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Significant differences exist among literature for thermal conductivity of various systems computed using
molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity,
have been found. Using GaN as an example case and the direct nonequilibrium method, extensive molecular
dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty
level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate
calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the
statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the
errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing
longer time averages using properly selected systems over a range of sample lengths. If the errors in the
conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the
likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte Carlo approach devel-
oped here, we have determined the probability distributions for the bulk thermal conductivities obtained using
the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For
the extremely accurate results presented here, we predict a �0001� GaN thermal conductivity of 185 W /K m
at 300 K, 102 W /K m at 500 K, and 74 W /K m at 800 K. Using the insights obtained in the work, we have
achieved a corresponding error level �standard deviation� for the bulk �infinite sample length� GaN thermal
conductivity of less than 10 W /K m, 5 W /K m, and 15 W /K m at 300 K, 500 K, and 800 K, respectively.
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I. INTRODUCTION

The thermal transport property of semiconductor nano-
structures is becoming an increasingly prominent focus of
research.1–5 In electronics applications, the decrease in fea-
ture sizes to the nanometer scale has resulted in significant
increases in heat generation. This trend has placed more
stringent demands on the ability of devices to dissipate heat
efficiently to the surrounding environment.1 By contrast,
thermoelectrics6 require a low thermal conductivity for effi-
cient performance. In materials engineered with nanometer-
scale features, thermal conduction can be greatly controlled
by density of interfaces and defects. At this “phonon engi-
neering” level, experimental measurements are quite chal-
lenging, and the path to improved properties is not always
clear. For example, it is often not possible in experiments to
distinguish the contributions of individual defects to thermal
resistance. To compliment experimental studies, atomic-scale
simulation is beginning to play a critical role in achieving
greater fundamental understanding and identifying improved
strategies for tailored thermal properties.

The two most common approaches for computing thermal
conductivity based on molecular dynamics �MD� simulation
are the Green-Kubo method7–13 and the “direct method.”14–23

The Green-Kubo approach involves an equilibrium MD
simulation, and the thermal conductivity is determined from
the time dependence of the current-current correlations func-

tions. In the direct method, a heat current J is applied and the
time-averaged temperature gradient �T /�x is computed. The
thermal conductivity � is then obtained from Fourier’s law

� = −
J

�T/�x
. �1�

Both the direct and Green-Kubo approaches require long
simulations �e.g., at least 1 ns� to reduce the uncertainty due
to thermal fluctuations. For the direct method, another
difficulty encountered is that the computed thermal conduc-
tivity depends strongly on the system length L along the
propagation direction, which is typically limited to at
most a few hundred nanometers. This means that for perfect
bulk crystals the phonon mean free path is comparable to the
system size and transport occurs in a partially ballistic
regime.17,18,21–23 It follows from kinetic theory that the
computed values of � are smaller than that of a true bulk
system. To obtain values that can be meaningfully compared
with experiments, it is therefore necessary to perform several
simulations for different cell lengths, and then extrapolate
to the infinite-size limit. Simple theoretical considera-
tions15–17,21 based on the assumption that scattering due to
the finite-size simulation cell acts independently from other
scattering mechanisms suggest that the computed value �
depends on the system length L as
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where �� is the extrapolated thermal conductivity, and � is a
length-independent coefficient. Equation �2� can be recog-
nized as a Matthiessen rule.24 Some previous MD
simulations21 appeared to have shown agreement with the
linear dependence of 1 /� on 1 /L assumed in Eq. �2�. How-
ever, there are some instances where the use of Eq. �2� has
failed to give reasonable results for ��. For example, a recent
use of Eq. �2� resulted in an unphysical prediction for �� of
silica.23 It is unclear whether this result is due to a failure of
Eq. �2� to describe the length dependence of �, or to inaccu-
racy caused by thermal fluctuations. Previous direct method
calculations14–23 have typically been performed for small
system dimensions �e.g., from hundreds to thousands of
atoms14,16,18–20,23� and short simulation times �e.g., from a
few hundred ps up to a few ns14–16,18–22�. Studies have shown
that these small, short-time simulations can result in statisti-
cal errors of �10% or more.21,22 Furthermore, extrapolating
to the infinite-size limit using Eq. �2� tends to magnify sta-
tistical errors and �� is very difficult to determine accurately.
It should also be recognized that the errors associated with
the Green-Kubo method are often in the 15%–20% range or
above, depending on the total simulation time.8–11 As a re-
sult, the utility of atomistic simulations in studying defects
�e.g., vacancy, interstitial, etc.� whose effects on thermal con-
ductivity are below 20% has been limited.

In this work, we apply large computer clusters to perform
direct method calculations of the thermal conductivity of per-
fect GaN wurtzite crystals along the �0001� direction. GaN is
of interest due to its desirable optoelectronic properties and
its ability to integrate with existing silicon structures. No-
table applications, such as laser diodes and high electron
mobility transistors,25–30 operate at high current and power
densities and thus accurate estimation of heat dissipation due
to conduction is crucial. The simulations use expanded
sample space, relatively large systems �up to 60 000 atoms�
and extremely long times �up to �40 ns�. This reduces the
statistical error of each sample at a specific length to the
range of �0.5–2.0%. To quantify the error in the extrapo-

lated value ��, we have developed and applied a Monte
Carlo algorithm to compute statistical distributions of ��. We
find that �� is very sensitive to numerical uncertainty in the
data points used to fit Eq. �2�. In particular, we find evidence
that the occasionally discovered unphysical results origin
from numerical uncertainty in each simulated thermal con-
ductivity value. While numerical uncertainties are clearly an
important issue in direct-method calculations, the high qual-
ity of the data reported here also enables a direct investiga-
tion of the ability of Eq. �2� to describe the length depen-
dence of simulated data. In contrast to many other studies,
we find strong evidence that some nonlinear effects are
present which cannot be described by Eq. �2�. Finally, we
also have assessed the dependence of the simulated thermal
conductivity on various parameters including cross-sectional
area, size of the hot and cold reservoirs, the heat flux, and the
thermal expansion freedom. We compare the results with
those obtained using selected Green-Kubo calculations and
with previously published data from both atomic-scale simu-
lations and experiments.

II. METHOD

A. Interatomic potential

There are at least two different Tersoff potentials31,32 and
two different Stillinger-Weber �SW� potentials33–35 with pa-
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FIG. 1. Comparison between SW calculations and experimental
phonon dispersion relations for bulk GaN along the �0001�
direction.
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FIG. 2. Comparison between SW calculations and experimental
data of DOS for bulk GaN.
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FIG. 3. Comparison between SW calculations and experimental
data �Ref. 41� for specific heat of bulk GaN.
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rameters developed for GaN. Some thermal conductivity
studies have been reported from simulations using SW po-
tentials, including transport in bulk7,36 and nanowires.37

Here, we use the SW potential with parameters developed by
Bere and Serra.34,35 We will compare the results found using
this SW potential with previously published results.7,36

To evaluate the suitability of the SW potential34,35 for
thermal transport calculations, we first apply it to compute
the dynamical properties including the dispersion relations,
vibrational density of states �DOS�, and heat capacity using
the established theory.38 The results are compared with cor-
responding experiments39–41 in Figs. 1–3.

Figure 1 shows phonon dispersion relations along the
�0001� direction. It can be seen that the SW results of the
longitudinal acoustic branch are in very good agreement with
those obtained from the Raman scattering and inelastic x-ray
scattering experiments.39 By contrast, the SW potential sig-
nificantly underestimates the longitudinal optical branch.

Figure 2 shows the vibrational DOS data. Consistent with
the dispersion curves in Fig. 1, the calculated vibrational
DOS in Fig. 2 is seen to be in reasonable agreement with the
time-of-flight neutron spectroscopy experiments40 for the
lower-frequency modes which include the acoustic modes.
By contrast, there is a substantial difference between the

computed and experimental frequencies for the high-
frequency optical modes. It is noted that the SW potential
does not include the long-range electrostatic interaction,
which is known to be responsible for splitting the longitudi-
nal optical and transverse optical phonon branches in polar
materials. However, we also note that the interatomic poten-
tials with the electrostatic interactions42 may also fail to de-
scribe both acoustic and optical phonons at the same time.

Figure 3 shows specific heat Cp. It can be seen that the
SW predictions are in reasonable agreement with the experi-
mental data41 at low temperatures. At higher temperatures,
the calculations tend to underestimate the experimental val-
ues. This is consistent with a significant overestimation of
the optical phonon frequencies by the SW potential.

In summary, the dynamical properties of the SW potential
for GaN exhibit reasonable behavior when compared to ex-
periment. For low-frequency modes the agreement is much
better than for high-frequency optical modes.

B. Computational cell

The equilibrium GaN has a wurtzite hexagonal crystal
structure. The experimental lattice constants are a=3.19 Å,
c=5.19 Å, and an internal displacement u=0.377 �Ref. 43�.
With the SW interatomic potential used here, the zero-
temperature lattice constants are a=3.19 Å, c=5.20 Å, and
u=0.375. The computational supercell is aligned so that the
x, y, and z coordinates correspond, respectively, to �0001�,
�1̄100�, and �112̄0� directions. Of the hexagonal structure,
we can define a unit orthogonal cell whose dimensions in the
x, y, and z directions are, respectively, c, 2a cos�� /6�, and a.
Along the �0001� x direction of heat propagation, the number
of unit cells n1 is chosen from the range 150�n1�500,
which approximately corresponds to the range between

770 Å and 2550 Å. The numbers of unit cells in the �1̄100�
y and �112̄0� z directions, n2 and n3, are chosen in the range
2	3�n2	n3�6	10 so that the corresponding cross-
sectional area ranges between approximately 106 Å2 and
1060 Å2.

Initial crystals were created by assigning atom positions
according to prescribed crystal lattice. Two types of initial
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FIG. 4. Schematic illustration of the x-y projection of the com-
putational cell. Boundaries of periodic cell and heat/cold regions are
carefully set at the middle between widely separated planes as high-
lighted, respectively, by dashed frame and dark shaded areas.
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crystals were used to explore the effect of thermal expansion.
The first one was assigned the known lattice constants at the
zero temperature. The other one was assigned the thermally
expanded lattice constants at the simulated temperature. To
determine the thermally expanded lattice parameters, a simu-
lation in the NPT �constant atom number, pressure, tempera-
ture� ensemble was performed for a bulk GaN crystal for a
total of 3	104 MD steps with a time step size 
t=1 fs. The
cell dimensions were taken from a time average over the
final 104 MD steps. The averaged cell sizes gave well-
converged thermal-expansion strains �with respect to the
equilibrium sizes at 0 K� of about 0.00194, 0.00287, and
0.00439 at 300, 500, and 800 K temperatures, respectively.
Once initialized according to the designated dimension, the
volume of the crystal was conserved during the subsequent
NVE �constant atom number, volume, and energy� thermal
transport simulations.

The initial average temperature was established by assign-
ing velocities to atoms according to Boltzmann distribution
and zero total linear momentum.20,44,45 Considering that half
of the initial kinetic energy is transferred to potential energy

due to the equipartition of energy and the system energy does
not change under the NVE condition, we therefore assigned
the initial velocities consistent with double the desired tem-
perature. The thermal transport simulation is started immedi-
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ately without the conventional long NPT or NVT simulation
to establish the initial temperature. An advantage of this ap-
proach is that once steady state is reached, the average tem-
perature of the system matches exactly the desired tempera-
ture, thereby eliminating one possible source of errors due to
uncertainty of the initialized system energy typically seen in
the NPT or NVT runs.

C. Heat conduction algorithm

Figure 4 shows a schematic illustration of the computa-
tional cell using an x-y projection. As can be seen from Fig.
4, the GaN crystal is composed of a stack of Ga and N
biplane units in the x direction, with a small separation dis-
tance between the two �Ga and N� planes within each unit
�highlighted with a white area�, and a wide separation dis-
tance between units. To avoid effects of free surfaces and to
simulate bulk configurations, our model employs periodic
boundary conditions in all three coordinate directions. The
“direct method” requires the creation of a “hot” and a “cold”
region. In Fig. 4, the hot region is at the far left of the cell,
and the cold region is near the middle of the cell. With ap-
propriate choices of system length and the boundary posi-
tions and width of the hot and cold regions, we can ensure
that the hot and cold regions are exactly identical, and that
the left side of the cold �or hot� region is exactly symmetric
to its right side up to another hot �or cold� region in the
periodic image.

The heat flux in the direct method can be generated using
either constant temperature14–18,36,37 or constant flux19–23

control for the hot and cold regions. Using constant tempera-
ture control methods such as Nose-Hoover algorithm46 and
velocity rescaling, we found that the thermal conductivity
data can vary as a function of the parameters, e.g., Nose-
Hoover mass or rescale frequency, that affect the “equilibra-
tion time” the algorithm used to control the temperature, and
the heat added to the hot region or removed from the cold
region is not continuous �jumps from positive to negative
values between time steps�. Here we used the approach of
Ikeshoji and Hafskold44 to create a constant heat flux. In
constant heat flux simulations, a constant amount of energy
is added to the hot region and exactly the same amount of

energy is removed from the cold region �while preserving
linear momentum� at each MD time step using velocity res-
caling. In our simulations where SW potential and an MD
time step of 1 fs were used, the total energy was conserved
extremely well �e.g., the energy drift was about 8
	10−12 eV /ns·atom at 300 K�.

Simulations were performed at temperatures of 300, 500,
and 800 K. To generate extremely accurate results, the dura-
tion of simulations was chosen to be at least 24 ns at 300 K
and at least 44 ns at 500 K and 800 K. To compute the
temperature profile, 100 cells were created along the x direc-
tion. A temperature averaged over a designated number of
time steps was calculated for each of the cells. The tempera-
ture profile and the input heat flux were used to calculate the
thermal conductivity using Fourier’s law in Eq. �1�.

III. RESULTS

A. Statistics and uncertainty of direct method thermal
conductivity calculations

To ensure that the system is at steady state before com-
puting the time-averaged temperature profile, we neglect the
first 4 ns of simulation time after the heat source and sink are
switched on. For a system with n1=500, n2=3, and n3=5 �a
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total of 60 000 atoms� at thermally expanded dimensions, a
simulation was carried out using a heat flux of
0.0015 eV /ps Å2, an average temperature of 300 K, and a
heat source width of 60 Å. We show in Fig. 5 two tempera-
tures computed for cells 230 Å left and right of the cold
source. The data in Fig. 5�a� were averaged over 4 ps inter-
vals, whereas the data in Fig. 5�b� are the running average
over all time steps after the initial 4 ns. The fact that there is
no apparent drift in the temperature and the two mean tem-
peratures measured at equal distances from the cold source
are essentially identical in Fig. 5�a� indicates that the system
has attained steady state during this period. However, Fig.
5�a� indicates a significant scatter of data. The running aver-
age in Fig. 5�b� shows that if the temperature was averaged
over a large enough number of time steps, this scatter can be
reduced to a negligible value. Note that the minimum num-
ber of time steps needed to get accurate results was found to
increase when temperature was increased or when materials
with lower thermal conductivity were simulated.

To elucidate the dependence of the computed temperature
profile on the total averaging time, we show in Fig. 6 tem-
perature profile data points computed for averaging times of
0.5, 1.0, 4.0, and 20.0 ns. For a heat flux of 0.0015
eV /ps Å2, a linear region always exists in the temperature
profile away from the heat source and sink. The temperature
gradient was determined by fitting to only the linear regions
which were taken to occupy the middle half of the length
between the heat source and sink. The fitted linear functions
are shown in Fig. 6 using the thick gray lines along with the
computed temperature gradients. For averaging times less
than 1 ns, the profiles show significant thermal fluctuations.
In addition, the temperature gradients measured at both sides
of the cold region did not match exactly, indicating statistical
errors. By contrast, for averaging times of 4 ns and greater,
the temperature profiles became progressively smoother. In
addition, the difference between the two temperature gradi-
ents became very small when the averaging time reached 20
ns.

TABLE I. Thermal conductivity �i, standard deviation of thermal resistivity �i, and output temperature Ti obtained at different sample
length Li �i=1,2 , . . . ,8� but fixed input temperature of 300 K, heat flux of 0.0015 �eV /ps Å2�, and averaging time of 20.0 ns including
thermal expansions.

i 1 2 3 4 5 6 7 8

Li �cells� 150 200 250 300 350 400 450 500

�i �W /K m� 40.90 51.10 58.89 67.78 72.91 78.01 86.44 90.76

�i �K m /W� 0.000379 0.000305 0.000195 0.000189 0.000127 0.000113 0.000112 0.000097

Ti �K� 300.51 300.52 300.66 300.90 300.95 301.09 301.04 301.20

��,ext=184.67 W /K m, ��,MC=184.97�7.26 W /K m
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The evolution of the temperature gradient as a function of
averaging time can be more clearly seen from the running
averages of the two temperature gradients shown in Fig. 7. It
can be seen that between 5 and 20 ns time, the left and the
right temperature gradients were considerably different and
there is a decreasing trend with time in the difference of the
temperature gradients. Note that our system was initialized
with a uniform temperature distribution, and the nominal
temperature gradient was uniformly zero at the start of the
simulation. The difference in the left and the right tempera-
ture gradients, however, occurred due to system transition
from the initial state that includes some randomness of the
initially assigned atom velocities. Figure 7 again indicates
that for this particular simulated case, an averaging time of
greater than 20 ns is required to reduce thermal fluctuation to
a negligible level. Note that much longer averaging time
would be needed if the simulation was at 800 K.

B. Thermal conductivity calculation errors

Using the same system and the same heat source width,
we further analyze the numerical errors of the calculated
thermal conductivity data �. After discarding the first 4 ns of
simulation time, the remaining simulation time was uni-
formly divided into N=20 segments. The thermal conductiv-
ity � was computed from the temperature profiles averaged
over each of the time segments as well as the running tem-
perature profiles averaged over all time steps. The results
obtained at 300 K temperature, 0.0015 eV /ps Å2 heat flux
and those at 800 K temperature, 0.0008 eV /ps Å2 heat flux
are shown, respectively, in Figs. 8�a� and 8�b�, where the

data points and lines represent, respectively, the short-time
average and the running average values.

It can be seen from Fig. 8 that the short-time-averaged
thermal conductivity data are very scattered. At 300 K, �
ranges from about 85 W /K m to 100 W /K m. At 800 K, �
ranges from under 45 W /K m to about 70 W /K m. Notice
that the scatter is greater for simulations at higher tempera-
tures especially considering that the time segments at 300 K
are of duration 1 ns whereas those at 800 K are of 2 ns. The
running averages indicate, however, that the error is sharply
reduced by increased averaging times.

The best estimate of the thermal conductivity, �i, for a
system of length of Li, is determined from the temperature
profiles averaged over the entire time of simulation exclud-
ing the initial 4 ns. The standard deviation of the calculated
thermal resistivity �inverse of thermal conductivity� can be
calculated from the short-time averaged thermal conductivi-
ties. Here resistivity rather than conductivity is considered
since it is linearly related the term �T /�x, which is the error
source in Eq. �1� �i.e., given that in the Ikeshoji and Hafskold
algorithm the heat current J is exact to machine precision�.
We first compute N short-time averaged thermal conductivi-
ties �i,1, �i,2 , . . ., �i,N. The standard deviation of the resistiv-
ity of the short-average data, �i,s, is expressed as

�i,s =
��

j=1

N � 1

�i,j
−

1

�i,s
�2

N − 1
, �3�

where

TABLE II. Thermal conductivity �i, standard deviation of thermal resistivity �i, and output temperature Ti obtained at different sample
length Li �i=1,2 , . . . ,8� but fixed input temperature of 500 K, heat flux of 0.0012 �eV /ps Å2�, and averaging time of 40.0 ns including
thermal expansions.

i 1 2 3 4 5 6 7 8

Li �cells� 150 200 250 300 350 400 450 500

�i �W /K m� 29.36 34.05 38.77 43.72 47.70 52.31 55.97 60.42

�i �K m /W� 0.000654 0.000463 0.000376 0.000275 0.000383 0.000197 0.000184 0.000199

Ti �K� 501.00 500.68 501.02 501.09 501.23 501.34 501.14 501.24

��,ext=101.64 W /K m, ��,MC=101.80�3.88 W /K m

TABLE III. Thermal conductivity �i, standard deviation of thermal resistivity �i, and output temperature Ti obtained at different sample
length Li �i=1,2 , . . . ,8� but fixed input temperature of 800 K, heat flux of 0.0008 �eV /ps Å2�, and averaging time of 40.0 ns including
thermal expansions.

i 1 2 3 4 5 6 7 8

Li �cells� 150 200 250 300 350 400 450 500

�i �W /K m� 20.37 24.85 28.15 35.40 39.94 45.72 51.96 55.26

�i �K m /W� 0.001265 0.001235 0.000861 0.000931 0.000606 0.000668 0.000511 0.000440

Ti �K� 801.21 801.38 801.35 801.40 801.64 801.59 801.86 801.80

��,ext=71.88 W /K m, ��,MC=73.76�12.73 W /K m
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1

�i,s
=

�
j=1

N
1

�i,j

N
�4�

is the short-time averaged thermal resistivity. Because �T /�x
is in the numerator, the long-time averaged thermal resistiv-
ity is an average of the short-time thermal resistivity. The
standard deviation of the long-time averaged thermal resis-
tivity 1 /�i, therefore, is given by

�i =
�i,s

�N
. �5�

To provide guidance for the choice of averaging time in
thermal conductivity calculations, we show in Fig. 9 the
standard deviation of thermal resistivity as a function of av-
eraging time using the thermally expanded 500	3	5
sample simulated at 800 K. It can be seen that the standard
deviation was reduced rapidly when the averaging time was
increased from 4 ns �total simulation time 8 ns� to 20 ns
�total time 24 ns�, but the rate of decrease becomes small
when the averaging time was further increased. From Eq. �5�,
it is apparent that the standard deviation �i should depend on
N as N−1/2, which is consistent with the results in Fig. 9.
Based on an estimate equation,


�i 	 �i
2 · �i, �6�

the standard deviation of resistivity ��i� needs to be less than
0.0003 K m /W for the standard deviation of conductivity
�
�i� to be less than 1.0 K m /W for the 800 K case. This
means that the averaging time needed for the calculation is
significantly longer than 50 ns.

C. Effects of cross-sectional area, source width, and heat flux

We have also explored the dependence of the computed
thermal conductivity on cross-sectional area, source width,
and the magnitude of the heat flux. The dependence of the
computed thermal conductivity on these parameters is shown
respectively in Figs. 10�a�–10�c�. In Fig. 10�a�, it is apparent
that the dependence on cross-sectional area is quite weak,
although the conductivity is slightly higher for the smallest
cross-sectional area of 2	3. Figure 10�b� shows that the
computed thermal conductivity is independent of the magni-
tude of the heat flux, indicating linear behavior within this

range. In addition, we see from Fig. 10�c� that the results do
not depend on the width of the hot and cold sources. These
observations are in agreement with previous results,21 but are
established more definitively here due to the extremely small
statistical error. We also found that for a given averaging
time, simulations for larger cross-sectional area obviously
tend to produce smaller standard deviations due to the larger
number of atoms that is averaged in each cell. It is therefore
the case that choosing a small cross-sectional area does not
decrease the computational costs as dramatically as might be
expected, since small cross-sectional areas require longer av-
eraging times.

In summary, we have identified a wide range of values for
the cross-sectional area, source width, and heat flux that do
not affect the computed thermal conductivity. However, we
will see in the next section that there do appear to be some
instances at higher temperatures and for longer sample sizes
where results can depend on the magnitude of the heat cur-
rent J. This behavior, as we will show in the next subsection,
appears to result in deviations from the length dependence
predicted by Eq. �2�.

D. GaN thermal conductivity

Having rigorously established the inherent statistical error
as a function of simulation time, we have computed GaN
thermal conductivities at temperatures of 300, 500, and 800
K. Simulations were performed for eight different sample
sizes at each temperature, covering a wide range of sample
length �Li=n1 from 150 to 500 cells�, to explore extrapola-
tion using Eq. �2�. Each system had a cross-sectional area of
3	5 unit cells and a source width of 60 Å. At each simu-
lated temperature, thermal expansion of the supercell was
included. However, to explore whether thermal expansion
plays an important role, we also computed the thermal con-
ductivity at 300 and 500 K with the lattice parameters fixed
at their 0 K values. In Tables I–V we present the results for
thermal conductivity �i, standard deviation of thermal resis-
tivity �i, and average temperature Ti for each of the system
length Li �i=1,2 , . . . ,8�. Other parameters used in these
simulations are given in the table captions.

Tables I–V show that the average temperature, which is
the point at which the temperature gradient �and hence the
thermal conductivity� was calculated, is very consistent
among different runs �within 0.5 K from the mean output

TABLE IV. Thermal conductivity �i, standard deviation of thermal resistivity �i, and output temperature Ti obtained at different sample
length Li �i=1,2 , . . . ,8� but fixed input temperature of 300 K, heat flux of 0.0015 �eV /ps Å2�, and averaging time of 20.0 ns without
thermal expansions.

i 1 2 3 4 5 6 7 8

Li �cells� 150 200 250 300 350 400 450 500

�i �W /K m� 42.39 51.35 58.92 66.16 74.83 79.15 85.70 90.43

�i �K m /W� 0.000432 0.000280 0.000239 0.000193 0.000129 0.000132 0.000114 0.000113

Ti �K� 300.59 300.74 300.76 300.88 300.77 300.93 300.77 301.04

��,ext=171.86 W /K m, ��,MC=172.17�7.07 W /K m
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temperature for each series�. Based upon the approximate
relation, Eq. �6�, Tables I–V also show that the averaging
time used �20.0 ns for 300 K series and 40.0 ns for 500 K
and 800 K series� results in standard deviations of thermal
conductivity �i of less than 1.0 W /K m at 300 K and 500 K
and less than 2.0 W /K m at 800 K. As will be discussed
below, the uncertainty of extrapolated thermal conductivity is
extremely sensitive to the standard deviation of thermal re-
sistivity obtained from MD simulations.

In Fig. 11�a� we show the MD results and the fit to Eq. �2�
at each temperature. While the length dependence predicted
by Eq. �2� appears reasonable, there are some systematic
deviations that can be seen at each temperature. In particular,
the data points obtained at longer sample length define a
steeper slope than the data points at shorter sample length.
The effect is most notable at the highest temperature of 800
K, and least significant at the lowest temperature of 300 K.
This deviation from linearity has not been recognized in pre-
vious work, but is clearly important to the theoretical study
of thermal transport properties. Since this effect is relatively
insignificant at 300 and 500 K, the overall linear dependence
of 1 /� on 1 /L seems to apply very well. The values of ��

obtained from the linear fits in Fig. 11 are 184.67 W /K m at
300 K and 101.64 W /K m at 500 K. We include the ex-
trapolated values of �� in Tables I–V as ��,ext. We found that
the values of �� obtained using Eq. �2� were different when

thermal expansion was not included. From Tables I, II, IV,
and V, it can be seen that when thermal expansion was not
included, the �� value was decreased to 171.86 W /K at 300
K and increased to 120.59 W /K·m at 500 K. The difference
became more significant at 500 K than at 300 K, consistent
with a larger thermal expansion at higher temperatures.

The more significant deviation of the 800 K data from the
predictions of Eq. �2� merits further careful examination be-
cause it is not clear if Eq. �2� can be used with a good
confidence to obtain ��. One possible explanation for the
nonlinear behavior is that the individual data points �i might
not correspond to the linear-transport regime. This point was
explored above by varying the heat flux as shown in Fig. 10
which showed no dependence on the heat current J. How-
ever, that investigation was done at 300 K where the nonlin-
ear transport is the least significant. Here we perform several
additional calculations at 800 K, some with very low heat
flux J. These results are shown in Fig. 11�b�. While the non-
linear behavior is still present for the data obtained with a
reduced heat current J, there is some obvious dependence of
�i on the magnitude of the current J for intermediate cell
sizes �e.g., for n1 in the neighborhood of 300�. In particular,
the linear relationship for the short sample end �Li below 300
cells� is extended to longer sample length by the reduction in
the heat current J. In practices, the approach to use smaller
heat current is limited because it increases the thermal fluc-

TABLE V. Thermal conductivity �i, standard deviation of thermal resistivity �i, and output temperature Ti obtained at different sample
length Li �i=1,2 , . . . ,8� but fixed input temperature of 500 K, heat flux of 0.0010 �eV /ps Å2�, and averaging time of 40.0 ns without
thermal expansions.

i 1 2 3 4 5 6 7 8

Li �cells� 150 200 250 300 350 400 450 500

�i �W /K m� 28.72 34.93 39.80 44.89 50.82 54.79 57.91 62.86

�i �K m /W� 0.000675 0.000521 0.000392 0.000417 0.000308 0.000286 0.000261 0.000243

Ti �K� 501.04 501.11 500.98 501.17 501.23 501.22 501.24 501.07

��,ext=120.59 W /K m, ��,MC=120.88�5.91 W /K m
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MD data.
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tuation and the associated errors. Under the assumption that
the linear behavior as seen at smaller sample sizes could be
extended to larger system sizes by further decreasing the heat
current J �requiring significantly increased simulation time to
contain the error�, we fit Eq. �2� with only the seven data
points that correspond to small system sizes in Fig. 11�b�. We
obtain a �� value of 71.88 W /K m. While this value of ��

is reasonable, it is clear that the nonlinear behavior is an
issue that calls into question the use of Eq. �2� at least in
some cases.

The fit to Eq. �2� also includes a prediction of the slope �.
The value of � can be estimated as �=8 /kB ·n ·v, where kB is
Boltzmann’s constant, n is the number density, and v is the
average acoustic phonon velocity. For GaN, the number den-
sity is about 0.087 Å−3, and the average velocity v
5
	103 �m /s�. This leads to an estimated slope of �=1.33
	10−9 m2 K /W. For the results obtained here and shown in
Fig. 11, we find slopes of �=1.48	10−9 m2 K /W at T
=300 K, �=1.96	10−9 m2 K /W at T=500 K, and �
=2.79	10−9 m2 K /W at T=800 K. The 300 and 500 K
data are in reasonable agreement with the theoretical predic-
tion, and the 800 K data are substantially larger. This is ex-
pected as 800 K is above the Debye temperature.

Finally, we compare our results with previous atomic-
scale simulations and experiments. Wang et al.36 used Evans’

homogeneous field method to compute the thermal conduc-
tivity of GaN using the same SW potential. For 300 K, they
obtain a value of 215 W /K m, somewhat higher than our
result of 184.67 W /K m. In another study, Kawamura and
co-workers7 used Green-Kubo approach to find a value in the
range 310–380 W /K m at 300 K, which is significantly
higher than those reported here and in Ref. 36. Their value,
however, appears to have substantial statistical error. On the
other hand, the experimental room-temperature thermal con-
ductivity was reported to be 170–180 W /K m by Asnin et
al.,47 
155 W /K m by Luo et al.,48 186–210 W /K m by
Florescu et al.,49 
250 W /K m by Slack et al.,50 and

220 W /K m by Jeżowski et al.51 Our predicted result is in
the range of the experimental values. However, it is impor-
tant to take note of the fact that the MD simulation results
are purely classical, while 300 K is substantially below the
Debye temperature of GaN.

IV. ANALYSIS AND DISCUSSION

A. Monte Carlo analysis of error of extrapolated
thermal conductivity

As shown in Tables I–V, the results of MD simulations
are a series of thermal conductivities �1,�2 , . . ., and �n and
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standard deviations of the thermal resistivity �1,�2 , . . ., and
�n, obtained at n different sample lengths L1,L2 , . . ., and Ln.
The standard deviation of the thermal conductivity, �1,�2 , . . .,
�n, can be estimated from the standard deviation of thermal
resistivity using the approximate relation Eq. �6�. However,
the value of �� obtained from Eq. �2� might have a standard
deviation that is substantially different from that of the indi-
vidual data points. Here we develop and present a Monte
Carlo analysis of the error in �� and its dependence on the
standard deviation of thermal resistivity of each data point
�i.

We can assume that the thermal resistivity data obtained
from a set of hypothetically new MD simulations can be
expressed as

�1/�i�� = 1/�i + 
�1/�i� , �7�

where 1 /�i can be viewed as the best estimate of the thermal
resistivity and 
�1 /�i� is the deviation of the thermal resis-
tivity for a hypothetical calculation. Assuming that 
�1 /�i�
satisfies a Gaussian probability distribution,

�
�1/�i�� =
1

�2��i
2
exp�−

1

2
�
�1/�i�

�i
�2� , �8�

where �i is the standard deviation of resistivity. Because
1 /�i and �i are known, we can randomly sample the �1 /�i��

values that would be from hypothetical MD calculations. To
do this, a random number r between zero and one is created.
The deviation 
�1 /�i� that satisfies the probability distribu-
tion function of Eq. �8� can be obtained from


−�


�1/�i�

�x�dx = r �9�

and �1 /�i�� is then obtained from Eq. �7�. Once a set of
�1 /�i�� �i=1,2 , . . . ,n� values are sampled, a linear regres-
sion can be carried out using Eq. �2�, and a sampled value ��

is obtained. After generating many sets of data via this
Monte Carlo method, the standard deviation for �� can be
determined.

To facilitate the examination of main factors controlling
the error of the extrapolated thermal conductivity, we assume

that the best estimate of the thermal conductivity ��i� at
sample length �Li� can be described by Eq. �2� with pa-
rameters 1 /��=0.0054234 �K m /W� and �=2.85035
�K·m·cell /W� �note that the unit of Li=n1 used here is num-
ber of cells�, and the standard deviation of resistivity is con-
stant �1=�2= . . . =�n=0.0008 �K m /W�. These 1 /�� and �
values are fairly close to the best fit of the real 300 K MD
data shown in Table I. A total of 100 000 sets of MC data
were generated. The resulting values of �� were used to
obtain an average ��,MC and its standard deviation ��,MC.

The effects of several parameters are explored, including
number of samples n, the minimum and the maximum
sample lengths L1 and Ln �assuming that L1,L2 , . . ., and Ln are
in order�, and the MD �unextrapolated� standard deviation of
resistivity �i. Figures 12�a�–12�d� show the extrapolated
standard deviation of conductivity as a function of each of
the parameters with all the other parameters kept constant:
L1=150, Ln=500, n=8, and �=�i=0.0008 �K m /W� �i
=1,2 , . . . ,n�.

Figure 12�a� shows the dependence on the number of
samples n with length uniformly distributed between L1
=150 and Ln=500. It can be seen that ��,MC decreases with
the number of samples n, consistent with the intuition that
more data improve the accuracy. One key observation is that
the number of samples cannot be too small or the error may
increase abruptly to very large values. Figures 12�b� and
12�c� show that increasing the minimum sample length while
keeping the maximum sample length fixed, or decreasing the
maximum sample length while keeping the minimum sample
length fixed, causes an increase in the error ��,MC. This is
expected because a narrow sample length range is associated
with a large uncertainty in the fit. The value of ��,MC can
increase abruptly when the minimum sample length is above
or the maximum sample length is below some threshold.
Finally, Fig. 12�d� shows that reducing the standard deviation
of thermal resistivity �i for MD simulations has a significant
effect on the standard deviation ��,MC of the extrapolated
conductivity. In general, ��,MC is nearly proportional to �i in
the range �i�0.0012 K m /W. However, there exists a
threshold �i value between 0.0013 K m /W and
0.0014 K m /W, above which ��,MC abruptly changes to
very large values. The abrupt increases of the error seen in
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Figs. 12�a�–12�d� occur because occasionally zero or un-
physical �negative� 1 /�� values are sampled. The finding
revealed in Fig. 12�d� indicates that in order to control error
of extrapolated conductivity to below 10 W /K m, the MD
error of resistivity should be less than 0.0003 K m /W �cor-
responding to �1.0 W /K m error in conductivity�. Often,
higher accuracy is required if the number of different sample
length or the difference between minimum and maximum
sample length are not as large as analyzed here. To our
knowledge, the errors of most published MD data do not
satisfy this requirement. As a result, significant differences
exist among the published data.

To facilitate the parameter study, the analysis above as-
sumes that the best estimate of the thermal conductivities �i
satisfies a fitted curve and the standard deviation of resistiv-
ity �i equals a constant. As discussed above, real �i and �i
data have been obtained from the MD simulations, Tables
I–V. These data can be directly used in the Monte Carlo
approach to estimate the MC averaged ��,MC and the stan-
dard deviation ��,MC. The best values �i.e., using the largest
possible averaging time� obtained for ��,MC and ��,MC are
shown in Tables I–V. Figures 13–15 show ��,MC and ��,MC
as a function of averaging time for the 300, 500, and 800 K
simulations. The 800 K results use only the 7 MD simula-

tions in the short sample length range, Fig. 11�b�. It can be
seen from Figs. 13 and 14 that the conductivity reached a
converged value with a relatively small standard deviation
��10 W /K m� at 300 and 500 K provided that the averag-
ing time is 10 ns or above. In sharp contrast, the 800 K data
shown in Figs. 15 demonstrate a failure to obtain ��,MC for
24 ns or less. This failure results from the occasional samples
of zero or negative 1 /�� values during the MC analysis,
leading to divergent behavior for ��,MC. Converged values of
��,MC with relatively small deviation �e.g., between
10 W /K m and 15 W /K m� can be achieved for an averag-
ing time exceeding 35 ns. The significantly increased diffi-
culties in extrapolating the 800 K data are a consequence of
both reduced sample length range, Fig. 12�c�, and increased
thermal fluctuations at higher temperature, Fig. 12�d�.

To explore the origin of the divergence in the average
value ��,MC found in the 800 K MD results, we show in Fig.
16�a� the probability distributions for �� obtained for aver-
aging times of 8 and 40 ns. It can be seen from Fig. 16�a�
that for 8 ns averaging time at 800 K, the distribution devi-
ates strongly from a Gaussian and exhibits a long tail to very
large values of ��. It is exactly this long tail that leads to
diverging values of ��,MC and very large standard deviations
��,MC. Increasing the averaging time to 40 ns results in a
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distribution that is more nearly Gaussian and does not have
the tail for extremely large �� values. While the distribution
is still fairly wide for 40 ns of averaging, it is apparent that a
value within 10 W /m K of the best �peak� result for �� will
occur with a high probability. On the other hand, it is notice-
able that for the short averaging time of 8 ns, the peak in the
probability density is significantly displaced from that ob-
tained from the long averaging time of 40 ns. For compari-
son, a distribution obtained from the 500 K MD simulation at
an averaging time of 40 ns is shown in Fig. 16�b�. The dis-
tribution at 500 K is an almost perfectly Gaussian and
sharply peaked at the mean ��,MC value. As a result, the long
time simulation at 500 K results in a highly accurate estimate
of ��,MC.

While the averaged �� obtained at short averaging times
can give unphysical results, it is still apparent that the prob-
ability density near the best estimate of �� can at the same
time be quite large. This suggests that there is still a signifi-
cant probability of obtaining a quite reasonable value of ��

from a single set of simulations even when the average �� of
the distribution is unphysical. The problem emerges from the
small but not insignificant possibility of obtaining an ex-
tremely large or even divergent value of ��. This might ex-
plain why many published simulation results using the direct
method and Eq. �2� to determine �� obtain reasonable results
even with much shorter simulation times. What we have un-
covered in the present study is that without adequate averag-
ing time and an adequate data set including many different
system lengths Li there is a finite chance of obtaining a result
for �� that deviates significantly from the correct value and
may be extremely large.

To further demonstrate the origin of the long tail shown in
Fig. 16�a�, we calculated the probability distribution for the
MC extrapolated 1 /�� values. The results at 800 K for av-
eraging times of 8 and 40 ns are shown in Fig. 17. As ex-
pected, the distribution for the long averaging time is rela-
tively sharply peaked and the significant 1 /�� values are
larger than zero. For the 8 ns averaging time, the distribution
is still Gaussian but much broader. More importantly, the
distribution extends to low side of the peak point, and even
reaches zero and the negative range. The small 1 /�� corre-
spond to very large values for ��, resulting in the tail seen in

Fig. 16�a�. In computing ��,MC as the average of the distri-
bution, these very large values of �� lead to the failure to
obtain a converged value in some instances.

B. Simulation time to reach steady state

The results presented above show that to be assured of
accurate results, extremely long averaging times are re-
quired. One possible approach to decrease the overall simu-
lation time is to initialize the temperature distribution to be
close to the expected steady-state distribution. To explore
this, simulations were carried out for both a uniform and a
linear initial temperature distribution at an average sample
temperature of 300 K, a sample length of 500 cells, a heat
flux of 0.0015 eV /ps Å2, and a source width of 60 Å. The
temperature data averaged between 0.95 and 1.0 ns are
shown in Figs. 18�a� and 18�b�, respectively, for the uniform
and the linear initial temperature distribution. For compari-
son, the initial temperature profiles are shown using the
black lines, and the steady-state temperature profiles �taken
as the one that is fully averaged between 4.0 and 24.0 ns, see
Fig. 6� are shown using the gray lines. It can be seen that at
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an absolute time of 1.0 ns, the temperature profiles averaged
between 0.95 and 1.0 ns for the uniform and linear initial
temperature distributions are very similar, and the memory of
initial temperature distribution has been lost. This means that
the acceleration of the simulation by better initial tempera-
ture distribution does not play a major role in the computa-
tion cost. The time required to achieve the steady state dur-
ing heat diffusion can be estimated from diffusion distance d
and diffusivity D using

� =
d2

D
, �10�

where d=L /2, D=� /Cv, and Cv is volumetric heat capacity.
In classical MD simulations, heat capacity Cv=3 ·kB, where
 is material density. For the sample simulation presented
in Fig. 18, �=90.76 W /K m, d=1302 Å, =0.0868
atoms /Å3, resulting in �	0.67 ns. This is certainly consis-
tent with the results shown in Fig. 18.

C. Green-Kubo thermal conductivity calculations

To corroborate the results of the direct method, the Green-
Kubo method was used to compute the thermal conductivity
at 500 and 800 K. In the Green-Kubo method, the thermal
conductivity is usually expressed as21

�ij =
1

�kBT2 lim
�→�


0

�

�Ji�t�Jj�0��dt , �11�

where � is the system volume and Ji�t� is the ith component
of the thermal current. Numerically, this integral of the au-
tocorrelation can be estimated by

��� = M
t� =

t

�kBT2 �
m=1

M

�
n=1

N−m
Ji�m + n�Jj�n�

N − m
, M � N .

�12�

The calculations were carried out at a time step size of

t=0.32 fs. It is known that the Green-Kubo method con-
verges slowly especially at high temperatures. As a result,
four separate simulations, each with 107 time steps, were

performed at 500 K, and 24 separate simulations, each with
9	106 time steps, were performed at 800 K. These represent
about 13 and 69 ns total simulation time at the two tempera-
tures, thereby effectively reducing the thermal fluctuations.

We used the bootstrap algorithm52 to compute the thermal
conductivity from Eq. �12�. The bootstrap procedure in-
volves choosing random samples from a given data with re-
placement in order to estimate statistics. In our case, we used
the method to calculate confidence intervals for the integral
of the heat flux autocorrelation Eq. �11� corresponding to the
outer sum on m in Eq. �12� by using random samples of the
inner sum on n in Eq. �12� representing the mean autocorre-
lation at index m. Since the ordinary bootstrap assumes that
data are independent and our data are strongly correlated, we
used a variant of the bootstrap that employs block averaging.
We have about 3200 ps of data for each simulation. We have
created 100 blocks of about 32 ps from these data by aver-
aging them. Then we applied the bootstrap on these blocks52

with the assumption that correlation between observations is
strongest within a block and relatively weak between blocks.

To illustrate the results, the averaged current-current cor-

relation functions along the �1̄100� direction are shown in
Fig. 19 for both 500 and 800 K temperatures. The results
obtained along the other two directions are similar. It is in-
teresting to see from Fig. 19 that the current-current correla-
tion function exhibits two fast oscillations corresponding
well with the two optical modes. The amplitude decays rap-
idly as the relaxation time is increased. Specifically, the
current-current correlation function has reached near zero
when the relaxation time is increased to 30 ps.

The thermal conductivities in all the three coordinate di-

rections �112̄0�, �1̄100�, and �0001� are shown in Figs. 20
and 21, respectively, for the 500 K and 800 K temperatures.
For 500 K, Fig. 20 shows that the approximately converged
thermal conductivity at a relaxation time of 50–60 ps is

around 77�14 W /K m in the �1̄100� direction, 88�16

W /K m in the �112̄0� direction, and 98�16 W /K m in the
�0001� direction. For 800 K, Fig. 21 shows that the approxi-
mately converged thermal conductivity is around 58�9

W /K m in the �1̄100� direction, 58�8 W /K m in the
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�112̄0� direction, and 71�9 W /K m in the �0001� direction.
Despite the large scale of the calculations especially for

the 800 K case, the results are still associated with relatively
significant statistical errors. This is not unusual for the
Green-Kubo method. Nonetheless, the results obtained from
the Green-Kubo method corroborate well with those from
the direct method.

V. CONCLUSIONS

Large-scale parallel computer simulations have been car-
ried out to identify sources of errors of the commonly used
direct molecular dynamics method for thermal conductivity
calculation and ways that can significantly reduce the errors.
As a case study, we investigated the thermal transport along
the �0001� direction of a model GaN bulk crystal using a
Stillinger-Weber potential.34,35 A Monte Carlo method has
been developed to quantify the uncertainty of the thermal
conductivity values that are extrapolated to an infinite
sample length from simulated values at finite sample length.

From simulations of extremely long duration, we have
obtained results with a level of accuracy not previously at-
tained. The high accuracy and careful statistical analysis of

our results have enabled a detailed investigation of the valid-
ity of direct method calculations of thermal conductivity in-
cluding the procedure to determine �� from the predicted
size dependence of Eq. �2�. We have reached several impor-
tant conclusions:

�a� For the direct method, the averaging time required to
produce accurate results depends on material, system dimen-
sion, and temperature. Smaller system cross-sectional area
and higher temperature generally demand longer averaging
time. Most of our calculations used an averaging time of 40
ns. This is significantly longer than that commonly used in
the literature; consequently, our results are considerably
more accurate.

�b� With tightly controlled error relative to existing work,
our results provide strong evidence that within an appropri-
ate parameter range, model parameters such as cross-
sectional area, heat source width, and heat flux do not affect
the results of thermal conductivity.

�c� Computed thermal conductivities �i for different sys-
tem lengths Li show in most cases good agreement with the
length dependence predicted by Eq. �2�. However, clear de-
viations from Eq. �2� are observed especially at high tem-
peratures, large sample lengths, and relatively large thermal
currents J.

�d� Deviations between the predictions of Eq. �2� and MD
results appear to be due to nonlinear transport effects. Re-
ducing the heat current J leads to linear behavior for longer
system sizes.

�e� Monte Carlo analysis shows that the extrapolated con-
ductivity �� is extremely sensitive to the quality of the data
set, including the standard deviation of each simulation,
number of system lengths, and the minimum and maximum
sample lengths. Occasionally extremely large or unphysical
values of �� can be obtained when an insufficient data set is
used to fit Eq. �2�.

�f� The analysis performed here suggests that very long
simulations 
20–40 ns might be required to assure accurate
results. Probability distributions from MC results, however,
indicate that previous studies based on much shorter simula-
tion times 
1–2 ns have a significant likelihood of produc-
ing reasonable results. This seems to explain why Eq. �2� has
occasionally failed to give reasonable results, but yet often
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yields values for �� in good agreement with other simulation
approaches and experiment.

We predict that the �0001� thermal conductivity of GaN
bulk crystal is 185 W /K m at 300 K, 102 W /K m at 500 K,
and 74 W /K m at 800 K. These compare really well with
98 W /K m at 500 K and 71 W /K m at 800 K predicted
from the Green-Kubo method.

We believe that the observed nonlinear behavior in the
dependence of 1 /� on 1 /L is perhaps the most significant
outcome of this work. However, we do not necessarily con-
clude that Eq. �2� is not able to correctly predict the length
dependence. In particular, the occurrence of the nonlinear
behavior seems to depend on the magnitude of the thermal
current J, which suggests that it should be possible, if not
always practical, to compute �i for longer system lengths Li
with a smaller current J and recover the linear behavior.
However, we have also found that uncovering the nonlinear
dependence requires extremely accurate calculations which

can only result from averaging over rather long simulation
times.

In summary, the results presented here suggest that, in
some circumstances, considerably more care might be re-
quired to determine 1 /�� using the direct method than has
often been exercised. Even fairly small standard deviations
in each calculated �i can lead to rather large errors when
using Eq. �2� to determine ��. To overcome these difficulties,
extremely long simulation times ��20 ns� might be re-
quired. Perhaps more importantly, very accurate data might
be required to identify nonlinearities which can lead to un-
physical values of �� when fitting data using Eq. �2�.
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