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The thermodynamic and transport properties of intermetallic compounds with Ce, Eu, and Yb ions are
discussed using the periodic Anderson model with an infinite correlation between f electrons. At high tem-
peratures, these systems exhibit typical features that can be understood in terms of a single-impurity Anderson
or Kondo model with Kondo scale TK. At low temperatures, one often finds a normal state governed by the
Fermi liquid �FL� laws with characteristic energy scale T0. The slave boson solution of the periodic model
shows that T0 and TK depend not only on the degeneracy and the splitting of the f states, the number of c and
f electrons, and their coupling but also on the shape of the conduction-electrons density of states �c DOS� in
the vicinity of the chemical potential �. The ratio T0 /TK depends on the details of the band structure which
makes the crossover between the high- and low-temperature regimes system dependent. We show that the c
DOS with a sharp peak close to � yields T0�TK, which explains the “slow crossover” observed in YbAl3 or
YbMgCu4. The c DOS with a minimum or a pseudogap close to � yields T0�TK; this leads to an abrupt
transition between the high- and low-temperature regimes, as found in YbInCu4-like systems. In the case of
CeCu2Ge2 and CeCu2Si2, where T0�TK, we show that the pressure dependence of the T2 coefficient of the
electrical resistance, A=��T� /T2, and the residual resistance are driven by the change in the degeneracy of the
f states. The FL laws obtained for T�T0 explain the correlation between the specific-heat coefficient
�=CV /T and the thermopower slope ��T� /T or between � and the resistivity coefficient A. The FL laws also
show that the Kadowaki-Woods ratio, RKW=A /�2, and the ratio q=lim�T→0�� /�T assumes nonuniversal values
due to different low-temperature degeneracies of various systems. The correlation effects can invalidate the
Wiedemann-Franz law and lead to an enhancement of the thermoelectric figure of merit. They can also enhance
�or reduce� the low-temperature response of the periodic Anderson model with respect to the predictions of a
single-impurity model with the same high-temperature behavior as the periodic one.
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I. INTRODUCTION

Intermetallic compounds containing cerium, ytterbium,
and europium ions exhibit a number of remarkable phenom-
ena, such as the heavy fermion mass enhancement, valence
fluctuations, huge thermopower, spin-charge separation, un-
conventional magnetism, and superconductivity, etc. Despite
being studied for several decades, these systems are still at-
tracting a considerable attention and are far from being un-
derstood. The initial focus was on dilute alloys with mag-
netic 3d and 4f impurities which shows qualitatively
different behaviors at low and high temperatures. The high-
temperature data indicate that the f states are localized and
weakly coupled to conduction states. The susceptibility is of
the Curie-Weiss form and entropy is large, as expected of
nearly free f ions. At the same time, the logarithmic resistiv-
ity and large thermopower indicate that the conduction �c�
electrons are weakly perturbed by the local moments �LMs�.
Such a behavior is explained by the perturbative solution of
the Anderson or Kondo models, which yield the low-energy
correlation functions as universal functions of reduced tem-
perature T /TK, where TK is the Kondo temperature. The low-
temperature data show that the susceptibility is Pauli like, the
specific heat and entropy are linear in temperature, and trans-
port coefficients are given by simple powers of reduced tem-
perature T /TK. Close to the ground state, the c and f states of
opposite spin are tightly bound in a nonmagnetic singlet with
fermionic excitation spectrum and an energy scale TK. The

overall behavior of dilute alloys with paramagnetic impuri-
ties is nearly the same when plotted on the T /TK scale, even
though the values of TK can vary by orders of magnitude.
Unlike the high-temperature data, neither the crossover nor
the low-temperature behavior can be understood in terms of
the perturbation theory which treats the conduction electrons
and the local moments as separate entities. The fact that the
low-temperature scale coincides with the high-temperature
one and that the crossover from the weak- to the strong-
coupling regime takes place around TK indicates that these
are the most prominent features of dilute Kondo systems.

The solution of the dilute alloy problem came after sev-
eral decades of intensive work on the Kondo and the Ander-
son models. Early calculations considered the exchange scat-
tering of conduction electrons with a constant density of
states �c DOS� on spin-1/2 local moments. The solution was
obtained by the variety of methods such as the perturbative
scaling,1 the numerical renormalization group,2 the Fermi
liquid theory,3,4 and Bethe ansatz.5 These results reveal that
the effective coupling between the free fermions and degen-
erate local moments increases at low temperatures and di-
verges in the ground state, which explains the breakdown of
the perturbation theory. However, the simple models cannot
provide a quantitative description of dilute Kondo alloys; a
realistic modeling has to take into account the details of the
local states and the band structure of the host and consider
additional scattering mechanisms. In Kondo systems with Ce
and Yb ions, the splitting of the 4f states by the spin-orbit
and the crystal-field �CF� effects can change the effective
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degeneracy of the system, reduce the Kondo scale, and lead
to the seemingly complicated features such as the multiple
peaks in the resistivity or the sign change in the ther-
mopower and the Hall effect. A nonconstant c DOS leads
also to complicated low-temperature behaviors. Whithoff and
Fradkin6 found that the c DOS with a power-law singularity
leads to a critical coupling Jc that separates different ground
states. For J�Jc, the ground state is of the strong-coupling
type, while for J	Jc the renormalized coupling decreases
with temperature and the “usual” Kondo screening of local
moments does not occur.7 Nevertheless, despite a
conduction-electron pseudogap, it has been shown that
Kondo-lattice screening can be more stable than in the single
Kondo impurity case.8

The Kondo problem becomes much more difficult for
stoichiometric compounds in which a magnetic ion is present
in each unit cell. The high-temperature features can still be
explained by an effective single-impurity model which takes
into account additional splittings of the f states and/or the
fact that c DOS can change rapidly in the vicinity of the
chemical potential. The perturbation theory of such effective
models provides a consistent picture of the high-temperature
data: it yields the correct Kondo scale, explains the Curie-
Weiss behavior of the susceptibility and the logarithmic de-
crease in the resistivity and thermopower, and accounts for
the well-resolved CF excitations seen in neutron experi-
ments. However, at sufficiently low temperatures, the scat-
tering becomes coherent and one finds new features that can-
not be explained by the single-impurity models. The onset of
coherence is most clearly seen in the electrical resistivity
which drops to very small values. It is also seen in the optical
conductivity which shows the development of a low-
frequency Drude peak and a small hybridization gap close to
the chemical potential. At lowest temperatures, the Fermi
liquid laws often emerge: the resistivity is quadratic and the
thermopower is a linear function of temperature; the specific
heat and the magnetic susceptibility are much enhanced, in-
dicating a large effective electronic mass; the de Haas–van
Alphen experiments show that f electrons contribute to the
Fermi volume. The low-temperature ratios of various corre-
lation functions, such as the Wilson ratio, 
 /� or the
Kadowaki-Woods ratio A /�2, are close to the universal val-
ues. Here, � and 
 denote the T→0 limit of the specific-heat
coefficient and the magnetic susceptibility and A is the coef-
ficient of the T2 term in the resistivity. The near universality
of these ratios indicates that the ground-state properties de-
pend on a single energy scale T0. However, unlike in dilute
alloys, this FL scale T0 can be much different from TK.

In this paper, we study the periodic systems with 4f ions
and show that the relative magnitude of the Kondo and the
FL scale depends on the shape of the unperturbed conduction
states. For the Anderson lattice with an enhanced DOS
around the chemical potential, we find T0�TK, which ex-
plains the gradual transition between the coherent and the
incoherent regimes �slow crossover� observed in YbAl3.9 A
pseudogap or a reduced c DOS close to the chemical poten-
tial yields TK�T0, which explains the abrupt valence-change
transition observed in Yb- and Eu-based intermetallic com-
pounds such as YbInCu4,10 EuNi2�Si1−xGex�2,11 or
Eu�Pd1−xPtx�2Si2.12 In the case of CeCu2Ge2 and CeCu2Si2,

where TK and T0 seem to be of the same order of magnitude,
we show that the pressure dependence of the A�P� coefficient
and the residual resistance are driven by the change in the
degeneracy of the f states.

The paper is organized as follows. Section II explains
briefly the slave boson �SB� formalism for the Anderson
model and defines its low- and high-temperature scales T0
and TK. This section provides also the relationship between
the c DOS and the relative magnitude of T0 and TK, discusses
the effects of the magnetic field, and shows how to express
the transport coefficients in terms of T /T0. In Sec. III we
discuss the relevance of these results for the experimental
data on various intermetallic compounds in which the ratio
T0 /TK can be much smaller or larger than one. For the case
T0�TK, we discuss the pressure anomalies in the A coeffi-
cient and the residual resistance induced by the changes in
the effective degeneracy of the f states.

II. SLAVE BOSON SOLUTION OF THE PERIODIC
ANDERSON MODEL

A. Mean-field self-consistent equations in the limit U\�

The periodic Anderson model �PAM� Hamiltonian is writ-
ten in the limit of an infinite correlation between f electrons
U= +�, as

H = �
k�

kck�

† ck� + Ef�
i�

f i�
† f i� + V�

i�

�ci�
† f i� + f i�

† ci��

− ��
i�

�f i�
† f i� + ci�

† ci�� + h�
i

�gc�ci↑
† ci↑ − ci↓

† ci↓�

+ gf�f i↑
† f i↑ − f i↓

† f i↓�� , �1�

where ci� and f i� are annihilation operators for c and f elec-
trons, i is the site index, �= ↑ ,↓ is the spin component, h is
an external magnetic field, and gc and gf are the Landé fac-
tors for c and f orbitals, respectively. The c orbital describes
the conduction band with energy levels 
k, where k is the
momentum component in the reciprocal space, the localized
f orbitals are characterized by energy level Ef, and the local
hybridization between the two orbitals is specified by the
matrix element V. The infinite Coulomb repulsion restricts
the occupation of the f states to nf�1 and we use the chemi-
cal potential � to fix the total electronic occupation per site
to n=nc+nf. The unperturbed c DOS is �0���=1 /N�k���
−
k�, where N is the number of lattice sites. In the follow-
ing, �0 will be characterized by a half bandwidth D. Typical
band shapes and fillings considered in this work are shown in
Fig. 1. All the energies �except the excitation energies� are
measured with respect to the center of the c band �see Fig.
1�. The effective degeneracy of the model is determined by
the lowest spin-orbit state or the additional crystal-field split-
ting of the f states of the Ce and Yb ions. This degeneracy
can be changed by temperature, pressure or chemical pres-
sure. Here, we consider an effective spin-1/2 model.

The model defined by Eq. �1� is solved for an arbitrary c
DOS by the slave boson mean-field �MF� approximation,13,14

which represents the f states by the product of spinless
bosons bi

† and auxiliary fermions of spin �= ↑ ,↓, di�
† . By
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definition, these auxiliary particle operators create the local f
states with no electron and one �-spin electron, respectively;
	0
i

f →bi
†	0
i and 	�
i

f →di�
† 	0
i. The electronic operators are

related to the auxiliary operators as f i�=bi
†di�, which leads to

the local identities f i�
† f i�=di�

† di�. The doubly occupied state
	↑↓
i

f is forbidden in the limit U→�. The anticommutation
relations for f operators as well as the physical Hilbert space
are recovered by enforcing the local constraints bi

†bi
+��di�

† di�=1. The latter is satisfied by introducing the time-
dependent Lagrange multipliers �i���. Assuming gc�gf, we
set gc=0 and gf =1, replace hgf →h, and rewrite the PAM
Hamiltonian �1� in terms of auxiliary fermionic and bosonic
operators,

HSB = �
k�

kck�

† ck� + V�
i�

�bi
†ci�

† di� + bidi�
† ci�� − ��

i�

ci�
† ci�

+ h�
i

�di↑
† di↑ − di↓

† di↓� + �Ef − ���
i

�1 − bi
†bi�

+ �
i

�i�bi
†bi − 1 + �

�

di�
† di�� . �2�

Since the slave boson Hamiltonian �2� is invariant under the
local gauge transformation bi→bie

i�i, di�→di�e
i�i, we

choose the gauge such that the bosonic fields are real bi
=bi

†�ri. Finally, we make the MF approximation, assuming
that the boson fields and the Lagrange multipliers are homo-
geneous and spin-independent constants ri�r and �i��.
Within this MF approach, which is exact in the limit of a
large number of spin components, the Hamiltonian �2� be-
comes quadratic,

HSB
MF = �

k�
�
kck�

† ck� + rV�ck�
† dk� + dk�

† ck�� − �ck�
† ck�

+ ��dk�
† dk� +

Ef − � − �

2
�1 − r2�
 , �3�

where

�↑ � � + h , �4�

�↓ � � − h . �5�

In the presence of the magnetic field h, the Lagrange multi-
pliers are shifted by �h but the up- and down-spin states
remain decoupled. The self-consistent solution is obtained by

minimizing the free energy �F�r ,���−ln Tre−�H with re-
spect to r and �. From �F�r ,�� /�r=0 and �F�r ,�� /��=0,
we obtain

2r�Ef − � − �� =
V

N�
k�

�ck�
† dk� + dk�

† ck�
 , �6�

r2 = 1 −
1

N�
k�

�dk�
† dk�
 , �7�

where �¯
 is the thermal average with respect to the MF
Hamiltonian �3�. The total electron occupation per site is

n =
1

N�
i�

�di�
† di� + ci�

† ci�
 � nf + nc. �8�

Here, nf �1 /N�i��f i�
† f i�
=1 /N�i��di�

† di�
 and nc
�1 /N�i��ci�

† ci�
, are the average occupations per site for f
and c orbitals, respectively. Using the relationship between
the slave boson amplitude and the total electronic occupa-
tion,

nf = 1 − r2, �9�

nc = n − nf , �10�

the self-consistency �6�–�8� can be written for r�0 as

� + � − Ef

V2 =
1

rV
�
�
�

−�

+�

�dc
� ���nF���d� , �11�

nf = �
�
�

−�

+�

�d
����nF���d� , �12�

nc = �
�
�

−�

+�

�c
����nF���d� , �13�

where nF����1 / �1+e��� is the Fermi function and �dc
� , �d

�,
and �c

� are the spectral densities of the local single-particle
Green’s functions of a given spin component. The Green’s
functions are defined in the usual way as thermal averages of
the �imaginary� time-ordered products of the appropriate cre-
ation and annihilation operators. For the quadratic MF
Hamiltonian �3�, the Green’s functions for r�0 are easily

FIG. 1. �Color online� Schematic plot of the noninteracting c DOS �0���. �a� For a regular c DOS and far from the electronic half-filling,
we find T0�TK. Close to the half-filling, T0 /TK depends on the shape of the c DOS around the renormalized chemical potential �: �b� �0���
is nearly constant for ��� and T0�TK. �c� � is close to a minimum of �0��� and T0�TK. Here, �0�� is the chemical potential of nc

=n−1 noninteracting c electrons �“small Fermi surface”� and �L is the chemical potential of nc=n noninteracting c electrons �“large Fermi
surface”�.
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calculated by the equations of motion, which yields15

�dc
� ��� � −

1

�
Im Gdc

� ��� =
rV

� − ��
�c
���� , �14�

�d
���� � −

1

�
Im Gd

���� =
r2V2

�� − ���2�c
���� , �15�

�c
���� � −

1

�
Im Gc

���� = �0�� + � −
r2V2

� − ��
� . �16�

In what follows, we analyze the MF slave boson solution and
discuss the effects of the band structure.

B. High-temperature solution

At high enough temperatures, the self-consistency
�6�–�10� have only a trivial r=�=0 solution, i.e., the effec-
tive MF hybridization in Eq. �3� vanishes rV=0. This solu-
tion describes a system of decoupled f and c electrons. For
h=0 and Ef	�, each lattice site is occupied by a single f
electron of spin � and there are nc=n−1 conduction elec-
trons �per site� with the c DOS given by �0�
�. The Fermi
surface �FS� encloses nc=n−1 points in the k space, i.e., the
r=0 state occupies a “small” Fermi volume that includes the
“light” c electrons but not the localized f states. The mag-
netic susceptibility is Curie-type provided the direct effect of
h on the conduction electrons is neglected. �The Pauli-type
susceptibility of c electrons is negligible with respect to the
Curie contribution of the f states.� As long as the c states are
highly degenerate T�D, their entropy is much smaller than
the entropy of the localized f states, and the overall entropy
per site is approximately given by S=ln 2. In the presence of
a large magnetic field, the degeneracy of the f states is lifted
and the system acquires additional Zeeman energy.

Even though the trivial r=�=0 solution does not provide
a quantitative description of the PAM at high temperatures, it
captures the essential qualitative point: it represents the
whole system in terms of two well-defined but separated sub-
systems. A more realistic approach would take into account
the small coupling between the c and f electrons and treat it
as a perturbation. This would reduce the average f occupa-
tion to nf	1, give the Curie Weiss rather than the Curie
susceptibility, and obtain the transport properties from the
scattering of “light” c electrons on the f ions. The resistivity
calculated in such a way has logarithmic corrections to the
high-temperature spin-disorder limit. However, both the
trivial slave boson solution and the perturbative one break
down at sufficiently low temperatures.

Remarkably, the Kondo scale TK defined by the high-
temperature perturbation expansion agrees with the charac-
teristic temperature at which the nontrivial solution of the
slave boson equations emerges. In what follows, we analyze
the nontrivial self-consistent solution of Eqs. �6�–�10� for the
spin-1/2 model and show that it captures the main features of
the experimental data on Ce, Eu, and Yb intermetallic com-
pounds at low temperatures. The generalization to an arbi-
trary SU�N� symmetric Anderson model or the model with
the CF split f states is straightforward �see Appendix A�.

C. Kondo temperature TK

The nontrivial r�0 solution of the slave boson equations
is found below some critical temperature which defines the
Kondo scale TK of the periodic Anderson model. For a given
set of parameters and total occupation n, the Kondo scale is
obtained from the r �→0 limit of Eqs. �6�–�8�. This gives,
for h=0,

2

J���
= �

−�

+� �0�� + ��tanh��/2TK�
�

d� , �17�

nf = 2�
−�

+�

d���� − ��nF��� = 1, �18�

nc = n − 1 = 2�
−�

+�

d��0�� + ��nF��� , �19�

where we introduced the Kondo coupling constant,

J��� �
2V2

� − Ef
. �20�

Assuming that TK vanishes continuously and taking the limit
TK→0 yields the critical coupling

2

Jc
= �

−�

+�

d�
�0�� + ��

	�	
. �21�

For a regular DOS �0����0, the right-hand side of Eq. �21�
diverges logarithmically such that Jc=0 and any finite cou-
pling leads to TK�0. At TK, the high-temperature r=0 phase
with large paramagnetic entropy is destabilized by a transi-
tion to the low-entropy Fermi-liquid phase. The Kondo scale
given by Eq. �17� coincides with the solution of the scaling
equations for the SU�2� single-impurity Kondo model.6

The physical interpretation of the emergence of the non-
trivial slave boson solution is made by the analogy with the
single-impurity case. We assume that the high-temperature
solution of the lattice describes a system of localized f and
itinerant c electrons with small FS and that the correction to
the r=0 solution can be found by the perturbation theory in
terms of J���. For T�TK, the hybridization energy is small
with respect to the entropic contribution to the free energy
due to the degenerate f states. Thus, the total free energy of
the system F=E−TS is minimized at high temperatures by
the paramagnetic configuration in which the f states are very
weakly coupled to the c states. For T�TK, the entropic con-
tribution is reduced below the hybridization energy and the
paramagnetic configuration becomes thermodynamically un-
stable. At TK, the crossover between the local moment and a
local singlet state takes place.

In the case of an unperturbed c DOS with a pseudogap at
�, �0���=0, Eqs. �11�–�13� yield the solution with finite Jc
which separates two different low-temperature regimes. For
J�Jc, the r�0 solution emerges at temperature TK which is
the same as in the �0����0 case. But for J	Jc, the r=0
solution persists down to T=0 such that the paramagnetic
entropy is not removed by Kondo scattering. If the coupling
is tuned by pressure or doping, a quantum phase transition
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can be induced at the critical value Jc �or Vc�. In the case of
c DOS with a gap �g�D around the Fermi level, we find
Jc�D / ln�D /�g�. A pseudogap centered at the chemical po-
tential � and characterized by a single energy scale D gives
Jc�D. The power-law singularity �0���=R0	�	� gives Jc
=2�D / ��+1�, which is the Whithoff and Fradkin6 result.7

�The constant R0 follows from the normalization condition
�−D

D �0���=1.�
To find TK at finite �0���, we use the Sommerfeld expan-

sion of Eq. �17� which gives in the TK�D limit the result

TK = �0�D2 − �0
2�1/2FKe−1/J��0��0��0�, �22�

where

FK = exp��
−�D+�0�

D−�0 �0��0 + �� − �0��0�
2	�	�0��0�

d�
 . �23�

� is measured with respect to �, �0=1.13 is a numerical
constant, and �0 is defined by the integral

nc

2
=

n − 1

2
= �

−D

�0

�0���d� . �24�

By definition, �0 is the Fermi level of nc noninteracting elec-
trons which have a “small” FS. The result given by Eq. �22�
is derived in Ref. 16 for a Kondo lattice with an analytic
DOS. It also holds for �0��� with an algebraic singularity
close to �0.

The Kondo temperature TK defined in Eq. �17� character-
izes a second-order phase transition. We are aware that this
transition is an artifact of the slave boson MF approximation
and that an exact theory would lead to a crossover instead.
Experimentally, the Kondo temperature TK is sometimes es-
timated from the resistivity measurements, which show a
maximum around TK, or from the specific-heat measure-
ments, where TK is identified as the temperature at which the
magnetic entropy �per impurity� becomes a substantial frac-
tion of ln 2, say S�0.5 ln 2 �see Fig. 2�. Note that with this
definition of TK from the magnetic entropy, we implicitly
neglect the collective freezing of the entropy which is related
to the Ruderman-Kittel-Kasuya-Yosida interaction.

The fact that the Anderson lattice and the single-impurity
Anderson model have the same Kondo scale indicates that in
both cases, TK separates the paramagnetic high-entropy
phase from the low-entropy phase in which the conduction
electrons start forming an incoherent screening clouds which
reduce the local f moment in each unit cell �see Fig. 1�. At
temperatures at which the c and f states form a coherent
band and local screening clouds become correlated, the hy-
bridization V cannot be considered as a perturbation. For T
�TK, the Hamiltonian has to be diagonalized by nonpertur-
bative methods and the slave boson solution provides a rea-
sonable description of the renormalized ground state. Close
to the ground state, the low-energy excitations of a periodic
system are Bloch waves and we expect them to be charac-
terized by a FL scale T0. The question is that how is T0
related to TK.

D. Fermi-liquid scale T0

The emergence of a strongly coupled f −c fluid at TK does
not imply that Kondo scale characterizes the behavior of
such a fluid close to the ground state. Electrons described by
Eq. �3� form at T=0 a coherent Fermi liquid with an energy
scale T0, which is defined in the absence of a magnetic field
as

T0 �
1

�↑���
=

1

�↓���
, �25�

where �������c
����+� f

���� is the renormalized density of
electronic states at the Fermi level. The scale T0 is relevant
for the T→0 properties of the periodic Anderson model; it
determines the static spin susceptibility 
loc�T=0��1 /T0,
the specific-heat coefficient �=CV /T�1 /T0, and appears in
the transport coefficients17 which are given by simple powers
of reduced temperature T /T0. The slave boson result for T0 is
computed from Eqs. �11�–�16� at T=0, which gives

Ef − � − �

2V2 = �
−�

0 1

� − �
�0�� + � −

r2V2

� − �
�d� , �26�

nc + nf

2
= �

−�

0 �1 +
r2V2

�� − ��2
�0�� + � −
r2V2

� − �
�d�

= �
−�

�L

�0���d� , �27�

where �0��� is the unperturbed c DOS and �L is the chemi-
cal potential of n=nc+nf noninteracting electrons. We have

�L � � +
r2V2

�
, �28�

which defines the shift in the chemical potential due to the
enlargement of the Fermi volume of hybridized �r�0� sys-
tem with n particles with respect to the Fermi volume of the

FIG. 2. �Color online� Schematic plot of the electronic contri-
bution to the entropy Se− as a function of the normalized tempera-
ture T /TK for three cases: T0�TK �red dash-dotted line�, T0�TK

�blue solid line�, and T0�TK �green-dashed line�. The dotted lines
indicate the linear Fermi-liquid regime Se−�T�=T /T0, with a res-
caled slope TK /T0. For T�TK, the three curves are identical, re-
flecting the linear contribution from the conduction band Se−�T�
=ln 2+T /D. The black dot refers to a standard determination of TK

from the electronic entropy: Se−�TK�=x ln 2. On this schematic plot,
we used x=1, which gives TK as defined by the slave boson �r
=0� solution. Experimentally, where TK is defined by the crossover,
one usually takes x=1 /2.
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noninteracting �r=0� band with n−1 particles, ����L−�
=r2V2 /�. �This interpretation of �� neglects the width of the
free-electron distribution function at temperature TK with re-
spect to D and assumes ���0, which holds for nf �1.� The
low-temperature FS is “enlarged” with respect to the high-
temperature one, as it has to accommodate nf additional f
electrons. Equations �15�, �16�, and �28� yield

���� = �1 + ���
rV

�2
�0��L� , �29�

which shows that ���� and T0 depend on the shape of the
unperturbed c DOS and on the total number of particles. In
the FL regime, the entropy behaves as T /T0, the susceptibil-
ity is constant, and transport coefficients are given by simple
power laws of T /T0. The schematic phase diagram of a sys-
tem with TK�T0 is shown schematically in Fig. 3.

The effect of the c DOS can be computed analytically in
the V�D limit, assuming that � is close to �0. Since �L
corresponds to n noninteracting electrons �“large” FS� and
�0 to nc�n−1 electrons �“small” FS�, we approximate ��
�D �see Fig. 1�. In the limit rV /D�1, the MFs �26� and
�27� give

Ef − � − �

2V2 = �0���ln� r2V2

�D + �����
− �

−�D+��

�� �0�� + �� − �0���
	�	

d� , �30�

nc + nf

2
= �

−�D+��

��

�0�� + ��d� , �31�

where we neglected the corrections of order �rV /D�2. Solv-
ing Eqs. �30� and �31� for � yields

��
r2V2

��
� �D + �0�F0e−1/J��0��0��0�, �32�

where

F0 = exp��
−�D+�0�

�� �0��0 + �� − �0��0�
	�	�0��0�

d�
 . �33�

The scale T0 of a system of particles described by the peri-
odic Anderson model close to the ground state is obtained
from Eqs. �25�, �29�, and �32� as

T0 =
r2V2

����2

1

�0��L�
=

D + �0

��

F0

�0��L�
e−1/J��0��0��0�. �34�

The scales T0 and TK have the same exponential dependence
on the coupling constant J��0� but their prefactors are not
affected by �0��� in the same way and can differ consider-
ably. The ratio T0 /TK which is constant for a given set of
parameters can be changed by applying pressure or magnetic
field.

At temperatures low with respect to TFL=min�T0 ,TK�, the
system behaves as a Fermi liquid �provided we are not too
close to the Kondo insulating state� but the crossover from
the high-temperature to the low-temperature regime proceeds
differently for T0�TK than for T0�TK. This is shown sche-
matically in Figs. 2 and 3. If T0�TK, we have TFL=T0 and,
for T0	T	TK, the system exhibits an extended nonuniver-
sal behavior. If the electronic occupation nc is neither too
small nor too close to half-filling, the MF solution of the
slave boson equations16 predicts the entropy with a plateau at
about �1−nc�ln 2 �see Fig. 2�, which characterizes 1−nc un-
screened magnetic ions. If T0�TK, the high-temperature per-
turbative regime persists all the way down to TK, where the
properties change abruptly and the system enters the FL
phase characterized by T0. Only for T0�TK, the lattice sys-
tem is characterized by a single energy scale, as in the single-
impurity case.

E. Comparison of the Fermi liquid and the Kondo scales

The Kondo coupling J��� defined by Eq. �20� is always
smaller than the half bandwidth D of the noninteracting c
DOS such that TK and T0 are exponentially small due to the
factor exp�−1 /J��0��0��0��. The analytic expressions given
by Eqs. �22� and �34� yield the result

T0

TK
= �D + �0

D − �0
�1/2 1

�0�0��L���
F0

FK
, �35�

which does not depend on the Kondo coupling J��� but, as
discussed previously,16 varies with the electronic occupation
and with the shape of the noninteracting c DOS. Electronic
filling effects have been discussed using the MF analysis of
the Kondo lattice16 and the dynamical mean-field theory so-
lution of the periodic Anderson model.18 In the limit nc→0
�n�1�, the first factor D+�0 vanishes and T0�TK �see Fig.
1�a��. Another physically relevant case is found in the limit
nc�1, which corresponds to a Kondo insulator with the van-
ishingly small �0��L�. Equation �35� yields T0�TK and the
breakdown of the FL laws is neither due to the proliferation
of the quasiparticle �QP� excitations �controlled by T0� nor to
the thermal destruction of the Kondo screening �controlled
by TK� but is due to the proximity of the chemical potential
to the hybridization gap in the DOS.

0 1

1

T
0
/ T

K

T / T
K

Light metal (c-orbitals)

+

Localized free moments (f-orbitals)

Crossover

regime

Correlated Fermi liquid

Energy scale T
0

FIG. 3. �Color online� Schematic phase diagram of the PAM.
The reduced temperature T /TK is plotted versus T0 /TK, which is
considered as a tunable parameter that can vary with the electronic
filling, magnetic field, and/or the shape of the noninteracting DOS.
The crossover regime can be nonuniversal or non-Fermi liquid.
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We consider now in more detail the effects due to the
shape variation of �0���. In order to separate this effect from
the electronic occupation effects,19,20 we assume that nc is
close to 1 �but not at half-filling exactly, so that the system is
metallic�. The first two factors on the right-hand side of Eq.
�35� are then of the order 1 such that T0 /TK�F0 /FK. Assum-
ing ���D−�0, we obtain from Eqs. �23� and �33� a simple
relation

T0

TK
� exp��

−�D+�0�

D−�0 �0��0 + �� − �0��0�
2	�	�0��0�

d�
 , �36�

which describes the dependence of T0 /TK on the specific
form of �0. A constant �0 gives T0�TK, which explains the
T /TK scaling observed in some heavy fermion compounds. If
�0 is close to a local maximum of �0���, the integrand in Eq.
�36� is negative in the main part of the integration range,
such that T0�TK, as found in the systems with the “pro-
tracted screening.”9,18 A sharp spike in �0��� close to �0
would exponentially reduce T0 with respect to TK. On the
other hand, if �0 is close to a local minimum �see Fig. 1�b��
one finds T0�TK, which could be understood by the follow-
ing intuitive argument. The incoherent Kondo cloud which
begins to form at T�TK involves a few conduction states
around the Fermi energy �0. These states are part of the
conduction band with a “small” FS �the FS of nc=n−1 non-
interacting electrons�. When temperature decreases much be-
low TK, the local f orbitals hybridize with the conduction
electrons to form a coherent Fermi liquid which is character-
ized by a “large” Fermi surface �the FS of n noninteracting
electrons�. Thus, T0 is affected by all the states between the
“small” and the “large” FS, as well as some additional holes
inside the “small” FS.16 For nc�1 and �0 close to the mini-
mum of �0���, the low-temperature increase in the Fermi
volume leads to the DOS which is much larger than the one
used to evaluate TK �see Fig. 1�c��. In that case, the forma-
tion of the Fermi liquid is “self-amplified,” yielding T0
�TK. We recall that for T0�TK, the FL regime sets in at
temperatures that are the smaller than either T0 or TK.

We are aware that corrections to MF slave boson analysis
might occur from a more accurate treatment of the model;
nevertheless, since the SB approximation is known to be
correct at low energy, we expect such corrections to provide
a similar integral expression, where the 1 / 	�	 divergency
would be smoothed out at height frequencies. The analytical
expression �36� still provides a good quantitative estimation
of the band shape effect in the vicinity of the chemical po-
tential. The relative magnitude of T0 and TK is related to the
functional form of �0��� around �=�.

F. Effect of a magnetic field

We next consider the slave boson solution in the presence
of an external magnetic field which couples to the f orbitals.
The direct effect on the c electrons is neglected, even though
they can be polarized due to the interaction with f electrons.
In the linear-response regime, the local magnetization of the
f orbitals mz�h�� 1

2N�i��f i↑
† f i↑
− �f i↓

† f i↓
� is proportional to
the applied field h and, in the Kubo formalism,21 the propor-
tionality factor is equal to the local static susceptibility com-

puted in the absence of the field. At T=0, the magnetization
is mz�h��h /T0, where T0 is defined by Eq. �25�. Going be-
yond the linear response, the critical magnetic field hc�T� is
defined at a given temperature by the transition between the
r�0 and r=0 states. Solving the MFs �11�–�13� in the
r→0 limit and using the definition of the Kondo coupling
J��� in Eq. �20�, we find for nf =1

1

J���
= �

−�

+� �

�2 − hc
2�0�� + ��tanh� �

2T

d� , �37�

which yields hc�0 for any regular �0���. Unlike the zero-
field result �21�, which is logarithmically singular and gives
Jc=0 for any finite �0���, Eq. �37� yields Jc�0 for any finite
field. For h�hc�T�, there is only the trivial r=0 solution
which describes ferromagnetically polarized f moments de-
coupled from the conduction band �see Fig. 4�. For h
�hc�T�, the equations have a nontrivial r�0 solution which
describes a partially polarized Fermi liquid. At T=0, the
weak-coupling limit �J�D� yields the universal relation

hc
0 � hc�T = 0� = �0

−1FKe−1/J����0��� = �0
−1TK. �38�

Since �0=1.13, we have hc
0�TK. At finite temperatures, the

solution of Eq. �37� with constant c DOS yields the critical
line

�hc�T�/hc
0�2 + �T/TK�2 = 1, �39�

which separates the trivial solution �the decoupled phase�
from the nontrivial one �the FL phase� and holds for any
J��� and filling n. The critical line hc�T� obtained for a con-
stant c DOS is represented schematically in Fig. 4. The same
relation is also found at half-filling, for any c DOS. In gen-
eral, we expect a “nearly” universal phase boundary, with
some small deviations due to the structure of the c DOS and
the particle-hole asymmetry. Studying the development of
the system as a function of temperature at constant field
gives the critical temperature TK�h�. Changing the field at
constant temperature gives hc�T�.

The magnetization mz�h� obtained from the slave boson
solution at T=0 is plotted in Fig. 5 as a function of reduced
magnetic field h /TK for three typical cases: T0�TK, T0
�TK, and T0�TK. A nonconstant c DOS leads to different
types of magnetization curves which resemble the tempera-
ture dependence of the entropy depicted in Fig. 2 �with the
T /TK axis replaced by h /hc

0�. For h	min�T0 ,TK�, the system

FIG. 4. �Color online� Schematic phase diagram of the PAM as
a function of a magnetic field h. The red solid line indicates hc�T�
which separates the trivial r=0 solution from the nontrivial one
r�0.
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is in the linear-response regime shown in Fig. 5 by dotted
lines; the slope of mz�h� is TK /T0, when plotted versus h /TK.
This regime is analogous to the FL regime described from
the entropy. In higher fields, the behavior of the slave boson
solution depends on the ratio T0 /TK. For T0�TK, the T=0
magnetization is linear for small fields and then saturates.
For T0	h	TK, the magnetization might have a plateau
which signifies a saturated FL �r�0� with a “large” FS. At
very high fields h�TK�hc

0, the magnetization becomes a
universal function of h /hc

0. In the opposite case TK�T0, the
low-field limit gives mz�h��h /T0 and the initial slope ap-
pears very small when plotted versus h /hc

0. Once the field
exceeds the critical value hc

0�TK, the local moments are un-
screened and mz�h� rises rapidly toward the free-ion value.
Thus, at about h�hc

0 such systems exhibit a metamagnetic
transition from an unpolarized Fermi liquid to the polarized
spin lattice �the r=0 phase�. Of course, this simple consider-
ation should be corrected for direct and indirect effects due
to the conducting sea.

G. Stability of the Fermi liquid toward magnetic fluctuations

The SB solution of the periodic Anderson model with
infinite U accounts very well for the Kondo effect in inter-
metallic compounds with Ce and Yb ions. As shown in Secs.
II B–II F, this solution explains the crossover into the FL
regime and the reduction in large paramagnetic entropy at
the crossover temperature. However, the effective model de-
fined by Eq. �3� cannot describe the removal of entropy by a
magnetic transition nor the competition between the Kondo
effect and magnetism.22–24 In our treatment, the localized
boson is associated with the 4f0 configuration and, on the
mean field level, its condensation marks the formation of
hybridized states with large FS. Above the condensation tem-
perature T�TK, the f and c states are completely decoupled
and the FS is small. From the preceding discussion, it is clear
that the characteristic temperatures T0 and TK calculated for
the SB Hamiltonian �3� are not taking into account the inter-
site magnetic fluctuations. The enhancement of the FL scale
that seems to occur when the system is driven toward the
magnetic boundary from the FL side cannot be described by
the simple SB solution of the infinite-U PAM used in this
paper.

One way of extending the SB treatment to magnetic in-
stabilities would be to start from a finite-U PAM and, then,
exclude from the Hilbert space all the states with more than
one f electron per lattice site. The effective model generated
in such a way would have the same Hilbert space and the
same terms as the model defined by Eq. �1� but would also
have additional Heisenberg-type terms that couple the f elec-
trons at different sites. In lowest order, such superexchange
terms are of the form �ijJijSiS j, where SiS j

=1 /2����f i�
† f i��f j��

† f j� and Jij is the intersite coupling gener-
ated by the removal of the double occupancy of the f states.
In the PAM-Heisenberg model, Jij is treated as a free param-
eter, and the limit U= +� is taken with a nonvanishing Jij.
The mean-field SB solution of the �U= +�� PAM-
Heisenberg model should not be too different from the cor-
responding solution of the Kondo-Heisenberg model,25–27

which gives the transition between the r�0 and r=0 solu-
tions when the superexchange energy exceeds some critical
value of the order of Kondo energy. At the transition, both T0
and TK vanish continuously. Note that the relation between
TK and the physical observables would now have to be re-
considered because the decrease in the paramagnetic entropy
�see Fig. 2� is not simply due to the onset of the Kondo effect
but is also affected by the intersite magnetic fluctuations. The
correct description of the critical properties should go be-
yond the mean-field approximation.28

H. Transport coefficients in the FL regime

The slave boson Hamiltonian in Eq. �3� can be used to
define the approximate FL scale T0 and the low-temperature
thermodynamics but has no relaxation mechanisms that
could lead to stationary heat and charge currents. To calcu-
late the transport properties of the SU�N� symmetric Ander-
son model in the T→0 limit, we use the Fermi-liquid
theory29 which takes into account the QP damping and leads
to a finite relaxation time. The QP excitations of the full
model have the same dispersion as the excitations of the MF
slave boson model but are restricted to the immediate vicin-
ity of the Fermi level. In the �→0 limit, where the imagi-
nary part of the f electron self-energy � f��� can be ne-
glected, the QP and the slave boson dispersion assume the
same form. The correspondence is obtained by identifying rV
with �Zf and � with �̃ f, where Zf

−1= �1−�� f /�� 	�=0� is the
renormalization factor, �̃ f = �Ef +Re � f�0�−��Zf is the renor-
malized position of the f level, and the excitation energies �
are measured in both cases with respect to the renormalized
chemical potential �. Unlike the infinitely long-lived MF
excitations, which are formally defined for ��D−�, the QP
excitations are defined for Im � f�����2.

We calculate the transport coefficients of the periodic
Anderson model with constant hybridization using the fact
that the charge and energy current density operators satisfy
the Jonson-Mahan theorem.30 This allows us to express the
charge conductivity by ��T�=e2NL11, the thermopower by
��T�	e	T=−L12 /L11, and the electronic contribution to the
thermal conductivity by ��T�T=N�L22−L12

2 /L11�. In each of
these expressions, we have introduced the transport integrals

FIG. 5. �Color online� Schematic plot of the magnetization mz as
a function of reduced magnetic field h /TK for T0�TK �red dash-
dotted line�, T0�TK �blue solid line�, and T0�TK �green-dashed
line�. The dotted lines indicate the initial slope in the linear-
response regime, where mz�h�=h /T0. The black dot refers to the
complete polarization of the local f electrons, with mz=1 /2, which
occurs at the critical field hc

0=TK.
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Lmn =� d��−
dnF

d�
��m+n−2���,T� . �40�

where nF���=1 / �1+exp����� is the Fermi-Dirac distribu-
tion function and ��� ,T� is defined by the Kubo linear-
response theory.21 At low temperature �−dnF /d�� ap-
proaches delta function and the main contribution to the
integrals in Eq. �40� comes from the low-energy excitations
within the Fermi window 	�	�T. In the �, T→0 limit, a
straightforward calculation yields for the three-dimensional
systems17

���,T� = 1
3vF

2�c������,T� , �41�

where we introduced the unrenormalized velocity vk
=−�k
k and denoted by vF

2 the average of vk
2 over the renor-

malized Fermi surface of hybridized states. The renormalized
c DOS is �c��� and the relaxation time is 1 /��� ,T�
� Im �c���, where �c��� is the self-energy of the c electrons
which must include the quasiparticle damping. The integrals
in Eq. �40� are evaluated by the Sommerfeld expansion �for
details see Ref. 17� which yields the transport coefficients of
the periodic Anderson model as simple powers of reduced
temperature T /T0. The prefactors of various powers are func-
tions of �0��L�, nf, and �� which depend on the local self-
energy � f��� which is difficult to obtain for the excitation
energies within the Fermi window 	�	�T. To avoid this
problems, we replace T0 and all other renormalized quanti-
ties that appear in the FL expressions by the slave boson MF
results.

The FL result for the electrical resistivity can be written
as17

R�T� �
92���/nf�2

N�N − 1��e2vF
2 ��T�2 =

9�3���/nf�2TK
2

N�N − 1�e2vF
2T0

2� T

TK
�2

= AT2, �42�

where �= ��2 /6�N����=�2 /3T0 and in the second equality
R�T� is expressed on the reduced temperature scale T /TK.
The coefficient A=R�T� /T2 depends not only on specific-
heat coefficient � but on the difference in the chemical po-
tentials of unhybridized and hybridized Bloch states, the ef-
fective degeneracy of the model, and the square of the Fermi
velocity averaged over the hybridized FS. This result can be
used to explain the pressure and magnetic field dependence
of A, which has been studied experimentally in various sys-
tems.

The FL result for the Seebeck coefficient is given for nf
�1 by the expression

��T� = �
12�T

nf	e	
= �

4�2TK

nf	e	T0

T

TK
. �43�

Since the doubly occupied f states are removed from the
Hilbert space, the model is highly asymmetric, and the initial
slope limT→0��T� /T never vanishes. In bad metals with a
low-carrier concentration, ��T� could be very large.

The thermal conductivity in the FL regime reads as

��T� = T��T�L0�T� , �44�

which yields in the T→0 limit the Wiedemann-Franz �WF�
law ��T��T��T�. However, the usual Lorentz number L0
=�2 /3e2 is here replaced by the effective one,

L0�T� =
�2

2e2�1 −
32�2

nf
2 � T

T0
�2
 . �45�

The correction given by the square bracket could lead to
substantial deviations from the WF law much below T0,
since the factor multiplying the T2 term is very large.

III. DISCUSSION OF THE EXPERIMENTAL DATA

The slave boson solution of the periodic Anderson model
is used in this section to discuss the effects of the band struc-
ture on the properties of the intermetallic compounds with 4f
ions. First, we consider the case of the c DOS with a maxi-
mum in the vicinity of the chemical potential such that the
Fermi-liquid scale is much smaller than the Kondo scale T0
�TK. These results provide a qualitative explanation of the
experiments on YbAl3 or YbMgAl4. The opposite case T0
�TK occurs when the chemical potential is close to the mini-
mum of the c DOS; these results explain the main experi-
mental features of YbInCu4-like compounds. Finally, for T0
�TK, which seems to characterize CeCu2Si2 and CeCu2Ge2,
we discuss the rapid variation in the T2 coefficient of the
electrical resistance and of the residual resistance with pres-
sure. The anomalies are related to the pressure-induced
change in the effective degeneracy of the f states.

A. T0™TK case

Unlike the experiments on dilute alloys, the overall tem-
perature dependence of the experimental data on YbAl3,
Yb1−xLuxAl3 �Ref. 9� for x�0.05, YbMgCu4, and YbCdCu4
�Ref. 31� cannot be explained by a single energy scale. In
these compounds, the high-temperature resistivity is a large
and slowly varying function of temperature,32,33 the
thermopower32,33 has a broad peak around 350 K, the mag-
netic susceptibility and the specific heat have a broad maxi-
mum at Tmax�125 K, and the Hall coefficient is typical of a
metal in which the c electrons scatter on local moments.9,34 A
similar high-temperature behavior is seen in YbXCu4 �X
=Cd,Mg,Zn�.35 The inelastic neutron scattering data on
YbAl3 show a broad Lorentzian spectrum centered at about
540 meV,36,37 which can be understood in terms of the
Kondo effect with TK�500 K.34 Below 100 K, the electrical
resistivity of YbAl3 decreases due to the formation of a co-
herent ground state and for T�T0�40 K the resistivity is a
parabolic and the thermopower is a linear function of
temperature,32,33,38 indicating a Fermi liquid. For T�T0, the
zero-field anomalies in 
�T� and CV�T� yield an enhanced
effective mass34 of the order of 1 /T0 and the neutron-
scattering data36,37 show a narrow peak at about 30 meV,
which is due to a hybridization gap. However, if we plot the
low-temperature transport coefficients on a reduced tempera-
ture scale T /TK, they appear to be strongly enhanced with
respect to the predictions of the single-impurity Anderson
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model with Kondo scale TK�500 K. Neither the A coeffi-
cient of the resistivity nor the slope of the thermopower can
be explained by the single-impurity calculations that would
capture the main features of the high-temperature data and
give TK�500 K. Optical conductivity at 7 K shows a nar-
row Drude-type response that is often found in heavy fer-
mion systems39,40 and another midinfrared peak �MIR� that
can be associated with the hybridization gap. The optical
spectra do not change appreciably for 7 K�T�40 K, as
expected of a system with the characteristic energy scale
T0�50 K. However, the Drude peak broadens and the MIR
peak vanishes at higher temperatures. The de Haas–van Al-
phen experiments performed up to h�40 T show that the
effective mass is reduced along certain directions in k space
by a factor of 2 without a significant alteration of the shape
of the Fermi surface.41 The fact that the low-temperature
susceptibility anomaly is suppressed in the fields of about 40
T indicates that the high-field mass renormalization and the
zero-field anomalies below T0 describe different aspects of
the same physical state. The low-temperature anomalies are
easily destroyed by disorder �they vanish in Yb1−xLuxAl3 for
x�0.05�, which is another indication that they are related to
the coherent state.41

The overall shape of the experimental data and different
characteristic energy scales found at high and low tempera-
tures can be explained by the slave boson solution of the
periodic Anderson model close to half-filling. As shown in
Secs. II E and II F, if the chemical potential is close to the
maximum of the unperturbed c DOS, the mean-field equa-
tions yield T0�TK�hc

0 and give rise to a “slow crossover”
from the LM to the FL phase. Taking T0�50 K and TK
�500, as suggested by the experiment, we find that the low-
temperature susceptibility and the specific-heat coefficient
are FL-like and much enhanced with respect to the expecta-
tions based on the behavior in the incoherent regime. The FL
results for the T2 term of the resistivity �see Sec. II H� ex-
plain the enhancement that one finds below 50 K when ��T�
is plotted on the T /TK scale. The low-temperature ther-
mopower ��T�� �TK /T0�T /TK is also enhanced by TK /T0
with respect to the predictions of the single-impurity calcu-
lation that reproduce the thermopower maximum above 300
K. For temperatures between T0 and TK, the magnetization
and the magnetic entropy are reduced with respect to
the free-ion value, which is only recovered for T�TK. The
slave boson solution gives mz�h��h /T0 for h�T0 and
mz�h�� constant for h�T0. Since T0�hc

0, the slave boson
order parameter is finite for h�T0, i.e., for T0�h�TK, the
system is a polarized heavy FL with a “large FS.” Such a
behavior explains de Haas–van Alphen data which show that
the FS does not change much up to the fields of about 40 T.

The model with the chemical potential close to the maxi-
mum in the c DOS describes Yb1−xLuxAl3 for x�0.5. For
higher concentrations of Lu, there are so many additional
holes in the conduction band that the chemical potential
shifts away from the peak in the c DOS. In that case, T0 and
TK approach each other and the “slow” crossover does not
occur. For x�0.5, one can expect a crossover from a lattice
regime with T0�TK to a universal dilute regime with TK
=T0, as discussed in Ref. 42.

The slave boson dispersion defined by the Hamiltonian in
Eq. �3� explains the Drude and the MIR peaks found at 7 K

in the optical conductivity. However, we hesitate to discuss
the temperature dependence of the hybridization gap using
the mean-field results. These results are obtained by enforc-
ing the constraint nf =1 only on the average, so that the aux-
iliary fermions are mapped on a free-electron gas. The proper
redistribution of the spectral weight should not neglect the
QP damping and should use the solution which is valid at all
energy scales.

B. T0šTK case

In Yb1−xLuxAl3 for x�0.7, YbTlCu4,31 YbInCu4, and
Yb1−xYxInCu4 for x�0.5,10 unlike in YbAl3 or Yb1−xLuxAl3
for x�0.5, the transition between the LM and the FL phase
occurs in an abrupt way. In YbInCu4, which we take as a
typical example, the transition occurs at ambient pressure at
temperature Tv=40 K, where a first-order valence �VF�
change takes place. Above Tv, the Yb ions are in the 3+

configuration and the magnetic response can be understood
assuming an independent 4f hole in each unit cell. The en-
suing high-temperature effective moment is then close to the
free ion value, as observed experimentally.10 The electrical
resistance is very large and nearly temperature
independent.43 The Kondo scale deduced from these data is
so much smaller than Tv that the f and c states are effectively
decoupled for T�Tv. The magnetic fields up to 40 T do not
produce any appreciable magnetoresistance which is also an
indication of a small Kondo coupling. A large �constant�
electrical resistance43 and a very small Hall constant44 cannot
be explained in terms of the spin-disorder scattering but can
be taken as evidence44,45 that the unperturbed c DOS has a
pseudogap or a deep minimum in the vicinity of the chemical
potential. When the compound is cooled down to tempera-
ture Tv, the lattice expands and the Yb configuration changes
from 3+ to 2.9+. In the VF phase, the susceptibility and the
specific-heat coefficient are moderately enhanced ��
�50 mJ /mol K�, the resistivity is quadratic, and the ther-
mopower is linear in temperature. The ratio � /T� is typical
of a normal FL �Ref. 46� but the Kadowaki-Woods ratio is
anomalously low. The characteristic energy scale in the VF
phase is much larger than Tv; the data give T0�500 K.47

The optical conductivity,48 the Hall effect,44 and the thermo-
electric power49 indicate that a bad metal with only a few
states close to the chemical potential is transformed at Tv
into a good metal with small �. That is, the VF transition is
accompanied by a major reconstruction of the conduction
states.

An application of pressure shifts Tv�P� to lower
temperatures50–53 without changing the properties of the
high-temperature state. For T�Tv�P�, the susceptibility and
the specific heat of YbInCu4 can be explained by the CF
theory of independent f states54 split by �CF�40 K into an
excited quartet and two nearly degenerate doublets. This CF
scheme agrees with the neutron-scattering data.55 The en-
tropy of the LM phase obtained by integrating CV�T� /T
�Refs. 52 and 54� decreases from S�R ln 8 to S�R ln 4 as
the system is cooled down to Tv�P�, as expected for two CF
quartets without any Kondo screening. This indicates, once
again, that the Kondo scale of the LM phase is much smaller
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than Tv�P�. Pressure stabilizes the paramagnetic phase and at
a critical pressure of Pc=2.5 GPa the LM persists down to
Tc=2.5 K, where the magnetic transition removes the para-
magnetic entropy of about S�R ln 4. The NMR �Refs. 50
and 53� and neutron-scattering data show that the local mo-
ments in the magnetically ordered �MO� phase are somewhat
smaller than in the LM phase just above TN. Since the
specific-heat coefficient and the A coefficient of the resistiv-
ity are much larger for P�Pc than for P�Pc, we speculate
that the transition in the MO phase is accompanied by an
increase in Kondo coupling. As regards the doping, replacing
Yb with Y or Lu ions51,56 produces similar effects as pres-
sure, i.e., doping stabilizes the LM configuration and shifts
Tc to lower temperatures. In Eu-based intermetallics, the
valence-change transition exhibits similar features11,12 as in
YbInCu4, except Tv is higher �Tv�100 K� and the valence
state of Eu ions changes almost completely �from 2+ �f7� to
3+ �f6��.

We close this experimental summary by mentioning that
the VF transition shifts in a magnetic field to lower tempera-
tures. At ambient pressure, the critical field of hc

0�40 T
suppresses the VF transition and removes completely the FL
state of YbInCu4. The experiments give �effhc

0=Tv, where
�eff is the effective magnetization of the 4f state in the LM
regime, i.e., at the VF transition, the magnetic energy of the
paramagnetic f states is comparable to the Kondo energy of
the FL phase. The critical field is temperature dependent and
the phase boundary between the LM phase and the FL phase
is given by the expression hc�T�=hc

0�1− �T /Tv�2, where hc
0 is

the zero-temperature value.
The aforementioned behavior of YbInCu4 and similar sys-

tems can be understood from the slave boson solution of the
periodic Anderson model by assuming that the chemical po-
tential of the high-temperature phase is close to the
pseudogap of the unrenormalized c DOS, as suggested by the
experimental data44 and the band-structure calculations.45

The results presented in Sec. II C give then a very small
Kondo temperature which explains the Curie-type suscepti-
bility, a large and nearly temperature-independent resistivity,
small thermopower, and a negligible magnetoresistance ob-
served in these systems above the valence-change transition.
Since the Kondo screening is absent in the LM phase, we can
neglect the hybridization altogether and discuss the high-
temperature properties of YbInCu4 by adding the Falicov-
Kimball term to the effective Hamiltonian. This term stabi-
lizes the gap or a pseudogap in the excitation spectrum57 and
explains most of the qualitative features in a self-consistent
way. For a quantitative description of the paramagnetic
phase, one would have to include the corrections due to the
CF splitting of the f states.58

The peculiar feature of YbInCu4-like systems is that the
local moments remain unscreened down to very low tem-
peratures. Because of the pseudogap in the c DOS, the sys-
tem cannot remove the paramagnetic entropy by Kondo ef-
fect but has to approach the ground state by an entirely
different route. In YbInCu4, the transition into a low-entropy
state is achieved by an isostructural phase transition which
expands the lattice and facilitates the valence fluctuations
between the low-volume 4f13 and the large-volume 4f14

states of Yb. The presence of the 4f14 configuration in the

ground state means that some f holes are transferred in the c
band. This moves the chemical potential out of the
pseudogap region, increases the Kondo coupling, and makes
the Kondo temperature of the expanded lattice comparable to
Tv. For T�Tv, the local moment disappears because the f
and c states form hybridized bands. The increase in the
Kondo coupling and the lattice expansion terminate when the
Kondo scale of the hybridized system becomes equal to Tv,
as can be seen from the following argument. At Tv, the free
energy of the high-temperature �local moment� phase and the
low-temperature �FL� phase are equal FLM=FFL, i.e., the
energy gain due to hybridization compensates the loss of
magnetic entropy and a small loss of elastic energy due to
lattice expansion. Below Tv, the free energy is dominated by
the hybridization term in the internal energy which stabilizes
the �low-entropy� FL state, such that 	�E	�T�S and FFL
	FLM. If we assume TK�Tv, then, by definition of TK, the
system with finite Kondo coupling would be paramagnetic
for TK�T�Tv but the f moments would still be partially
screened. The magnetic entropy of such an expanded system
is smaller than the entropy of the pseudogapped phase with
completely free local moments. Thus, for T�Tv, the mag-
netic entropy of partly screened local moments is too small
to destabilize the FL state and we conclude that TK of the
expanded lattice with hybridized states cannot be smaller
than Tv.

In the expanded lattice, the chemical potential is still
rather close to the minimum of the c DOS, which makes the
FL scale much larger than the Kondo scale Tv �see Sec. II D�.
If we estimate the FL corrections to the T=0 value of the
magnetic susceptibility or the electric resistivity up to
O��T /T0�2� and assume T0 /TK�10 �as indicated by the
data�, the maximum relative deviation at T�Tv is 1%. The
Kadowaki-Woods ratio in the FL phase is anomalously small
because the CF splitting does not affect the delocalized f
states, so that the f states are effectively eightfold degener-
ate. The FL analysis presented in Sec. III and III shows that
the A coefficient is then reduced by a factor 1 /N�N−1�.
Thus, the slave boson theory provides an overall description
of YbInCu4-like compounds at ambient pressure.

To explain the pressure effects, we recall that pressure
stabilizes the low-volume �4f13� configuration with respect to
the large-volume �4f14� one and we take this into account by
shifting the f level away from the chemical potential. This
reduces the f-c coupling and the Kondo scale shifts Tv to
lower temperatures and removes eventually the VF transi-
tion. For very large pressures, the paramagnetic entropy of
the LM phase is not removed by the lattice expansion but by
a transition into a MO phase which takes place at Curie
temperature Tc.

In the presence of an external magnetic field, the condi-
tion for the phase boundary FLM�T ,h�=FFL�T ,h� can be ap-
proximated by the condition SLM�Tv ,h�=const, where
SLM�Tv ,h� is the entropy of the LM phase.59 This approxi-
mation uses the fact that T0 is not affected by the pseudogap,
so that T0�Tv, and the temperature and the field dependence
of FFL can be neglected for T�Tv�h�. The critical line ob-
tained in such a way agrees very well with the experimental
data58,60 and with the slave boson result given by Eq. �39�.
For large fields, the slave boson solution shown by the
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dashed-dotted curve in Fig. 5 explains the metamagnetic
transition that takes place at the critical field hc

0�Tv.
Similar reasoning explains also the unusual behavior of

the newly reported system Yb3Pt4.61,62 In the paramagnetic
phase, Yb3Pt4 has the Curie-type susceptibility and nearly
constant resistivity which exceeds the spin-disorder limit.
Like in YbInCu4, the LM phase of Yb3Pt4 looks semimetal-
lic, with unrenormalized �“light”� Bloch sates and localized f
states. In the absence of the f-c exchange coupling, the para-
magnetic entropy cannot be reduced by the Kondo screening
but the ground state has to be approached by an alternative
route. In Yb3Pt4, the ground state is magnetic and we specu-
late that the LRO is due to a spin-density wave �SDW�. The
transition between the LM and the SDW phase takes place at
TN�2 K. The data show that the effective mass of metallic
electrons becomes heavy at TN.62

This behavior can be explained by the slave boson ap-
proach, assuming that the chemical potential is close to the
pseudogap of the unperturbed c band and admitting an anti-
ferromagnetic �AFM� solution. The generalized slave boson
equations which include the coupling to the staggered mag-
netization provide at TN a nontrivial solution with hybridized
states and a large FS. The reason is that large internal fields
shift the chemical potential of up and down spins away from
the singularity in c DOS �like in the case of an external
magnetic field discussed in Sec. II F�. Since the Kondo cou-
pling in the LM phase is very small, the c electrons are
nearly free and the Kondo screening can only occur at ex-
tremely low temperatures. Unlike YbInCu4, where the para-
magnetic entropy is removed by an isostructural phase tran-
sition which enables hybridization and the transition to the
FL phase, in Yb3Pt4 the paramagnetic entropy is removed by
a SDW transition which partially gaps the Fermi surface. The
formation of the SDW at temperature TN�2 K switches on
the hybridization, which delocalizes the f states, changes the
effective degeneracy of the f states, and renormalizes the
metallic mass. The chemical potential in the SDW phase is
still rather close to the pseudogap, so that the ensuing FL
scale is large T0�TN �see discussion in Sec. II D�. Hence,
the mass enhancement at the transition is moderate or small.
It would be interesting to check the assumption about the
pseudogap in the c DOS by performing the band-structure
calculations that would take into account the large Coulomb
repulsion between the f electrons.

C. T0¶TK case

As a final example, we consider the anomalous pressure
dependence of the T2 coefficient of the resistivity A�P� and
the residual resistance �0�P� observed in heavy fermions
such as CeCu2Si2,63 CeCu2Ge2,64 or CePd2Ge2 �Ref. 65� at
very low temperatures. In these compounds, the FL scale is
about the same as the Kondo scale inferred from the low-
temperature peak in ��T� or ��T�.17,64 The scales T0 and TK
are much smaller than the CF splitting �estimated from the
high-temperature peak in ��T� or ��T� �Ref. 17��, so that the
excited CF sates can be neglected for T�TK��CF. At am-
bient pressure, the ground state of these compounds is often
superconducting or magnetic and the FL behavior is enforced

by applying an initial pressure P0. For P�P0, the data show
that A�P� decreases gradually from large initial values, drops
at a critical pressure Pc by nearly 2 orders of magnitude,63–65

and then continues a gradual decrease. The residual resis-
tance increases from a small initial value, rises rapidly to a
sharp peak at Pc, and decreases at very high pressure to
rather small values.63,64

We explain these features by assuming that for P0�P
�Pc, the effective degeneracy of the model is defined by the
lowest CF state and that pressure changes the f-c coupling
and TK but not �CF. The FL state established at P0 has a large
Fermi surface because the f electrons are delocalized and
participate in the Fermi sea. Taking, for simplicity, the half-
filled conduction band and describing the 4f state be a CF
doublet, we find that the Fermi surface is close to the edge of
the Brillouin zone and that the average Fermi velocity in Eq.
�42� is small. In the aforementioned compounds, the FL scale
is also small so that A�P0� is large. As long as pressure does
not change the degeneracy of the f states, Luttinger theorem
preserves the Fermi surface, so that vF

2 and �� in Eq. �42�
remain approximately constant. Since N is also constant in
this pressure range, the prefactor of the ��T�2 term in Eq.
�42� does not change much. Thus, the main effect of pressure
is a gradual reduction of A�P� from the maximum value at-
tained at P0. This reduction is due to the increase of T0�P�, as
can be seen from the linear scaling between �A�P� and the
inverse Kondo scale of the system 1 /TK�P�.64

At large enough pressure, the hybridization becomes too
large for the system to support the CF excitations, so that the
effective degeneracy of the ground state increases. For P
�Pc, the degeneracy is not set any more by the lowest CF
level but by the full multiplet �a sextet, in the case of Ce-
rium�. The slave boson solution of the periodic Anderson
model with the SU�N� symmetry and infinite correlation
shows that the Fermi volume decreases as N increases be-
cause a single f electron is distributed over more and more
equivalent channels. The chemical shift �� and the specific-
heat coefficient � also decrease with N, while vF

2 is larger for
a smaller FS. Thus, A�P� drops sharply for P�Pc. The de-
generacy of the f state cannot increase above N=6 for Ce
and N=8 for Yb, so that an increase in pressure above Pc can
only reduce A�P� by increasing T0. In this pressure range, we
find the scaling between �A�P� and the inverse Kondo scale
of the N-fold degenerate model which is much bigger than
TK. Note that the periodic Anderson model with infinite f-f
correlation, as defined by Eq. �3�, cannot describe the en-
hancement of the A coefficient due to the intersite magnetic
fluctuations.

The residual resistance also tracks the pressure-induced
changes in the effective degeneracy. If the f states are local-
ized at ambient pressure, as seems to be the case with
CeCu2Ge2 �Ref. 64� or CePd2Ge2 �Ref. 65� at very low tem-
peratures, the initial values of �0�P0� are small. Taking, for
simplicity, the model with a ground-state doublet and an ex-
cited CF quartet and using the FL laws, we find that the
temperature dependence of the resistivity at ambient pressure
is due to two resonant channels; while most of the current is
carried by four nonresonant channels which have
temperature-independent conductivity. The contribution of
the resonant channels to the residual resistance can be ne-
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glected. At large enough pressure P� Pc, the CF excitations
are removed, the degeneracy of the ground state changes
from doublet to sextet, and all the channels become resonant.
Because of Luttinger theorem, the Fermi volume shrinks for
two of the channels �former resonant ones� and expands for
four of them �former nonresonant ones�. Hence, for P� Pc,
the overall contribution to the residual resistance increases
sharply. A further increase in pressure does not change the
degeneracy of the model but gives rise to the charge transfer
from the f to the c states. This reduces the residual resistance
and gives the �0�P� curve its asymmetric shape. In other
words, the FL liquid laws and the slave boson solution of the
periodic Anderson model show that the large peaks in A�P�
and �0�P� are due to the pressure-induced change in the de-
generacy of the f state.

IV. SUMMARY AND CONCLUSIONS

It is well known that the degeneracies and the splittings of
the 4f states have a strong impact on the Kondo scale and the
high-temperature behavior of intermetallic compounds with
Ce, Eu, or Yb ions. In this paper, we have shown that the
details of the conduction-electron band structure have a large
impact on the ratio of the Kondo scale to the Fermi liquid
scale, which determines the type of the crossover between
the incoherent and coherent regimes.

Our analysis is based on the periodic Anderson model
with infinite intrasite f-f correlation. At high temperatures,
this model can be mapped on a single-impurity Anderson or
Kondo model with Kondo scale TK and its incoherent prop-
erties can be obtained from the single-impurity approxima-
tions that take into account the structure of the f and c states.
At low temperatures, where the coherent behavior sets in, the
slave boson solution yields the FL laws characterized by an
energy scale T0. The Kondo and the FL scales depend on the
shape of the c DOS in the vicinity of the chemical potential,
the degeneracy and the CF splitting of the f states, the num-
ber of c and f electrons, and their coupling. Our calculations
show that the ratio T0 /TK is determined by the details of the
band structure. Depending on the relative magnitude of T0
and TK, the crossover between the high- and low-temperature
regimes proceeds along very different routes. A sharp peak in
the c DOS yields T0�TK and gives rise to a “slow cross-
over,” as observed in YbAl3 and similar compounds. The
minimum in the c DOS yields T0�TK, which causes an
abrupt transition between the high- and low-temperature re-
gimes, as observed in YbInCu4-like systems. In the case of
CeCu2Ge2 and CeCu2Si2, where T0�TK, our results show
that the pressure dependence of the A�P� coefficient and the
residual resistance can be related to the change in the degen-
eracy of the f states.

The slave boson solution shows that the low-temperature
response of the periodic model can be enhanced �or reduced�
with respect to the predictions of the single-impurity model
with the same Kondo scale. In the coherent regime, the
renormalization of transport coefficients modifies the
Wiedemann-Franz law and can lead to an enhancement of
the thermoelectric figure of merit. The FL laws explain the
correlation between the specific-heat coefficient � and the

slope of the thermopower ��T� /T or between � and the T2

coefficient of the electrical resistance A=��T� /T2. In the case
of an N-fold degenerate model, the FL laws explain the de-
viations of the Kadowaki-Woods ratio RKW=A /�2 and the q
ratio q= 	e	lim�T→0�x� /�T from the universal values.

The magnetic response is also affected by the shape of the
c DOS. The field dependence of the magnetization given by
the SB solution resembles the temperature dependence of the
entropy, as can be seen from Figs. 5 and 2. The c DOS with
a maximum around the chemical potential leads to an ex-
tended plateau in m�h�, while a pseudogap in the c DOS
leads to a metamagnetic transition for the fields on the order
of the Kondo temperature.

Before closing, we mention that the intersite magnetic
fluctuations are completely neglected in the Hamiltonian
given by Eq. �3�. The localized boson that we introduced to
solve the model is associated with the 4f0 configuration and
its condensation marks the formation of a hybridized FL
state. Neither the magnetic transitions nor the competition
between the Kondo effect and magnetism can be described
by the simple model with infinite intrasite f-f correlation.
The intersite effects can be described by generalizing the
model, so as to add the Heisenber-type terms to Eq. �1�. We
believe that the SB treatment of such an infinite-U PAM-
Heisenberg model could provide an insight into pressure ex-
periments in which the number of f electrons changes as one
approaches the magnetic boundary.
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APPENDIX A: GENERALIZATION TO MULTIORBITAL
SYSTEMS

1. General formalism

We generalize our model by allowing the local f orbital to
have a supplementary degeneracy. The latter is lifted at low
temperature by the crystalline electrical field. In the limit
U→�, the PAM Hamiltonian �1� generalized in such a way
reads as

H = �
k�

kck�

† ck� + �
i��

�Ef + �CF
� �f i��

† f i��

+ V�
i��

�ci�
† f i�� + f i��

† ci�� − ��
i�
��
�

f i��
† f i�� + ci�

† ci�
 ,

�A1�

where �=1, . . . ,N /2 is a local orbital index, and �CF
� defines
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the crystal-field splitting. For Ce and Yb, we have N=6 and
N=8. The slave boson approach described in Sec. II for N
=2 is defined by the mapping 	0
i

f →bi
†	0
i, 	��
i

f →di��
† 	0
i,

and by excluding all the states with more than one electron
on a given site. This leads to the local identities bi

†bi
+���f i��

† f i��=1, which are satisfied by introducing
Lagrange multipliers �i. Within the mean-field approxima-
tion, we replace the bosonic fields bi and the Lagrange mul-
tipliers �i by homogeneous static real fields r and �. The
quadratic mean-field Hamiltonian �3� obtained for N=2 is
then generalized to

H = �
k�
�
kck�

† ck� + rV�
�

�ck�
† dk�� + dk��

† ck�� − �ck�
† ck�

+ �
�

�� + �CF
� �dk��

† dk�� +
Ef − � − �

2
�1 − r2�
 . �A2�

The self-consistent parameters r and � are obtained by mini-
mizing the free energy �F�r ,���−ln Tre−�H such that
�F�r ,�� /�r=0 and �F�r ,�� /��=0. This gives

2r�Ef − � − �� = V�
k��

�ck�
† dk�� + dk��

† ck�
 , �A3�

r2 = 1 − �
k��

�dk��
† dk��
 , �A4�

where, �¯
 denotes the thermal average with respect to the
mean-field Hamiltonian �A2� and we have

n = �
i�
��
�

di��
† di�� + ci�

† ci�� � �
�

nf
� + nc. �A5�

The average electronic occupation per site of the f and c
orbitals is nf

���i��f i��
† f i��
=�i��di��

† di��
 and nc
��i��ci�

† ci�
, respectively. These averages are determined by
the slave boson amplitude and the total electronic occupa-
tion,

�
�

nf
� = 1 − r2, �A6�

nc = n − �
�

nf
�. �A7�

The self-consistent Eqs. �A3�–�A5� can be rewritten as

r
Ef − � − �

2
= − V�

−�

+�

�dc���nF���d� , �A8�

nf
�

2
= �

−�

+�

�d
����nF���d� , �A9�

nc

2
= �

−�

+�

�c���nF���d� , �A10�

where nF����1 / �1+e��� is the Fermi function and �dc, �d
�,

and �c are the spectral densities of the local single-particle
Green’s functions of a given spin. These Green’s functions
are defined in the usual way as thermal averages of the

�imaginary� time-ordered products of the appropriate cre-
ation and annihilation operators,

�dc��� � −
1

�
�
k

�
�

Im Gdc
� �k,�� , �A11�

�d
���� � −

1

�
�
k

Im Gd
��k,�� , �A12�

�c��� � −
1

�
�
k

Im Gc�k,�� . �A13�

For the quadratic Hamiltonian �A2�, the Green’s functions
are given by the expressions

Gcc�k,�� =
1

� + � − 
k − r2V2��
1/�� − � − �CF

� �
,

�A14�

Gdc
� �k,�� = −

rV

� − � − �CF
� Gcc�k,�� , �A15�

Gdd
� �k,�� =

1

� − � − �CF
� +

r2V2

�� − � − �CF
� �2Gcc�k,�� .

�A16�

Defining the noninteracting electron Green’s function

G0��� � �
k

1

� − 
k
, �A17�

we can rewrite the local spectral densities as

�c��� = −
1

�
Im G0�� + � − r2V2�

�

1

� − � − �CF
� � ,

�A18�

�dc
� ��� =

1

�
Im� rV

� − � − �CF
�

 G0�� + � − r2V2�
�

1

� − � − �CF
� �
 ,

�A19�

�d
���� = −

1

�
Im� 1

� − � − �CF
� +

r2V2

�� − � − �CF
� �2

 G0�� + � − r2V2�
�

1

� − � − �CF
� �
 .

�A20�

2. Degenerate case: No crystal-field splitting

In the case �CF
� =0, one can check easily that the complete

formalism described in this paper for N=2 can be general-
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ized to any value of N by making the transformation

V2 →
N

2
V2. �A21�

Due to the exponential dependence of T0 and TK on V2 �see
Eqs. �20�, �22�, and �34��, these characteristic energies have
to be rescaled as

TK
�N� = TK

�2�e−�2−N�/NJ��0��0��0�, �A22�

T0
�N� = T0

�2�e−�2−N�/NJ��0��0��0�, �A23�

where N denotes the number of degenerate f channels.

3. Kondo temperature

For r→0, we write the generalized mean-field equations
as

nc

2
= �

−�

+�

�0�� + ��nF���d� , �A24�

nc
�

2
= nF�� + �CF

� � , �A25�

Ef − � − �

V2 = �
�=1

N/2 �
−�

+� 1

� − � − �CF
� �0�� + ��tanh� �

2T
�d�

�A26�

and set �CF
�=0=0 for the doublet with the lowest local energy

Ef. At low enough temperatures, we have �CF
��0�T for the

excited doublets, which gives nf
��0�0 and allows us to use

the formalism developed for N=2 without any changes. At
higher temperatures, such that �CF

��0�T or �CF
��0	T,

one also has to consider the contribution from the excited
orbitals.
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