�

m − 1/2
r

�1 = E�2. �A4�

By eliminating �1 �or �2� in the system of Eqs. �A3� and
�A4� we can easily obtain that �1 and �2 satisfy Bessel’s
differential equations of the orders of 
m−1 /2
 and 
m
+1 /2
 for the functions �1 and �2, respectively.

Inside the quantum dot the wave function should be finite
at the origin, r=0. Then the general solution of the system of
Eqs. �A3� and �A4� inside the quantum dot, where V=−V0,
has the form

	�1�r�
�2�r� � = A	 J
m−1/2
��
 + �0�r/R�

iJ
m+1/2
��
 + �0�r/R� � , �A5�

where Jn is the Bessel function of the nth order, and we
introduced the dimensionless energy 
=RE /� and dimen-
sionless confinement potential �0=RV0 /�.

Outside the quantum dot, i.e., at r�R, the solutions of the
corresponding Bessel differential equations describe the out-
going waves, �exp�ikr�. Therefore at r�R, the solution of
Eqs. �A3� and �A4� are Hankel functions of the first kind.
Then the general solution of the system of Eqs. �A3� and
�A4� at r�R, where V=0, is

	�1�r�
�2�r� � = B	H
m−1/2
�
r/R�

iH
m+1/2
�
r/R� � , �A6�

where Hn is the Hankel function of nth order of the first kind.
Wave functions �A5� and �A6� should be continuous at the

boundary of the quantum dot, r=R. From this condition the
complex energy spectra of a single quantum dot can be
found.15

APPENDIX B

To find the hopping integral in the tight-binding model
�Eq. �13�� we consider a system of two identical quantum

dots with only one state per dot. We assume that the angular
momentum of this state is m and the energy is 
m. In this
case in Eqs. �8� and �9�, which determine the energy spec-
trum of the system, we need to keep only the terms with
m�=m. Then Eqs. �8� and �9� become

J
m−1/2
�
 + ��

J
m+1/2
�
 + ��
=

BmH
m−1/2
�
� + Dmm,m
�−�

BmH
m+1/2
�
� + Dmm,m
�+� , �B1�

J
m−1/2
�
 + ��

J
m+1/2
�
 + ��
=

Bmm,m
�−� + DmH
m−1/2
�
�

Bmm,m
�+� + DmH
m+1/2
�
�

, �B2�

where �1=�2=�. A nontrivial solution of Eqs. �B1� and �B2�
can be found from the condition that the determinant of the
following matrix:

A = 	A1�
� A2�
�
A2�
� A1�
�

� , �B3�

is zero. Here

A1�
� = H
m+1/2
�
�J
m−1/2
�
 + �� − H
m−1/2
�
�J
m+1/2
�
 + �� ,

�B4�

A2�
� = m,m
�+� J
m−1/2
�
 + �� − m,m

�−� J
m+1/2
�
 + �� . �B5�

For uncoupled quantum dots the nondiagonal element, A2, of
the matrix is zero and the energy spectrum is determined by
equation A1�
�=0. This equation gives two degenerate en-
ergy levels with the energy equal to the energy of a single
quantum dot, 
=
m.

We assume that the interdot coupling is small and the
energy of the coupled quantum dots is close to 
m. Then
expanding the diagonal element, A1�
�, of the matrix around

m, we obtain

A1�
� = A1��
 − 
m� + 
m� � A1�
m� + A1��
m��
 − 
m� ,

�B6�

where A1� is the first derivative of the function. Since
A1�
m�=0, then Eq. �B6� becomes

A1�
� � A1��
m��
 − 
m� . �B7�

With this expression the matrix A takes the form

A = 	A1��
m��
 − 
m� A2�
m�
A2�
m� A1��
m��
 − 
m�

� . �B8�

From the condition that the determinant of the matrix A is
zero we can find the energy of the double-dot system,


 = 
m �
A2�
m�
A1��
m�

. �B9�

In the tight-binding model �Eq. �13�� of double quantum
dot system the energy spectrum is


 = 
m � tm. �B10�

Comparing Eqs. �B9� and �B10�, we obtain the expression
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for the hopping integral in the tight-binding model,

t =
A2�
m�
A1��
m�

. �B11�

Using the properties of Bessel and Hankel functions, we
can find the derivative A1��
m� in the following form:

A1��
m� = −
2m�


m
m,1
H
m+1/2
�
m�J
m−1/2
�
m,1� , �B12�

where 
m,1=
m+�. Substituting Eqs. �B5� and �B12� into Eq.
�B11�, we obtain expression �14� for the hopping integral in
the tight-binding model.
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