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The four-level inverted-Y configuration realizable in an asymmetric quantum well system interacting with
four fields is studied to demonstrate the phenomenon of phase-dependent electromagnetically induced trans-
parency �EIT� in this system. The system is studied under various parametric conditions to demonstrate the
controllability of EIT, dispersion properties, and group velocity.
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I. INTRODUCTION

During the last decade the phenomenon of electromag-
netically induced transparency �EIT� �Refs. 1 and 2� in three-
level systems has been a center of attraction. Basically this
phenomenon describes inhibition of absorption in a three-
level medium to a resonant probe-laser field due to the ap-
plication of a strong-coupling laser field to other transitions.
Numerous applications of EIT have been proposed that in-
clude lasing without population inversion,3 enhanced nonlin-
ear optical processes,4 to quantum computation and
communications.5 In the recent past, EIT in four-level atomic
systems under different configurations with some experimen-
tal realization has also been reported.6,7

Many important phenomena of atomic-molecular three-
level systems have been extended to their semiconductor
counterparts, e.g., quantum optical coherence and interfer-
ence effects4 have been studied in intersubband transitions in
the conduction band of semiconductor quantum wells
�QWs�. Some of these phenomena studied in semiconductor
QWs are electromagnetically induced transparency �EIT�,8
enhanced nonlinear processes,9 lasing without inversion
�LWI�,10 and optical Stark effect.11 Observation of coherent
phenomena in these systems is limited because of the large
dephasing rates in semiconductors ��10 ps−1�. The advan-
tages of using QWs are that their transition energies, dipole
moments, and symmetries can be engineered as desired and
the dipole moments of intersubband transitions are large.
Some Fano interference schemes have been used to demon-
strate the viability of quantum interference and EIT in QW
systems. EIT was recently demonstrated in an n-doped In-
GaAs QW �with an AlInAs barrier� which could be described
as a three-level ladder-type system.8 A strong driving field,
which is in two-photon resonance with the system and simul-
taneously drives all three states into coherence, results in a
“locking” of quantum phases.8 This system gives rise to an
enhanced transparency feature in the absorption spectrum.
The optical bistability in such a system under similar experi-
mental conditions was studied and the controlled perfor-
mances of this bistable device with different parameters were
demonstrated.12 Further to this, the coherent control of opti-
cal processes in atomic, molecular, and condensed-matter
systems has been achieved by changing the relative phase of
applied laser fields.13 In the atomic configuration with

closed-loop interaction scheme, the relative phase of fields
becomes very important. It can modify linear and nonlinear
properties dramatically and can give rise to several interest-
ing phenomena. The closed-loop interaction schemes could
be used for phase-controlled EIT,14 coherent population
transfer,15 manipulation of spontaneous emission spectra,
etc.16 Phase control of electron population, absorption, and
dispersion properties of the semiconductor quantum well was
also studied. The quantum well considered in that study was
an asymmetric quantum well having a three-level cascade
configuration interacting with a laser field and its second
harmonic.17 In another interesting work tunneling-induced
transparency in an asymmetric double quantum well struc-
ture was studied where Fano-type interferences for the col-
lective intersubband excitation were observed.18 Inspired by
these studies we study the phase-controlled EIT, dispersive
properties, and group-velocity reduction in an asymmetric
double quantum well system consisting of four energy levels
in an inverted-Y configuration interacting with different laser
fields. This is because the phase-dependent effects have in-
herent tunability associated with them with an easily control-
lable single parameter. The transitions depicted in Fig. 1 are
all dipole allowed. By analytical and numerical calculations,

FIG. 1. �a� Schematic band diagram of a single period of the
asymmetric double quantum well system with potential V�x� as a
function of x, having four discrete levels. �b� Schematic energy-
level diagram of a four-level system in inverted-Y configuration for
�a�. Here, �1 ��1�, �0 ��0�, �2 ��2�, and �m ��m� are frequencies
�frequency detunings� of probe, coupling, pumping, and cycling
fields, respectively.
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we find few interesting properties due to the effect of the
closed interaction phase. We find that not only the strengths
of applied laser fields but also the total closed interaction
phase can modify the position, the shape, and the widths of
the EIT structure. Also, corresponding to the specific phase,
the strengths and the frequency detunings of applied laser
fields behave differently on the frequency intervals of double
EIT. The system of inverted-Y configuration can be easily
realized in intersubband transitions in the conduction band of
semiconductor quantum wells. The two-dimensional electron
gas behaves effectively as a single oscillator due to strong
electron-electron interaction and thus the system gives rise to
atomlike absorption-dispersion behavior. The advantage of
the quantum well system over the atomic system is that the
intersubband energies and the electron wave function sym-
metries can be engineered as desired in accordance with the
requirements.

The system of four levels in inverted-Y configuration
gives rise to double-dark resonances and double EIT with
two control fields which are not available in the three-level
systems. We will see in the following that the frequency
detunings of these control fields are very much crucial to
determine the shape and width of double-EIT features and
hence advantageous over any three-level system because of
this flexibility. Note that the double-dark resonances play an
important role in unipolar and bipolar quantum well lasers
and there is a potential application of double-dark states in
adiabatic passage techniques.

In the recent past there has been an upsurge in the study
of group velocity using EIT exhibiting atomic media in sub-
luminal and superluminal regimes to realize single-photon
switching by quantum interference, to search for quasitachy-
ons, to create atomic dielectric analogs of gravitational field,
etc. The EIT media exhibit steep linear and nonlinear disper-
sions and show reduction of group velocity in thermal atomic
vapor, Bose-Einstein condensate, ruby crystal at room tem-
perature, and solid hydrogen. The quantum well could be a
more practical device for such purposes and we study the
group-velocity behavior for such devices in this study. In
view of many potential applications of ultraslow and super-
luminal light propagation, a question of interest is whether
one can have a controlling parameter in a single experiment
for switching from subluminal to superluminal propagation.
In this paper we propose a scheme based on four-level EIT in
which we can switch the propagation of light from sublumi-
nal to superluminal by changing the phase of one of the
driving fields. It is the phase of this driving field that affects
the medium dispersion in such a way that we can have a
switching from subluminal to superluminal group velocity.
We will demonstrate the control of group velocity using the
phase parameter such that continuous tuning of group veloc-
ity could be possible from subluminal to superluminal and
vice versa.

The rest of the paper is organized as follows. In Sec. II,
we present our model and its approximate solution. In Sec.
III, we present exact numerical results and their discussion.
This is followed by concluding remarks in Sec. IV.

II. MODEL

In this work, we consider a closed four-level inverted-Y
configuration in an asymmetric quantum well system as

shown in Fig. 1, which has been realized experimentally.
Levels �1�, �2�, and �3� are in a usual three-level ladder-type
configuration and level �0� together with levels �1� and �2�
forms a three-level �-type configuration. So, this composite
system consists of two subsystems, i.e., one ladder type and
the other � type. The description of the optically allowed
transitions in this system is as follows. The transition �1� to
�2� �transition frequency �12� interacts with a weak probe
field E1 �frequency �1� having Rabi frequency 2�1
=E1d12 /�. A coupling field E0 �frequency �0� drives the tran-
sition �0� to �2� �with transition frequency �02� with a Rabi
frequency of 2�0=E0d02 /� while a pumping field E2 �fre-
quency �2� is acting on transitions �2� and �3� �with transi-
tion frequency �23� and has a Rabi frequency equal to 2�2
=E2d23 /�. A cycling field �frequency �m� is coupled to the
transition �1� to �0� �with transition frequency �01� and has a
Rabi frequency equal to 2�m=Emd01 /�. The decay constants
from levels �3� to �2�, �2� to �0�, �0� to �1�, and �2� to �1� are
�3, �2, �0, and �1, respectively. The decay constants in semi-
conductor quantum wells are comprised of a population-
decay contribution as well as a dephasing contribution. The
first contribution is mainly due to longitudinal optical �LO�
photon emission at low temperature and the other contribu-
tion comes from electron-phonon scattering and scattering on
interface roughness.19 For a typical double quantum well
structure20 it is possible to realize the following values for
the decay constants: 2�1=2�1=2�3=4–6 meV, 2�0
=0.2 meV. The corresponding atomic detunings for these
transitions are �2=�2−�23, �0=�0−�02, �m=�m−�10, and
�1=�1−�12, respectively. In this way, two middle levels �0�
and �2�, upper level �3�, and the ground level �1� form a
closed interaction contour. The phases associated with the
four coherent fields �0, �1, �2, and �m are �0, �1, �2, and
�m, respectively.

If there is no coupling field and Em is zero then this con-
figuration reduces to a standard ladder-type three-level EIT
system driven by the probe and the pumping fields. On the
other hand if we set the pumping field E2 along with Em to
zero then this configuration along with probe and coupling
fields forms a standard �-type three-level EIT system. The
system can be easily realized experimentally with carbon di-
oxide laser frequencies, which can be derived from the same
parent laser and can be frequency tuned with acousto-optic
modulators or gratings. Thus the fundamental frequency of
this laser can be tuned in such a way to excite all the three
transitions mentioned above in an asymmetric quantum well
maintaining a relative phase control of all the fields. The
small signal absorption of the weak-probe field propagating
through such a system can be computed in the steady state.
The density-matrix equations of motion in dipole and
rotating-wave approximations for this system can be written
as follows:

�̇11 = 2�1�22 + 2�0�00 + i�1��12 − �21� + i�m��10 − �01� ,

�̇22 = − 2��1 + �2��22 + 2�3�33 − i�1��12 − �21�

− i�0��02 − �20� + i�2��23 − �32� ,

�̇33 = − 2�3�33 − i�2��23 − �32� ,
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�̇00 = 2�2�22 − 2�0�00 + i�0��02 − �20� − i�m��10 − �01� ,

�̇12 = − ��1 + �2 − i�1��12 + i�0�10e
i	 + i�2�13

+ i�1��11 − �22� − i�m�02e
i	,

�̇13 = − ��3 − i��1 + �2���13 + i�2�12 − i�1�23 − i�m�03,

�̇23 = − ��1 + �2 + �3 − i�2��23 − i�1�13

− i�0�03e
−i	 + i�2��22 − �33� ,

�̇10 = − ��0 − i��1 − �0 − �m���10 + i�0�12e
−i	

− i�1�20e
−i	 − i�m��00 − �11� ,

�̇02 = − ��1 + �2 − i��0 + �m���02 + i�1�01e
−i	 + i�2�03e

−i	

+ i�0��00 − �22� − i�m�12e
−i	,

�̇03 = − ��0 + �3 − i��0 + �m + �2���03 + i�2�02e
i	

− i�0�23e
i	 − i�m�13, �1�

in which 	=�2+�m−�0 and the trace condition �i�ii=1.
For obtaining linear susceptibility, we need to solve the den-
sity matrix equations �1� under the steady-state condition.
Under the assumption that the coupling field �E0� and the
pumping field �E2� are much stronger than the probe field
�E1�, it can be assumed that almost all the atoms are in the
ground state �1�. Under the weak-probe field approximation,
the expression of the �12, �20 in the first order goes as

�21 = 	− i�1��11 − �22� +
�0�me−i	

�1 + i��1 − �2�
��00 − �11�

+ 
 i�0
2�1

�0 + i��1 − �0���1 + �2 − i�0�
+

�m�0e−i	

�1 + �2 + i�0
�


��00 − �22��	��1 + �2 + i�1� +
�0

2

�0 + i��1 − �0�

+
�2

2

�3 + i��1 + �2�
+

�m
2

�1 + �2 + i�0
�−1

, �2�

�20 = 	− i�1��00 − �22� −
�1�m

�0 − i��1 − �0�
��00 − �11�

+ 
 i�0�1
2

�0 − i��1 − �0���1 + �2 − i�1�
+

�m�0ei	

�1 + �2 + i�1
�


��11 − �22��	��1 + �2 + i�0� +
�1

2

�0 − i��1 − �0�

+
�2

2

�0 + �3 + i��0 + �3�
+

�m
2

�1 + �2 + i�1
�−1

. �3�

To obtain Eqs. �2� and �3�, we assumed that initially the
values of �20 and �23 are approximately zero and �m is ab-
sorbed in �0, meaning we redefine �0 ��0+�m�, while
writing down Eqs. �2� and �3�. The other �ii �i=0,1 ,2� in the
right-hand sides of Eqs. �2� and �3� are of zeroth order. Equa-

tion �2� gives some ideas of how the coupling field �E0� and
the pumping field �E2� affect the absorption and dispersion
properties of the probe field E1, which give rise to the EIT
conditions. When E2=Em=0, we get the EIT equation �from
Eq. �2�� for a three-level system in a �-type configuration.
On the other hand when E0=Em=0, then Eq. �2� reduces to
the EIT equation for a three-level system in a ladder-type
configuration. Note that Eqs. �2� and �3� are strictly valid
only under the weak-probe field approximation so we will
concentrate on more general results using numerical solu-
tions of Eq. �1� in the steady-state limit without invoking the
weak-probe field approximation.

One can calculate the group velocity vg of the probe field
by using the expression

vg/c =
1

	1 + 2� Re��� + 2��1

� Re���

��1

� , �4�

where we have defined the probe susceptibility �=�12 /�1.
The other quantity relevant for this purpose is the group
index ng=c /vg−1,

c/vg − 1 = 2� Re��� + 2��1
� Re���

��1
. �5�

The dependence of group velocity comes through the real
part of the susceptibility which is related to the imaginary
part by Kramers-Kronig relations and hence we need to find
carefully both the quantities and thus the conditions for
phase control of group velocity.

III. NUMERICAL RESULTS AND DISCUSSION

Now we elaborate the results for this composite EIT sys-
tem by numerical integration of Eq. �1� in the steady-state
condition. For this purpose we will examine the coherence
term �12 for the probe transition in terms of its real and
imaginary parts as a function of probe field frequency detun-
ing �1 /�1. The imaginary and the real parts of �12 versus
�1 /�1 represent the probe field absorption and dispersion
spectra, respectively, up to all orders. The numerical results
match well with the approximate results �Eq. �2�� under the
appropriate conditions of parameters.

The asymmetric quantum well sample for the current
study can be very much similar to the one used in Refs. 8,
17, and 18 so that we can keep the same parametric condi-
tions here. These quantum well samples are grown by the
molecular-beam epitaxy �MBE� method with 40–80 symmet-
ric 10 nm n-doped �ns=6
1011 cm−2� InxGa1−xAs �x
=0.47� wells and 10 nm AlyIn1−yAs �y=0.48� barriers sup-
ported on a lattice-matched undoped InP substrate containing
a 1–2 mm diameter etched hole for optical access. The
sample can be designed to have desired transition energies in
the range of 120–170 meV and desired dipole moments. Al-
ternatively, an asymmetric quantum well structure may be
consisting of 40–60 modulation-doped coupled quantum
wells. These GaAs quantum wells �with approximate thick-
nesses of 6–8 nm� separated by an Al0.33Ga0.67As barrier �2
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nm thickness� can be grown on the GaAs substrate.20 The
coupled well periods can have separation of 95 nm by insert-
ing another spacer of Al0.33Ga0.67As. This structure could be
designed to meet the transition energy requirements of 120–
180 meV and desired dipole moments, which can easily be
accessible with an available semiconductor diode laser sys-
tem in the midinfrared range. In fact, one can use
continuous-wave tunable cryogenic lead-salt diode lasers
made from IV-VI semiconductor materials, carbon dioxide
lasers, or quantum cascade lasers, e.g., independently tunable
lasers with similar temporal profiles �say several hundreds of
picoseconds� in Er3+ :Cr3+ :YSGG-laser pumped optical
parametric generators �OPOs� based on ZnGeP2 and CdSe
nonlinear crystals. All these lasers/OPOs have narrow line-
widths compared to the intersubband dephasing rate. The
peak intensities are up to the orders of 2.6 MW /cm2 and
controllable with external means. The lasers/OPOs can be
controlled by a master oscillator or triggering system to
maintain a phase difference among them. The photon drag
with amplifier �PDA� detector or any fast detector with rea-
sonable sensitivity would be suitable for the experiment.

We first concentrate on the situation when EIT is con-
trolled by a single parameter 	 �in Fig. 2� under the condi-
tion of atoms initially �at t=0� in state ��1��, with �0 /�1
=�2 /�1=�m /�1=0 and other parameters are �2 /�1=�3 /�1
=1.0 �typically 2�1=5 meV in the realistic quantum well

system, and we set this value for �1 for all the results pre-
sented here in this work�, �0 /�1=0.04, �1 /�1=0.005,
�0 /�1=0.5, �2 /�1=0.2, and �m /�1=0.5. In Fig. 2 plots of
Im ��12� �curve A� and Re ��12� �curve B� as a function of
�1 /�1 are shown. Plots �a�, �b�, �c�, and �d� are for 	=0,
	=� /2, 	=� /4, and 	=−� /4, respectively. In all these
curves we see the combined effect of two subsystems �the
�-type subsystem and the ladder-type subsystem� along with
the effect of field �m. Thus each curve marked as A has a
double-EIT feature and curve B has a dispersion feature cor-
responding to the double EIT. This means that in the steady-
state limit, both coherences �01 and �31 get developed which
is reflected in the probe absorption spectrum in terms of
double EIT. The system exhibits both absorption and disper-
sion controls with the single phase parameter 	. At the two-
photon resonant condition there is a merger of two dips. This
system can be analyzed in terms of the dressed states created
by the coupling field and the pumping field. It is the destruc-
tive interference between two excitation pathways to these
dressed states from the ground state �1� that gives rise to the
EIT. We can see this by taking one sample as an example. In
the resonant condition, the interaction Hamiltonian �for
	=0� is H=��1�1��2�+��0�0��2�+��m�0��1�+��2�2��3�
+H.c., where �1�, �0�, �2�, and �3� are the discrete states
�Fig. 1�. The approximate eigenvalues of this Hamiltonian
are 0, 0, ��1

2+�0
2+�m

2 +�2
2, respectively, for the selected
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FIG. 2. Imaginary and real parts of the susceptibility ��� represented by curves A and B, respectively, as a function of �1 /�1 for the
parametric conditions �1=�2=�3=1.0, �0 /�1=�2 /�1=0.0, �1 /�1=0.01, �0 /�1=0.5, �2 /�1=0.2, and �m /�1=0.5. Here plots �a�, �b�, �c�
and �d� are for 	=0, 	=� /2, 	=� /4, and 	=−� /4, respectively.
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field values. The corresponding eigenstates to the zero eigen-
values are linear combinations of the states �1�, �0�, and �3�.
Thus, we have two dark states or the degenerated dark states
in this case. If the atoms are in any or both of the dark states
then EIT is exhibited. Under the exact resonance condition,
we observe overlap of double EIT as the two dark states are
degenerate. Since the field strengths of coupling and pump
fields are nearly the same, so the resultant EIT pattern is very
much sensitive to the phase parameter. The EIT feature
�Im��12�: curve A� and the corresponding refractive index
�Re��12�: curve B� exhibit dispersionlike profiles when 	
=0 �Fig. 2�a�� and absorptionlike profiles when 	=� /2 �Fig.
2�b��. This behavior of the EIT phenomenon at the exact
resonance condition of all the fields is very much different
from any three-level system and thus nontrivial. For �
=� /4, we get profiles of curves A and B �Fig. 2�c�� as inter-
mediate to the �=0 and �=� /2 cases as discussed above.
However, for �=−� /4, these profiles show negative absorp-
tion �curve A: Fig. 2�d�� and reduced central dispersion fea-
ture �curve B: Fig. 2�d��. The interesting aspect of this EIT
situation is its controllability by appropriately selecting the
experimental parameters. This has been depicted in Fig. 3
where the phase parameter has been kept fixed �	=� /3�
along with Rabi frequencies �1 /�1=0.005, �0 /�1=0.5,
�2 /�1=1.5, �m /�1=1.0, and �m /�1=0. In Fig. 3 the plots

�a�, �b�, �c�, and �d� are for ��0 /�1=0 , �2 /�1=0�, ��0 /�1
=0 , �2 /�1=−5�, ��0 /�1=−1, �2 /�1=0�, and ��0 /�1=−1,
�2 /�1=−5�, respectively. We can now clearly resolve the
double-EIT features in these curves because of the large dif-
ference in coupling and pumping field strengths as well as
nonzero values of frequency detunings of these controlling
fields. This implies that field strengths along with frequency
detunings of the coupling laser and the pumping laser fields
can lead to controlling of the double-EIT width, shape, and
location very effectively—something difficult to achieve
with one of the subsystems consisting of a three-level con-
figuration alone. The dispersion properties represented by
these curves are again the combined response of two three-
level subsystems. The locations of peaks and dips are sensi-
tive functions of the values of �0 /�1 and �2 /�1, which can
be clearly observed in curve B of Fig. 3. This is because the
dark states have shifted according to the selected values of
�0 /�1 and �2 /�1. In Fig. 4 we have continued the explora-
tion of EIT controllability by appropriately selecting the
experimental parameters. This time the parameters are
�1 /�1=0.005, �0 /�1=0.5, �2 /�1=1.5, �m /�1=1.0,
and �m /�1=0. The plots �a�, �b�, and �c� are for
�	=� , �0 /�1=0 , �2 /�1=0�, �	=� , �0 /�1=−1,
�2 /�1=−5�, and �	=� /2, �0 /�1=−1, �2 /�1=−5�, re-
spectively. Again curves in �b� and �c� clearly show well
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FIG. 3. Imaginary and real parts of the susceptibility ��� represented by curves A and B, respectively, as a function of �1 /�1 for the
parametric conditions 	=� /3, �1 /�1=0.005, �0 /�1=0.5, �2 /�1=1.5, �m /�1=1.0, and �m /�1=0. Here plots �a�, �b�, �c�, and �d� are for
��0 /�1=0, �2 /�1=0�, ��0 /�1=0, �2 /�1=−5�, ��0 /�1=−1, �2 /�1=0�, and ��0 /�1=−1, �2 /�1=−5�, respectively.
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separated double EIT and the corresponding dispersion is
clearly due to the large value of �2 and �0. The EIT peaks
�curve A in �b� and �c�� are shifted in the opposite direction
from the center point ��1=0� because the two subsystems
have opposite responses to the same sign of respective de-
tunings of their control field frequencies.

We further study this EIT system for the group-velocity
variation with the phase factor 	. For this purpose we plot
the group index c /vg−1 with the exact solution of Eq. �1� as

a function of �1 /�1 in Figs. 5�a�–5�c� and as a function of 	
in Fig. 5�d�. For all these curves we set �0 /�1=�2 /�1
=�m /�1=0, �2 /�1=�3 /�1=1.0, �0 /�1=0.04, �1 /�1=0.005,
�0 /�1=0.5, �2 /�1=0.2, and �m /�1=0.5. Figures 5�a�–5�c�
are for 	=0, � /3, and −� /4, respectively. All these plots
�a�–�c� are showing switching in the group velocity of the
probe field from subluminal to superluminal for three differ-
ent values of 	. The interesting feature of such switch is
provided in Fig. 5�b�, where just by changing the sign of
�1 /�1 from negative to positive from the central position
gives rise to the change of group velocity from subluminal to
superluminal. We have considered a modest value of fre-
quency of the probe field: �1=1000�1. Figure 5�d� shows
�with �1 /�1=0� variation of the group-velocity index as a
function of 	. Thus with a single parameter 	 the group
velocity can be controlled as desired.

In order to estimate the total number of bits that can be
stored in the four-level inverted-Y type configuration, we can
write the delay bandwidth product Ntotal=TabsBW, which in-
creases with the EIT bandwidth.21 The EIT bandwidth is a
crucial function of �0, �3, �0, �2, etc. The delay time Tabs is
related to the group index �ng�0�� and absorption coefficient
��0� in the following way:

Tabs = ng�0�
ln2

��0�c
, �6�

where

ng�0� = n̄ + n̄�PL
2 
 †„1 − �0�m� sin�	�…��1 + �2���0 + �3�


 ���1 + �2�2�0�3 + ��1 + �2���0
2�3 + �2

2�0�

+ �m
2 �0�3� − „1 − �0�m� sin�	�…�0�3��1 + �2�2


��0�3 + ��0 + �3���1 + �2�

+ „�0
2 + �2

2 + �m
2 ��0 + �3�/��1 + �2�…�‡


���1 + �2�2�0�3 + ��1 + �2���0
2�3 + �2

2�0�

+ �m
2 �0�3�−2,

��0� =
2n̄

c
�PL

2 �1 − �0�m� sin�	��


	��1 + �2� +
�0

2

�0
+

�2
2

�2
+

�m
2

��1 + �2��−1

,

�PL
2 =

Ne2fP

4n̄2m0�0

, �7�

at the exact resonance condition of all the fields ��0=�1
=�2=�m=0�. Here, n̄ is the refractive index, �m� =�m /�1, N
is the concentration of active atoms, and fP is the oscillator
strength of the probe transition.

From the above Eqs. �6� and �7�, it is clear that the delay
time is a sensitive function of the strengths of coupling and
pumping fields and the relative phase 	. Thus the controlla-
bility of delay time in such a four-level system has more
flexibility �in terms of parametric control� compared to a
three-level system. It is easy to see that at 	=0 and for
strong fields ��0 ,�2��m�,
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FIG. 4. Imaginary and real parts of the susceptibility ��� repre-
sented by curves A and B, respectively, as a function of �1 /�1 for
the parametric conditions �1 /�1=0.005, �0 /�1=0.5, �2 /�1=1.5,
�m /�1=1.0, and �m /�1=0. Here plots �a�, �b�, and �c� are for �	
=� , �0 /�1=0, �2 /�1=0�, �	=� , �0 /�1=−1, �2 /�1=−5�, and
�	=� /2, �0 /�1=−1, �2 /�1=−5�, respectively.
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ng�0� = n̄ + n̄�PL
2 �3

2�0
2 + �0

2�2
2

��3�0
2 + �0

2�2
2�2 , �8�

which decides the value of Tabs and hence the number of
stored bits in this system.

IV. CONCLUSIONS

We have studied the phenomenon of EIT, its dispersion
properties, and group-velocity variation in a four-level sys-
tem having inverted-Y configuration in an asymmetric
double quantum well system. Such a system can be consid-
ered to be composed of two three-level subsystems in �-type
and ladder-type configurations. The EIT characteristics of
both subsystems get combined in this four-level system as
the coherences generated by the coupling field and the pump-
ing field do not mutually destroy each other. By manipulat-
ing the system parameters and relative phases of the imposed
fields it is possible to control the EIT characteristics of the
system from a double-EIT to a single-EIT situation as well as
from an absorption diplike EIT feature to dispersionlike EIT
feature �situated at �1 /�1=0� in both real and imaginary
parts of the susceptibilities. Also, we can suppress the EIT

due to one of the subsystems as desired by changing param-
eters including phase. Thus the results are nontrivial in com-
parison to any three-level EIT system. The striking impact is
controllability of the group velocity and EIT bandwidth more
effectively with greater flexibility and easiness in compari-
son to any three-level system. The consequences are the ver-
satility and simplicity of such a system in practical applica-
tions. This kind of system is certainly useful in designing fast
optical switching devices, which are based on the phenom-
enon of EIT as the variation of EIT and corresponding dis-
persion features are the main controllability parameters of
such devices. The four-level system discussed here has been
easily realized in a recent experiment.8,17,18 Also, dispersion
control by the single parameter of phase can find important
applications in manipulating group velocity of light pulses
and optical beam shaping.
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