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Around a metal-to-insulator transition driven by repulsive interaction �Mott transition� the single-particle
excitations and the collective excitations are equally important. Here we present results for the generic sus-
ceptibilities at zero temperature in the half-filled Hubbard model in infinite dimensions. Profiting from the high
resolution of dynamic density-matrix renormalization at all energies, results for the charge, spin, and Cooper-
pair susceptibilities in the metallic and the insulating phase are computed. In the insulating phase, an almost
saturated local magnetic moment appears. In the metallic phase a pronounced low-energy peak is found in the
spin response. It is the precursor of the magnetic moment in the insulator.
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I. INTRODUCTION

Strongly correlated systems persist to be a very interesting
field of current research. In particular in the vicinity of a
quantum phase transition the physics is very rich because the
nature of the ground state and of the excitations changes.
One prominent example of such a phase transition at zero
temperature is the metal-to-insulator transition driven by an
increasing local repulsive interaction: the so-called Mott
transition. For low values of the interaction the system is
metallic because the electrons can still pass one another. For
large values of the repulsive Coulomb interaction, there can
be at most one electron per site. If the system is exactly half
filled, each site is occupied by one electron. No motion of
electrons is possible because they are blocking one another.
Hence the system is insulating.

The simplest model describing the Mott transition is the
Hubbard model.1–3 The one-dimensional case can be solved
analytically and has been studied intensively.4 It is governed
by the particular phenomena of one-dimensional physics
such as spin-charge separation. Yet this is not the generic
physics occurring in higher dimensions. Very much of our
current understanding of the Mott transition in higher dimen-
sions is based on the limit of infinite dimensions5,6 which
leads to the dynamic mean-field theory �DMFT� �Refs. 7 and
8� as important approximation scheme for real narrow-band
compounds.

The essential result of DMFT is that the transition be-
tween metal and paramagnetic insulator is marginally first
order.8–13 It is first order at finite temperature where a finite
amount of spectral weight is redistributed at the transition
Uc, with Uc1�T��Uc�T��Uc2�T�. But at zero temperature
only an infinitesimal amount of spectral weight is redistrib-
uted at Uc�T=0�=Uc2�T=0� �Ref. 13� so that the transition is
continuous. The first-order jump has just vanished. The insu-
lator represents a metastable phase for U�Uc2 �Refs. 11 and
13� �see Fig. 1�.

Historically, there are two scenarios for the Mott transi-
tion based on opposite limits. The Brinkmann-Rice scenario
captures the essential point on the metallic side, namely, the
band narrowing.15 The Hubbard scenario captures the two

bands in the insulator �Hubbard bands�, which approach each
other until they touch at the point where the insulator be-
comes unstable.16 The DMFT combines the strong points of
both preceding scenarios.8–10,13,14,17,18 Already the metallic
solution displays Hubbard bands. The difference between the
metallic and the insulating solution is found in the redistri-
bution of spectral weight at moderate energies only while the
spectral densities at higher energies coincide. This coinci-
dence is quantitative for U→Uc2 as shown in Ref. 13.

So the generic single-particle dynamics as encoded in the
single-particle propagator is by now well understood for the
Mott transition. The dynamics of collective excitations, in
particular the interplay between the single-particle modes
and the collective modes, is less well understood and inves-
tigations are ongoing.19,20

A truly open issue is the physical origin of sharp features
found at the inner band edges of the Hubbard bands just
before the system switches from metallic to insulating be-
havior. These features were observed in quite a number of
investigations but they were discussed as physical phenom-
enon only recently13,14 based on high-resolution dynamic
density-matrix renormalization �D-DMRG�. The features are
confirmed by independent D-DMRG calculations21 and by
high-resolution numerical renormalization �NRG� �Ref. 22�
but called into question by quantum Monte Carlo
extrapolations.23

For the above reasons we have performed a thorough in-
vestigation of the susceptibilities in the half-filled Hubbard
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FIG. 1. �Color online� Phase diagram of the Mott transition of a
half-filled Hubbard model in infinite dimensions with semielliptic
density of states at zero temperature as function of the interaction
U. The critical value below which the insulator ceases to exist is
Uc1=2.38�0.02D. The critical value above which the metal ceases
to exist is Uc2=3.07�0.1D �Refs. 13 and 14�. But between Uc1 and
Uc2 the metal has the lower energy so that the insulator is only
metastable �Ref. 13�.
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model in infinite dimensions. The calculations start from the
self-consistent solutions obtained by iterating the DMFT
self-consistency cycle8,24,25 with D-DMRG as impurity
solver.13,14 We benefit again from the good control of the
energy resolution achievable by D-DMRG for all energies.

The susceptibilities provide valuable complementary in-
formation to the single-particle propagator. They address
bosonic observables such as the local charge or spin or
Cooper-pair density and their dynamics. So they give infor-
mation about the corresponding collective modes. Moreover,
the susceptibilities are experimentally relevant. The charge
susceptibility corresponds to the polarizability which deter-
mines the response seen in linear optics such as in infrared
absorption. The spin susceptibility can be measured by in-
elastic neutron scattering. For these reasons, the susceptibili-
ties �charge, �spin, and �pair are addressed in the present article.

The paper is organized as follows. In Sec. II, we introduce
the model. In Sec. III, the susceptibilities will be defined in
detail. Analytic statements about them will be derived there.
The numerical results in the insulating and in the metallic
phases will be given and their physical implications will be
discussed. The conclusions summarize the article.

II. MODEL AND METHOD

We study the Hubbard model in DMFT at half filling. The
Hamiltonian reads

H = − t �
�i,j�;�

ci;�
† cj;� + U�

i

�n̂i;↑ − 1/2��n̂i;↓ − 1/2� . �1�

Here ci;�
† creates a fermion of spin � at site i while ci;�

annihilates such a fermion. The matrix element t labels the
hopping of the fermions from site to site, i.e., their kinetic
energy. The matrix element U�0 labels the on-site Coulomb
repulsion of two electrons on the same site. It is an effective
parameter which takes the screening into account.

We assume that the lattice on which it is defined is bipar-
tite so that the Hamiltonian �1� displays particle-hole sym-
metry. In our physical discussion we will assume that the
system is translationally invariant so that the momentum de-
pendence of a propagator can be considered. The actual cal-
culations, however, will be done for a noninteracting semiel-
liptic density of states �DOS�

�0��� = �2/�	D2���D2 − �2, �2�

which is characteristic for the Bethe lattice with infinite
branching ratio.26 The advantage of this approach is calcula-
tional simplicity and a finite support in contrast to the Gauss-
ian tails on truly hypercubic lattices.5,6

The limit of infinite dimensions d or equivalently of an
infinite coordination number z exists if t is scaled like t� /�z.
This limit defines the DMFT.5,6,8,24,25 The self-energy 
ij be-
comes local 
ij =�ij
ii and equals the self-energy of a single-
impurity Anderson model27 which has the same skeleton dia-
grams in all orders. This means that the local dressed
propagator Gii must be the same which defines the self-
consistency condition of the DMFT. The ensuing simplifica-
tion is that one only has to solve a zero-dimensional prob-

lem: an interacting site coupled to a bath. One way to
represent this bath is as semi-infinite chain so that the prob-
lem is amenable to powerful one-dimensional tools, for in-
stance, dynamic DMRG13,28 which ensures a good control of
the energy resolution over all energies.29 For details, we refer
the reader to Ref. 14.

III. SUSCEPTIBILITIES

In a translationally invariant system it is appropriate to
consider the momentum-dependent ��q�. But the implica-
tions of the limit of infinite dimensions are easier seen in real
space. In real space � depends only on the difference ri−r j
between the site i where the observable is measured and the
site j where the field is applied. In the limit d→� each
fermionic propagator from i to j is scaled by a factor d−	i−j	/2,
where 	 · 	 is the taxi cab or New York metric which counts
the minimum number of hops required to get from i to j. In
a diagrammatic description of the propagation of any
bosonic, collective observable from i to j at least two fermi-
onic propagators link i and j. This implies that such a sus-
ceptibility is suppressed by d−	i−j	. Hence only local suscep-
tibilities from i to i matter in infinite dimensions, at least in
the absence of phase transitions.

This conclusion is not quite the whole story because cer-
tain nonlocal contributions can add up. For instance there are
2d next-neighbor contributions �	i− j	=1� to i so that they
make a non-negligible contribution if they add up since
2d /d=2. But they will not add up for a generic momentum
q. The momentum q enters the susceptibilities only via

�q� =
1

d
�
p=1

d

cos�qp� , �3�

where qp is the component in direction p.6,30 In the limit d
→� almost all vectors q imply �q�=0 since �d�q� is
Gaussian distributed with finite variance. Only particular val-
ues of measure zero, for instance q= �	 ,	 ,	 , . . . ,	�†, imply
a nonvanishing . Hence, the generic susceptibility is the one
for =0 which corresponds in real space to the local one.

Of course, some important effects of finite-dimensional
physics are not captured by the generic susceptibilities. For
example, an antiferromagnetic instability or the instability to
an incommensurate phase is indicated by the divergence of a
susceptibility for some �0. This must be kept in mind. On
the other hand, however, the propagation of collective modes
as they interact with single particles is given in d=� by the
generic susceptibilities. In any diagram for the proper self-
energy which contains the propagation of a collective mode
there is also a sum over its momentum. Hence the peculiar
contributions with �0 do not matter here. It is the generic
behavior of collective modes at =0 which is relevant for
the interaction with single particles in d=�.

Note that this argument remains true even if the DMFT is
not seen as the limit of infinite dimensions but more broadly
as a consistent local approximation scheme. This is by now a
very common view adopted in the description of real com-
pounds. Then one can discuss the whole momentum depen-
dence of the susceptibility. But the behavior of the collective
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modes which enters implicitly in the description of the
single-particle dynamics remains the one given by the local
susceptibilities. For this reason, we compute and discuss the
local susceptibilities in the following.

The local susceptibilities are easily accessible since they
are identical to the local susceptibilities at the interaction site
of the auxiliary single-impurity Anderson model. This is ob-
vious if one thinks of the susceptibilities as being given by
an expansion in terms of skeleton diagrams to infinite order.
In the sequel, we will present the imaginary parts of the
susceptibilities since these parts provide direct information
on the energies and spectral weights of collective excitations.

One drawback of the susceptibilities is that their imagi-
nary parts are antisymmetric �odd� by construction Im ����
=−Im ��−��. Hence the very interesting behavior at zero and
at very low energies is suppressed. For instance, let Q be a
Hermitian bosonic observable like the spin density. With 
0�
being the ground state and E0 its energy, the matrix element
of the resolvent

R��� ª �0
Q�� − �H − E0��−1Q
0� �4�

can have a � peak at �=0 in its imaginary part. This would
constitute an important piece of information on the system.
But the susceptibility � constructed from R according to

���� = − R�� + i0+� − R�− � − i0+� �5�

would not display this � peak because it cancels on the right-
hand side of Eq. �5�. In order not to lose the information at
zero and at very low frequencies we will display results for

Im �+��� = Im R��� , �6�

which is the contribution for non-negative frequencies. The
contribution for negative frequencies is implied by antisym-
metry, i.e., Im �−���=−Im �+�−��.

Important tools in understanding spectral densities are
sum rules. From the relation �6�, the definition �4�, and the
Hilbert representation of R��� it is obvious that the total
spectral weight takes the value

�
0

�

�+���d� = 	 lim
�→�

�R��� �7a�

=	�0
Q2
0� . �7b�

So knowing the ground-state expectation value of Q2 helps
to understand general trends in spectral weights and it pro-
vides an important check for numerical calculations

A last important point concerns the computation of spec-
tral densities such as Im �+��� by D-DMRG. The dynamic
DMRG calculates a correction vector 
cv� besides the ground
state 
0� and the state obtained from the application of Q,
Q
0�.31,32 This correction vector reads


cv� = �� + i� − �H − E0��−1Q
0� . �8�

Obviously, �0
Q
cv� yields R��+ i��. The computation of the
correction vector requires a numerically demanding matrix
inversion.29 If there is an inaccuracy � in the correction vec-
tor 
cv� the imaginary part of R��+ i�� can be obtained from

a variational functional with a decreased inaccuracy of the
order of 
�
2 �see Ref. 33�.

In any case, the numerical approaches require the imagi-
nary frequency � in Eq. �8� to be finite. This implies a certain
broadening of the actual spectral density. In order to retrieve
the unbroadened spectral density Im �+��� we employ the
nonlinear least-bias �LB� deconvolution technique.34 This ap-
proach yields always non-negative results as is to be ex-
pected for Im �+���. For details of the approach we refer the
reader to Ref. 34. Any deviations from the procedure de-
scribed therein will be given below where applicable.

A. Cooper pair susceptibility

Here we consider the local observable

Qpair = ci;↑
† ci;↓

† + ci;↓ci;↑, �9�

which creates or annihilates a Cooper pair on site i. Of
course, one would expect that the corresponding susceptibil-
ity �pair��� is strongly suppressed in a Hubbard band with
repulsive interaction. Yet it can contain interesting features,
for instance, at higher energy.

But it is not necessary to compute �pair��� separately. In-
deed, there is an underlying symmetry which links Qpair to
Qcharge �see Eq. �12� below�. As a result the pair susceptibility
is identical to the charge susceptibility. So we will not dis-
cuss �pair��� here but refer to Sec. III B where �charge��� is
investigated.

The symmetry becomes apparent under the transformation
c�

† →��
† according to

�↑
†
ª c↑

† cos � − c↓ sin � , �10a�

�↓
†
ª c↓

† cos � + c↑ sin � . �10b�

On a bipartite lattice this transformation is performed on all
even sites with the angle � and on all odd sites with the angle
−�. Then the hopping terms in Eq. �1� are left invariant,
independent of the value of �. The same is true for the onsite
interaction as given by the term proportional to U in Eq. �1�.
So the total Hamiltonian �1� remains invariant under Eq. �9�.

The interesting relation is the one for the observables

Qc
charge = Q�

charge cos�2�� + Q�
pair sin�2�� , �11�

where we use Qcharge in anticipation of Eq. �12�. The sub-
script c refers to the expression in terms of the original fer-
mions c and c† while the subscript � refers to the expression
in terms of the transformed fermions � and �†. Here the
value of the angle of rotation � matters. For �=	 /4 we
switch from the charge observable to the pair observable.
Hence the corresponding local susceptibilities are indeed the
same. No additional numerics are needed in the bipartite
half-filled case.

The above symmetry transformation has not gone unno-
ticed. It is one of the transformations at the basis of the
SO�5� theory which is comprehensively reviewed in Ref. 35.
One further important conclusion is that charge and super-
conducting order are degenerate as far as they stem from a
bipartite Hubbard model at half filling, for instance, with
negative U.
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B. Charge susceptibility

Here we consider the local observable

Qcharge = ci;↑
† ci;↑ + ci;↓

† ci;↓ − 1, �12�

which measures the charge fluctuations around half filling,
i.e., the deviation of the total fermion number per site from 1.

The general sum rule �6� requires the expectation value
�0
Q2
0� which amounts for Qcharge up to twice the double
occupancy value. First we note

�Qcharge�2 = 2n̂↑n̂↓ − �n↑ + n̂↓� + 1, �13�

where n̂�=ci;�
† ci;�. This implies at half filling

�
0

�

�+
charge���d� = 2	�0
n̂↑n̂↓
0� . �14�

So the static quantity to be known for the sum rule is the
double occupancy �see Refs. 13 and 36�.

1. Insulator

In Fig. 2 a series of numerical results is shown for the
positive imaginary part �+

charge of the local charge suscepti-
bility in the insulating phase. In the D-DMRG we kept m
=128 states in the truncated DMRG basis. The mesh of fre-
quencies is given by the interval ��=0.05D and the imagi-
nary broadening was �=0.1D. The LB deconvolution34 was
performed with a tolerance constant of 1 /ALB=1 /100. The
curves are not perfectly smooth but display some wiggles.
This is due to the deconvolution procedure employed.

Physically, no special features are discernible. But two
trends are clearly visible. First, the susceptibility is more and
more suppressed as the interaction is increased. This results
in an overall reduction of the area under the curves. It can be
quantified by the sum rule �14�. So it is natural that the

spectral weight of the charge response decreases on increas-
ing U because the latter suppresses the double occupancy
�0
n̂↑n̂↓
0� more and more.13,36 We have checked this sum
rule numerically and found it to be fulfilled to within a rela-
tive error of 1.8% on the deconvolved data in the interval
�� �0,5.9D�.

Second, the spectral weight is shifted to higher and higher
frequencies on increasing interaction. This is seen in two
features. One is the peak position which is shifted. Its shift
corresponds to the shift of spectral weight in the single-
particle propagators.13,14,36 These shifts reflect the simple fact
that the energy difference between the lower and the upper
Hubbard band is given by about U. Hence it increases lin-
early with U.

The other feature is the onset of finite spectral density
which increases also with U. Due to the LB deconvolution34

there is no region where the spectral density is strictly zero.
But we have checked that the susceptibility data are perfectly
consistent with the natural assumption that the onset of the
Im �+

charge takes place at 2�, where � is the single-particle
gap �for data, see Refs. 13 and 14�. For this check we ana-
lyzed the susceptibility data by fitting a quadratic onset
���−�onset�2 plus higher-order corrections to its continuum.
The quadratic onset is to be expected from the square-root
onset of the single-particle bands13,36 which is convolved
with itself in the standard particle-hole bubble. Because the
single-particle gap rises upon increasing U the collective re-
sponse is shifted to higher and higher energies.

The onset at 2� reflects the fact that the collective mode
is made from a particle and a hole. In the particle-hole sym-
metric case considered here both have the same gap � so that
any collective continuum starts only at 2�. A lower onset,
i.e., at lower energy, could arise only if binding transferred
spectral weight to the frequency interval below 2�. No indi-
cation for such a binding is found here.

2. Metal

In Fig. 3 a series of numerical results is shown for the
positive imaginary part �+

charge of the local charge suscepti-
bility in the metallic phase. In the D-DMRG we kept be-
tween m=128 to m=256 states in the truncated DMRG ba-
sis; the frequency mesh is given by ��=0.05D and the
imaginary broadening by �=0.1D. The LB deconvolution34

was performed with tolerance constants 1 /ALB=1 /10 and
1 /ALB=1 /100. The curves are not perfectly smooth but dis-
play some minor wiggles. This is due to the deconvolution
procedure employed.

As in the insulating regime we find the trend that increas-
ing interaction suppresses the charge response. This is ex-
pected because it is related to the same sum rule �14� which
holds independent of the phase under study. Furthermore, the
spectral response is shifted to higher and higher energy.
Again this general trend can be related to the same trend in
the single-particle propagators.13,14

Interestingly, the charge response in the metallic phase
displays much more structure than in the insulating phase.
For low values of U we find a linear increase with frequency
� for not too high values of ��0.6D. This is the expected
behavior for a Fermi liquid. Its slope becomes smaller and

0 1 2 3 4 5 6
ω / D

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Im
χ +ch

ar
ge

D

insulator
U = 2.40 D
U = 2.45 D
U = 2.50 D
U = 2.55 D
U = 2.60 D
U = 2.70 D
U = 2.80 D
U = 3.00 D
U = 3.20 D
U = 3.40 D
U = 3.60 D
U = 3.80 D
U = 4.00 D

FIG. 2. �Color online� Positive imaginary part �+
charge of the local

charge susceptibility in the insulating phase as function of fre-
quency for various values of the interaction U. The arrow points in
the direction of increasing interaction.
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smaller as the quasiparticles become heavier and heavier.
From U�1.5D onwards, most of the charge response lies in
an intermediate range D���2D. There is still some spec-
tral weight at lower frequencies but it is decreasing rapidly.
An additional shoulder situated between 0.6D and 1D occurs
above U=1.8D. We will discuss this feature in detail below.
Above U�2.2D there is a third rather flat hump discernible
centered around �=3D.

Qualitatively, the three regions of charge response can be
understood from the single-particle response. The single-
particle response �see for instance Figs. 12 and 13 in Ref. 14�
is mainly characterized by the heavy quasiparticle in the nar-
row central peak and by the broad emerging Hubbard bands
of significant weight which are centered around ��1.5D.
Assuming that the collective response is roughly given by a
single diagrammatic particle-hole bubble �or by an analytic
function of this bubble as in the random-phase approxima-
tion or in more sophisticated approaches such as the local-
moment approach�,37,38 we simply have to convolve the
single-particle response at positive frequencies with the one
at negative frequencies.

The response at low frequencies ��0.8D stems from the
convolution of the central peak of heavy quasiparticles with
itself. It dominates at low values of U, but on increasing U it
decreases in weight like Z2, where Z is the quasiparticle
weight vanishing linearly for U→Uc2. The quasiparticle
weight Z measures the spectral weight in the central peak.

The response at intermediate frequencies 0.8D���2.2D
stems from the convolution of the central peak of heavy qua-
siparticles with one of the Hubbard bands. Hence it is higher
in frequency, because the Hubbard band is, and its weight
decreases only linearly in Z.

The response at higher frequencies results from the con-
volution of the lower and the upper Hubbard band. Hence it
is located around twice their energy, i.e., around 3D. This
contribution is not suppressed by Z so that it survives in the
limit U→Uc2. This is consistent with our data for U=2.8D
shown in Fig. 3. Unfortunately, no reliable data even closer
to the critical value Uc2 could be obtained.

Note that only the last contribution at the higher fre-
quency has an analog in the response in the insulator since
there only the Hubbard bands exist. Indeed, the insulating
response describes the high-frequency metallic response very
well as is illustrated in Fig. 4. The insulating and the metallic
curve agree very well above ��3D. The sizable differences
below this frequency are remarkable in view of the shift of
fairly little spectral weight between the metallic and the in-
sulating single-particle solution.13 For experiment, for in-
stance infrared absorption, Fig. 4 provides valuable informa-
tion how different a metallic and an insulating system can
look even though only tiny parameter changes are made. In
the present case, even no parameters are changed, but only
different hysteresis branches are considered.

Let us come back to the shoulder seen between �
�0.6D and ��1D for U�1.8D. Its position corresponds
very precisely to the frequency where the sharp feature at the
inner band edges has been found �see Fig. 2 in Ref. 13 and
Figs. 12 and 13 in Ref. 14�. Hence it is to be expected that
there is a relation between both features. In view of the hy-
pothesis that the sharp feature is caused by a resonance made
from a heavy quasiparticle and a collective mode �see Refs.
13 and 14�, it would be appealing to interpret the shoulder in
Fig. 3 as the cause for the sharp feature in the single-particle
spectral density. To pursue this idea further we plot in Fig. 5
the metallic charge response close to the transition to the
insulator.

In the curves shown in Fig. 5 the shoulder is clearly vis-
ible. We extrapolate the main peak on which the shoulder sits
smoothly. This is done by determining a frequency interval
�b1 ,b2� below the shoulder and a second one �b3 ,b4� above it
where the shoulder is not present. These intervals are found
from analyzing minima and points of inflections of the origi-
nal curve, for example, for U=2.4D we took
�0.56D ,0.646D� and �1.038D ,2.175D�. Then the data within
these two intervals are interpolated by a tenth-order polyno-
mial. This is taken to describe the continuum without the
shoulder. The weight of the shoulder �shaded area in Fig. 5�
is given by integrating the difference between the original
curve with shoulder and the tenth-order polynomial in the
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FIG. 3. �Color online� Positive imaginary part �+
charge of the local

charge susceptibility as function of frequency for various values of
the interaction U in the metallic phase. The arrow points in the
direction of increasing interaction. Note the different scale of the
response compared to the response in the insulator in Fig. 2.
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FIG. 4. �Color online� Positive imaginary part �+
charge of the local

charge susceptibility as function of frequency for interaction U
=2.8D in the metallic and insulating phases.
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interval �b2 ,b3�. The resulting weights are well defined
within 4�10−4.

This procedure is applicable for the results obtained for
U /D� 2.0,2.2,2.3. . .2.7,2.8�. The resulting values are de-
picted in Fig. 6 as function of the quasiparticle weight Z. The
quadratic fit agrees very well with the data except for the last
point resulting from U=2.0D. For such a fairly low value of
U the separation of the shoulder from its background is not
possible reliably.

Clearly, the shoulder weight W depends quadratically on
Z. We recall that the spectral weight S of the sharp feature at
the inner band edges in the single-particle propagator de-
pends linearly on Z: S�Z as found previously.13,14 These
facts are incompatible with the sharp feature S being the
result of the shoulder W. It would require that right at the
transition to the insulator the shoulder induces the sharp fea-
ture although the weight of the shoulder is infinitely smaller
than the weight in the sharp peak.

But the other way around the quadratic behavior in Fig. 6
finds its natural explanation. The shoulder results from the

convolution of the central quasiparticle peak of weight Z
with the sharp feature with S�Z. Hence W�Z2 ensues as
found.

Also the position in frequency is explained in this way.
Since the central peak is located at zero frequency the shoul-
der as result of the convolution with the sharp feature is
located at the frequency where the sharp feature is found.

Summarizing these findings, we conclude that the shoul-
der in the charge response can be understood as a conse-
quence of the sharp feature at the inner band edges of the
metallic single-particle spectral density. It is not its cause.
While it is satisfying to have explained the origin of the
shoulders in Figs. 5 and 6 we state that the physical origin of
the sharp feature described in Refs. 13 and 14 is still unre-
solved.

C. Spin susceptibility

Here we consider the local observable

Qspin = ci;↑
† ci;↑ − ci;↓

† ci;↓, �15�

which measures the spin fluctuations around zero magnetiza-
tion in z direction.

The general sum rule �6� requires the expectation value
�0
Q2
0� which amounts for Qspin up to an expression which
contains again the double occupancy. First we note

�Qspin�2 = n̂↑ + n̂↓ − 2n̂↑n̂↓, �16�

where we used that the fermionic occupation number n̂ is
equal to its square. This implies at half filling

�
0

�

�+
spin���d� = 	�1 − 2�0
n̂↑n̂↓
0�� . �17�

Note that this expression stays finite in the limit of vanishing
double occupancy as it occurs for U→�.

1. Insulator

In Fig. 7 a series of numerical results is shown for the
positive imaginary part �+

spin of the local spin susceptibility in
the insulating phase. In the D-DMRG we kept m=128 states
in the truncated DMRG basis, the mesh is given by the fre-
quency interval ��=0.05D, and the imaginary broadening is
�=0.1D. In the LB deconvolution, the tolerance constant
ALB=1 /10 is used.34 The curves are not perfectly smooth but
display some very small wiggles due to the LB deconvolu-
tion. The attempt to deconvolve the numerical DMRG data
as a completely continuous spectral density leads to a very
large and very narrow peak at low frequency �not shown�.
The continua beside this dominating term cannot be resolved
reliably. But it turns out that the ansatz

1

	
Im �+

spin = A���� + �cont��� �18�
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FIG. 5. �Color online� Positive imaginary part �+
charge of the local
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works extremely well for deconvolution �see Fig. 7�. Here
�cont��� stands for the continuous spectral density which is
retrieved via the LB deconvolution. The weight A of the �
peak results from the nonlinear set of equations defining the
Lagrange multipliers appearing in the LB ansatz.34

Why does a zero frequency � function make sense physi-
cally in the local spin response of a paramagnetic insulator in
infinite dimensions? The exchange coupling J in a Heisen-
berg model derived from a Hubbard model in the insulating
regime reads J=4t2 /U.39 Hence scaling t= t� /�z implies J
�1 /z and the exchange coupling does not contribute unless
all the nearest neighbors contribute on average the same non-
vanishing amount. This implies that a static mean-field treat-
ment of the Heisenberg antiferromagnet around the Ising
limit becomes exact in infinite dimensions.40 There are no
short-range spin-spin correlations. Hence each spin feels
only the local field hMF=−zJm generated by the average
magnetization m of its z neighbors. But in the paramagnetic
phase which we consider here the average magnetization is
zero: m=0. Hence there is no field and concomitantly there is
no preferred direction of the local spin. This implies that the
spin response is the one of a free spin, this means, a � func-
tion at zero frequency. It signals that a local spin flip does not
cost any energy.

Besides understanding this physics on the level of the
infinite-dimensional Hubbard model it can be understood on
the level of the effective impurity model. Indeed, a gapped
impurity model at particle-hole symmetry is found to be al-
ways in the so-called local-moment regime,38,41,42 where a
free local moment is formed.

The weight A of the � function represents four times the
square of the local Sz component in our normalization. It
may not be confused with a static magnetization which is
absent in the paramagnetic phase considered. For U→�, A
takes the value unity since the spin S=1 /2 is fully localized.
At any finite interaction U��, A is reduced since charge
fluctuations renormalize its value downward. The spins are

not fully localized but smeared out to some extent to adja-
cent sites due to their virtual excursions. This behavior is
analyzed quantitatively in Fig. 8 where the filled squares
denote the values of A. Further discussion is presented be-
low.

Besides the � peak a continuous contribution of low
weight persists. It corresponds to the charge fluctuations
which take some weight away from the dominant local spin
response at zero frequency. Indeed, the continua are very
similar, though not identical, to the ones found in the charge
response in the insulating regime, see Fig. 2. To the accuracy
that our numerical deconvolved data allows the onset of the
continuous spectral spin response is again at 2�, i.e., twice
the single-particle gap in the insulating regime. Hence the
origin of the continuous spin response is essentially the ex-
citation of particle-hole pairs. This is qualitatively similar to
what one expects from the diagrammatic result in random-
phase approximation where the response is a function of the
particle-hole bubble.

The fact that most of the spectral weight in the spin re-
sponse is found at zero frequency and not in the continuum
starting at 2� shows impressively that a binding phenom-
enon occurs. The spin response at zero frequency can be
viewed as the signature of a bound state of a particle-hole
pair.43 Only by binding one can understand how spectral
weight can be transferred to energies lower than the sum of
the energies of the constituent states. We think that such shift
of spectral weight due to binding is not taken into account by
the sophisticated argument on the spectral density close to
the Mott transition.44 This argument excluded the continuous
scenario at zero temperature which is supported by most
other analytical and numerical evidences45 �see Sec. I for a
sketch of this scenario�.
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FIG. 7. �Color online� Positive imaginary part �+
spin of the local

spin susceptibility in the insulating phase as function of frequency
for various values of the interaction U. The arrow points in the
direction of increasing interaction. The Lorentzian at zero frequency
represents the example at U=4D for the broadened � peak occur-
ring in the insulator.
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The total weight of the spin response as displayed in Fig.
8 just reflects the behavior of the double occupancy accord-
ing to the sum rule �17�. Hence it approaches unity for
U→� but it does not become very small on U→Uc1 either.

Much more interesting is the behavior of the square of the
local Sz component as quantified by A in Eq. �18�. The
square root of this expression can be identified with the local
magnetic moment. Clearly, A=1 at U=� is the starting point.
But it is remarkable that A�0.94 has hardly decreased for
U=Uc2 where the insulator is no longer the ground state. In
physical terms this means that a Mott insulator is governed
by very well-localized spins as long as it exists. Hardly any
renormalization due to charge fluctuations takes place. From
a theoretical point of view this can be explained by the sig-
nificant charge gap ��0.45D at Uc2 �Ref. 13� which acts as
an infrared cutoff limiting the influence of charge fluctua-
tions. This can be easily understood by the renormalization
flow of the impurity model where the insulator corresponds
to the local-moment fixed point.41,42

Even more remarkable is that the local magnetic moment
is not much lower at Uc1 either. Below this interaction the
insulator is not longer locally stable. Even there A is still
larger than about 0.87 although the charge gap has become
zero and the lower and the upper Hubbard band are touching
each other �see for instance Fig. 2 in Ref. 13�. But it is
obvious from the touching Hubbard bands that the DOS ����
at the Fermi level, i.e., at �=0, is still zero. We conclude that
no hard infrared cutoff is needed and that the fact that the
insulator at Uc1 displays a semimetallic DOS with
lim�→0 ����=0 is sufficient to bound the influence of the
charge fluctuations. So the magnetic moment is not renor-
malized to zero and the fixed point of the renormalization of
the corresponding impurity model is still the local-moment
fixed point.41,42

The main goal of this paper is the comprehensive analysis
of the susceptibility around a Mott transition in infinite di-
mensions. But in view of the remarkable findings at d=� it
is in order to speculate how these findings change on passing
to finite-dimensional systems.

The main difference is that any finite-dimensional system
would show at least short-range magnetic correlations.
Hence the magnetic response would not be governed by a �
peak at zero frequency as in Fig. 7. If the resulting antifer-
romagnetic system is sufficiently strongly frustrated and/or
sufficiently low dimensional so that the magnetic fluctuations
are strong enough to prevent magnetic long-range order the
system would be paramagnetic displaying a magnetic gap.
Generically, the magnetic excitations would be triplons46

with some dispersion. Hence the local spin response would
show the sum of triplon contributions from all the wave vec-
tors in the Brillouin zone. A broad feature at finite frequen-
cies in a frequency range given by the magnetic exchange J
would be seen in Im �+

spin���. A sharp mode at finite, but low
frequency would be discernible in Im �+

spin�� ,q� at a given
wave vector q. The sum of the weights in these sharp modes
over the Brillouin zone constitutes the finite-dimensional
analog of the weight A in our infinite-dimensional analysis.
We expect other features to be qualitatively very similar to
the above findings. For instance the local magnetic moment
in any insulating state should be very little renormalized due
to charge fluctuations.

2. Metal

In Fig. 9 a series of numerical results is shown for the
positive imaginary part �+

spin of the local spin susceptibility in
the metallic phase for not too large values of the interaction.
The curves for larger values of U are plotted in Fig. 10. In
the D-DMRG we kept between m=128 and m=256 states in
the truncated DMRG basis, the frequency mesh is given by
the intervals ��=0.025D and ��=0.05D, and the imaginary
broadening is chosen between �=0.05D and �=0.1D. The
LB deconvolution34 is done with the tolerance constant
1 /ALB=1 /10.

As a first check of our data we compute the static spin-
spin susceptibility �spin�0� via the Kramers-Kronig relation
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�spin�0� =
2

	
�

0

� Im �+
spin��� − Im �+

spin�− ��
�

d� . �19�

The negative term in the numerator occurs only because the
LB deconvolution tends to produce spurious minor contribu-
tions at negative frequencies; otherwise Im �+

spin���0� is
strictly zero at zero temperature. The results are compared to
previous results in Fig. 11 �see Fig. 44 in Ref. 8, which was
obtained by exact diagonalization�. The agreement is very
good at low U deteriorating for larger values of U. We at-
tribute the discrepancy at larger values of U to effects of
finite size and of finite temperature in the exact diagonaliza-
tion approach. But for small and intermediate values of the
interaction the comparison underlines the validity of our re-
sults.

The curves are dominated by a prominent peak at low
frequencies. In some curves, in particular between U=1D
and 2D, there appears to be a shoulder to this peak. Since
this feature occurs already for moderate values of U where
the curves are still fairly smooth we are confident that this
shoulder is in fact a real physical feature. But due to the
deconvolution procedure involved we cannot at present rule
out completely that it is a spurious numerical effect. In the
following we refrain from discussing the shape of the low-
frequency peak.

At higher frequencies around ��2D in Fig. 9 a very
broad peak of low amplitude can be seen. Qualitatively, this
continuum results from the convolution of the lower and the
upper Hubbard band or more complicated descriptions in
terms of excitations from the lower and the upper Hubbard
band.37,38 It corresponds to the continuum found in the insu-
lating phase in Fig. 7.

The insulating and the metallic responses at higher fre-
quencies are alike �see Fig. 12� because their single-particle
spectral densities are identical for higher frequencies for U
→Uc2 �see Fig. 2 in Ref. 13�. This is analogous to what we
have discussed in the charge response in Fig. 4. In both
cases, the insulating and the metallic responses coincide for

��3D. The slightly more wiggly metallic spin response in
Fig. 12 results from the difficulty to deconvolve the rela-
tively small continuum close to the dominating low-
frequency peak.

Since the low-frequency peak is clearly the dominating
feature its physical significance has to be elucidated. Clearly,
it is shifted toward zero frequency on U→Uc2 while becom-
ing narrower and narrower. So it is to be expected that it
represents the precursor in the metal of the � peak in the
insulating regime. In order to support this claim we analyze
the sum rule �17� and the weight in the low-frequency peak.
Both sets of data are depicted for the metal in Fig. 8 by the
open symbols. The sum rule is again well fulfilled to within
an absolute relative error of 0.5%. The weight in the low-
frequency peak is integrated until the first minimum in the
spectral density on the right-hand side of the peak is reached.
First, we note that the total spectral weight of the metal
equals the one of the insulator for U→Uc2 as far as the
extrapolation can be trusted. This is expected since the tran-
sition occurs precisely where the double occupancies become
equal.13,47

Second, we note that also the weight of the dominant
low-frequency peak in the metal approaches the weight of
the � peak in the insulator to very good accuracy. This
clearly corroborates our hypothesis that the metallic domi-
nant low-frequency peak is the precursor of the bound state
at zero frequency in the insulator. Naturally, there is no sharp
bound state in the metal because such a state can decay into
particle-hole states made from the heavy quasiparticles and
-holes which are still present in the metal. Hence no bound
state but a resonance occurs. The width of this resonance can
be understood as Landau damping.

Recall that the low-energy spin resonance in the gapless
case becomes the zero-frequency mode of the corresponding
gapped case in single-impurity Anderson models.38 So our
analysis is well founded also on the level of the impurity
models.

In the insulating regime we have tentatively carried our
infinite-dimensional results over to finite dimensions. We
have speculated that the � peak in Fig. 7 becomes a disper-
sive magnon if magnetic long-range order exists or a disper-
sive triplon if not. Both, magnon or triplon, are bound states
of particle-hole pairs from the electronic point of view. So

0 0.5 1 1.5 2 2.5
U / D

0

10

20

30

40

50

Im
χsp

in
(0

)
D

ED, kBT = D / (100 √2)

D-DMRG+LB, T=0

metal

FIG. 11. �Color online� Static susceptibility �spin�0� from our
dynamic data via Eq. �19� �black crosses� compared to data ob-
tained by exact diagonalization at very small temperature �red
circles�, adapted from Fig. 44 in Ref. 8. The black cross at U=0
corresponds to the analytic result �spin�0�=16 / �3	D�. Lines are
guides to the eyes only.

0 1 2 3 4 5
ω / D

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Im
χ +sp

in
D

U = 2.8 Dmetal
insulator

FIG. 12. �Color online� Positive imaginary part �+
spin of the local

spin susceptibility as function of frequency for interaction U
=2.8D in the metallic and insulating phases.

GENERIC SUSCEPTIBILITIES OF THE HALF-FILLED… PHYSICAL REVIEW B 79, 115136 �2009�

115136-9



we expect that the emergent magnetic resonance found here
becomes in finite dimensions a dispersive resonance which is
the precursor of a perfectly sharp magnetic excitation. In
literature, the term “paramagnon” is used for such precursive
resonances. If no magnetic order is to be expected the term
“paratriplon” would be more appropriate.

We recall that the existence of precursive magnetic exci-
tations and their interaction with the single-particle excita-
tions is very important for the understanding of kinks in the
electronic dispersions19,20 and possibly also for Cooper pair-
ing in strongly interacting systems.

IV. CONCLUSIONS

In this paper, we investigated the zero-temperature Mott
transition as function of the interaction in a generic model,
namely, the half-filled Hubbard model in infinite dimensions.
We focused on the susceptibilities which are of theoretical
and experimental relevance. Thereby, complementary infor-
mation to the existing investigations of the single-particle
dynamics is provided.

We showed that in infinite dimensions the generic suscep-
tibilities are the local ones. Locally, only three types of
bosonic observables exist: the charge, the spin, and the Coo-
per pairing operator. So we discussed the corresponding sus-
ceptibilities �charge, �spin, and �pair. By an intricate symmetry,
�pair is found to be identical to �charge.

For the charge susceptibility �charge in the insulating phase
we found a strong suppression on increasing repulsive inter-
action. The spectral density sets in at 2�, i.e., at twice the
single-particle gap. No binding phenomenon occurs; the
spectral line is rather featureless.

In the metallic phase, three ranges in frequency can be
distinguished. The first results from a heavy quasiparticle
and a heavy quasihole, the second from one heavy excitation
and one in one of the two Hubbard bands, and the third
consists of a particle in the upper Hubbard band and a hole in
the lower Hubbard band. On approaching the insulator U
→Uc2 the quasiparticle weight Z vanishes linearly.9,13,48 The
weight in the first region vanishes like Z2, the weight in the
second region like Z, while the weight in the third region,
though small, persists. It is also found in the insulator.

A shoulder occurs in the metallic charge response at the
same energies as the sharp feature found previously at the
inner band edges.13,14 The weight in the shoulder scales like
Z2 so that we are led to the conclusion that the shoulder is a
consequence rather than the cause of the sharp feature in the
single-particle propagator.

The spin susceptibility �spin in the insulating phase is
found to be dominated by a strong � peak which would cor-
respond in finite dimensions to dispersive magnetic excita-
tions. In infinite dimensions in a paramagnetic insulator it
happens to be at zero frequency. The peak must be seen as a
particle-hole bound state.

Besides this peak only a very weak continuum is found at
higher frequencies. Hence the localized magnetic moment is
only very weakly reduced by charge excitations. The Mott
insulator is governed by very well-localized spins as long as
it exists.

In the metallic phase, the spin response at higher frequen-
cies displays again only a continuum of small spectral
weight. Upon increasing interaction the spin spectral density
is dominated by a pronounced peak at low, but finite, fre-
quencies. This peak comprises most of the spectral weight. It
constitutes the precursor of the sharp magnetic mode in the
insulator as is evidenced by the coinciding spectral weights
of both features at U=Uc2. The pronounced metallic peak is
the signature of an almost bound particle-hole resonance
which can be seen as the emergent magnetic mode �paramag-
non or paratriplon�. We expect this mode to persist in finite
dimensions as a dispersive resonance at low but finite fre-
quencies.

This concludes the investigation of the zero-temperature
Mott transition at half filling in infinite dimensions. Further
investigations away from half filling are called for. Similarly,
it would be very important to verify the hypotheses derived
here for finite dimensions by future calculations.
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