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A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The
technique deviates fundamentally from the traditional Krylov subspace iteration based techniques �Arnoldi and
Lanczos algorithms� or other Davidson-Jacobi techniques and takes its inspiration from the contour integration
and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—
exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from elec-
tronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities
are discussed.
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I. INTRODUCTION

The generalized eigenvalue problem, that is the determi-
nation of nontrivial solutions �� ,x� of Ax=�Bx with A and
B square matrices, is a central topic in numerical linear al-
gebra and arises from a wide range of applications in sci-
ences and engineering. In electronic structure calculations, in
particular, the eigenvalue problem is one of the most chal-
lenging applied numerical processes—also called diagonal-
ization procedure or spectral decomposition. In these calcu-
lations, the electron density can be formally calculated by
summation of the amplitude square of the wave functions
�m solution of the Schrödinger-type eigenvalue problem
H�m=EmS�m with different discrete energies Em �where H
represents the Hamiltonian Hermitian matrix and S is a sym-
metric positive matrix obtained using nonorthogonal basis
functions�. This procedure can be quite computationally
challenging for large-scale simulations of systems containing
more than a hundred of atoms and/or where a large number
of eigenpairs �Em ,�m� are needed. Progress in electronic
structure calculations as for other large-scale modern appli-
cations is then much likely dependent on advances in diago-
nalization methods.

In the past decades, the eigenvalue problem has led to
many challenging numerical questions and a central
problem:1 how can we compute eigenvalues and eigenvec-
tors in an efficient manner and how accurate are they? Pow-
erful tools have then been developed from Jacobi method
and power iterations to iterative Krylov subspace techniques
�including Arnoldi and Lanczos methods� or other Davidson-
Jacobi techniques.2 Traditional numerical algorithms and li-
brary packages are yet facing new challenges for addressing
the current large-scale simulation needs for ever higher level
of efficiency, accuracy, and scalability in modern parallel ar-
chitectures.

This paper presents a fast, robust, and scalable algorithm
design for solving the eigenvalue problem—named FEAST—
which deviates fundamentally from the traditional techniques
above and takes its inspiration from the density-matrix rep-
resentation and contour integration in quantum mechanics.
Section II summarizes the electronic structure and contour
integration problems which have motivated the development
of this algorithm. The FEAST algorithm is then described in

detail in Sec. III, and numerical examples and performance
results are presented in Sec. IV. Finally, Sec. V presents
some discussions regarding the efficiency, robustness. and
scalability of the algorithm.

II. CONTOUR INTEGRATION TECHNIQUE IN
ELECTRONIC STRUCTURE CALCULATIONS

Although new fast sparse solvers have allowed consider-
able time saving for obtaining the eigenpairs �Em ,�m� in
electronic structure calculations, such as the Rayleigh-
quotient multigrid3 developed for the MIKA package or the
parallel Chebyshev subspace iteration technique developed
for the PARSEC package,4,5 these calculations are still consid-
ered computationally extremely challenging and linear scal-
ability is not easily achievable.

An alternative approach to the Schrödinger picture for
obtaining the electron density consists in performing a con-
tour integration of the diagonal elements of the Green’s func-
tion matrix G�Z�= �ZS−H�−1 over the complex energy
space.6 At zero temperature, the resulting expression for the
electron density in real space is

n�r� = −
1

2�ı
�

C
dZG�r,r,Z� = �

m

��m�r��2, �1�

where the complex contour C includes all the eigenvalues Em
below the Fermi level EF and where the spin factor is not
considered. It should be noted that at nonzero temperatures,
this expression would also include the contribution of the
residues of all poles of the Fermi-Dirac distribution function
on the imaginary axis at the position of the Fermi level.7 For
transport problems and open systems, in turn, the contour
integration is often used to compute the equilibrium part of
the electron density8 where self-energy boundary conditions
need to be included in the Hamiltonian matrix H. The con-
tour integration technique represents a priori an attractive
alternative approach to the traditional eigenvalue problem for
computing the electron density since the number of Green’s
function to be calculated—typically �O�10� using a Gauss
quadrature procedure—is independent of the size of the sys-
tem. In particular, an efficient linear scaling strategy CMB
�CMB stands for contour integration-mode approach-banded
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system solver� has been proposed in Refs. 9 and 10 for simu-
lating nanowire-type structures within a real-space mesh
framework while overcoming the impossible numerical task
of inverting a large size matrix at each point of the contour.
For arbitrary systems �i.e., beyond nanowire structures�,
however, there are no numerical advantages of abandoning
the traditional eigenvalue problem in favor of the contour
integration technique for computing the electron density. In
addition, it is clear from Eq. �1� that the contour integration
technique does not provide a natural route for obtaining the
individual eigenvectors but rather the summation of their
amplitudes square. In the following section, the numerical
algorithm FEAST is proposed for obtaining directly the eigen-
pairs solutions using the density-matrix representation and a
numerically efficient contour integration technique.

III. FEAST

A. Introduction

In this section, the basic FEAST algorithm is presented for
solving generalized eigenvalue problems of this form

Ax = �Bx , �2�

within a given interval ��min,�max�, where A is real symmet-
ric or Hermitian and B is a symmetric positive definite �spd�.
One common way to accelerate the convergence rate of tra-
ditional iterative techniques consists in performing a factor-
ization of the Green’s function G���= ��B−A�−1 for some
reasonable shift � close to the eigenvalues in the search in-
terval and which leads to solving linear systems �i.e., shifting
strategy�. More recently, Sakurai and co-workers11,12 pro-
posed a root-finding technique which consists of a contour
integration of a projected Laurent series-type decomposition
of the Green’s function. In principle, a set of complex mo-
ments can be obtained by solving few linear systems along
the contour, which can generate an identical subspace to the
one spanned by the eigenvectors present inside the contour.
In practice, however, robustness and accuracy are not easily
achievable. In our approach, we avoid decomposing directly
the Green’s function and perform instead an exact math-
ematical factorization of its contour integration—which rep-
resents the reduced density matrix � in quantum mechanics.
One can show that this factorization can be expressed in
terms of the eigenvectors present inside the contour as fol-
lows:

� = −
1

2�ı
�

C
dZG�Z� = �

m=1

M

�xm	
xm� . �3�

In matrix notations the second term of the equation reads
XXT, where XN�M = �x1 ,x2 , ...xM� �M being the number of
eigenvalue inside the contour and N the size of G�. It should
be noted that the diagonal elements of � represent the elec-
tron density in quantum mechanics �1� discussed in Sec. II.

Postmultiplying � by a set of M linearly independent ran-
dom vectors YN�M = �y1 ,y2 , ...yM�, the first expression in Eq.
�3� leads to a new set of M-independent vectors QN�M
= �q1 ,q2 , ...qM� obtained by solving linear systems along the
contour

QN�M = −
1

2�ı
�

C
dZG�Z�YN�M , �4�

while the second expression in Eq. �3� implies that these
vectors Q can be formally generated by the eigenfunctions X
inside the contour

QN�M = XN�MWM�M, with Wi,j = xi
Tyj. �5�

In other words, each Q column vector obtained in Eq. �4�
represents a different linear combination of unknown basis
functions X in Eq. �5�. Using a Rayleigh-Ritz procedure, the
problem �2� is now equivalent to computing the eigenpairs
��m ,�m� of the following reduced generalized eigenvalue
problem of size M:

AQ� = �BQ� , �6�

with

AQ = QTAQ and BQ = QTBQ . �7�

The Ritz values and vectors are then given by

�m = �m, m = 1, . . . ,M �8�

XN�M = QN�M�M�M , �9�

where �M�M = ��1 ,�2 , ...�M�. One can show that the ob-
tained eigenvectors X are naturally B orthonormal, i.e.,
xi

TBxj=	i,j, if the eigenvectors of the reduced problem �6�
are BQ orthonormal, i.e., �i

TBQ�j=	i,j.

B. Practical considerations and pseudocode

In practice, the vectors Q are computed by performing a
numerical integration of each vectors G�Z�Y �4� along the
complex contour C. Let us consider a circle centered in the
middle of the search interval ��min,�max�. It should be noted
that the expression of the contour integration can be further

simplified since G�Z̄�=G†�Z�. Denoting C+ the positive half
circle of the complex contour, it comes if A is Hermitian

� = −
1

2�ı
�

C+
dZ�G�Z� − G†�Z�� �10�

and if A is real symmetric

� = −
1

�
�

C+
dZI�G�Z�� , �11�

where I� � stands for the imaginary part. Using a Ne-point
Gauss-Legendre quadrature on the positive half circle C+ �see
Fig. 1�, with xe the eth Gauss node associated with the
weight 
e, one obtains if A is Hermitian and Y ,Q�CN�M,

Q = − �
e=1

Ne 1

4

er�exp�ı�e�G�Ze� + exp�− ı�e�G†�Ze��Y ,

�12�

with

r =
�max − �min

2
, �e = − ��/2��xe − 1� , �13�
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Ze =
�max + �min

2
+ r exp�ı�e� . �14�

If A is real symmetric, Y ,Q�RN�M and one can use

Q = − �
e=1

Ne 1

2

eR�r exp�ı�e�G�Ze�Y� , �15�

where R� � stands for the real part.
In order to reduce the numerical quadrature error of the

contour integral, one may consider the two following im-
provements:

�i� Performing outer-iterative refinement steps. Once the
eigenvectors X are obtained �9�, a new set of initial guess
vectors Y=BX can be used. Postmultiplying the density ma-
trix �3� by Y, one now obtains from Eq. �5� that Q converges
to X since XTBX=I �i.e., Wi,j =	i,j and then �BX=X�. A fast
test for convergence can be obtained by checking the trace of
the eigenvalues �8�.

�ii� Postmultiplying the density matrix �3� by M0 random
vectors �rather than M�, where M0 is greater than M. The
reduced dense generalized eigenvalue problem �6� of size M0
can be solved using standard eigenvalue LAPACK routines.13

Since we do not perform the orthogonalization of the vectors
Q, one has to make sure that BQM0�M0

is symmetric positive

definite, i.e., M0 does not exceed an upper limit which can
easily be obtained a posteriori.

The performances of the basic FEAST algorithm will then
depend on a trade off between the choices of the number of
Gauss quadrature points Ne, the size of the subspace M0, and
the number of outer refinement loops. So far, using M0
�1.5M, Ne=8, and with at most two refinement loops, we
have consistently obtained a relative residual equal or
smaller than 10−10 seeking up to 1000 eigenpairs for a variety
of problems. The basic pseudocode for the FEAST algorithm
is given in Fig. 2 in the case of A real symmetric. In the case
of A complex Hermitian, we note the following changes:
Y ,Q�CN�M0, ��CM0�M0, and the construction of the vec-
tors Q in step 2 of the pseudocode must be modified to
satisfy Eq. �12�.

IV. NUMERICAL EXPERIMENTS

In this section, we propose to demonstrate the numerical
stability, robustness, and scalability of the FEAST algorithm
using three examples derived from electronic structure cal-
culations of carbon nanotube �CNT�.

A. Example I

Let us first consider a family of eigenvalue problems,
Test-CNT, obtained using a two-dimensional finite element
discretization of the density-functional theory �DFT�/Kohn-
Sham equations at a given cross section of a �13,0� CNT—
the 2D atomistic potential is derived from the mode approach
used in the CMB strategy for solving the full three-
dimensional problem presented in Ref. 9. In Test-CNT, A is
real symmetric and B is spd, the size of both matrices is N
=12 450, and their sparsity pattern is identical with a number
of nonzero elements nnz=86 808.

In Table I, we report the times and relative residual ob-
tained by the public domain eigenvalue solver package
ARPACK �Ref. 14� �using the shift-invert strategy� and the
FEAST algorithm presented in Fig. 2 for solving the Test-CNT
example seeking up to M =800 �lowest� eigenpairs. The in-
ner linear systems in ARPACK and FEAST are solved using the

+C

λmin λmaxλ

FIG. 1. Schematic representation of the complex contour inte-
gral defined by the positive half circle C+. In practice, the vectors Q
are computed via a numerical integration �e.g., Gauss-Legendre
quadrature� where only few linear systems G�Z�Y needs to be
solved at specific points Ze along the contour.

1- Select M0 > M random vectors YN×M0
∈ R

N×M0

2- Set Q = 0 with Q ∈ R
N×M0 ; r = (λmax − λmin)/2;

For e = 1, . . . Ne

compute θe = −(π/2)(xe − 1),

compute Ze = (λmax + λmin)/2 + r exp(ıθe),

solve (ZeB −A)Qe = Y to obtain Qe ∈ C
N×M0

compute Q = Q− (ωe/2)�{r exp(ıθe) Qe}
End

3- Form AQM0×M0
= QTAQ and BQM0×M0

= QTBQ

4- Solve AQΦ = εBQΦ to obtain the M0 eigenvalue εm,

and eigenvectors ΦM0×M0
∈ R

M0×M0

5- Set λm = εm and compute XN×M0
= QN×M0

ΦM0×M0

If λm ∈ [λmin, λmax], λm is an eigenvalue solution

and its eigenvector is Xm (the mth column of X).

6- Check convergence for the trace of the eigenvalues λm

If iterative refinement is needed, compute Y = BX

and go back to step 2

FIG. 2. FEAST pseudocode �sequential version� for solving the
generalized eigenvalue problem Ax=�Bx, where A is real symmet-
ric and B is spd, and obtaining all the M eigenpairs within a given
interval ��min,�max�. The numerical integration is performed using
Ne-point Gauss-Legendre quadrature with xe the eth Gauss
node associated with the weight 
e. For the case Ne=8, one can use

�x1 ,
1�= �0.183 434 642 495 649,0.362 683 783 378 361�,
�x3 ,
3�= �0.525 532 409 916 328,0.313 706 645 877 887�,
�x5 ,
5�= �0.796 666 477 413 626,0.222 381 034 453 374�,
�x7 ,
7�= �0.960 289 856 497 536,0.101 228 536 290 376�,
and �x2i ,
2i�i=1,. . .,4= �−x2i−1 ,
2i−1�.

DENSITY-MATRIX-BASED ALGORITHM FOR SOLVING… PHYSICAL REVIEW B 79, 115112 �2009�

115112-3



shared-memory parallel direct solver PARDISO.15 It should be
noted, however, that FEAST benefits more than ARPACK from
the PARDISO solver as the inner linear systems have multiple
right-hand sides. Although both algorithms could benefit
from a parallel distributed implementation �e.g., using the
P_ARPACK package�, the simulation runs are here restricted to
a given node of a eight-core Intel Clovertown system �16 Gb,
2.66 GHz� where the linear systems in FEAST are factorized
and solved one after another. The performances of ARPACK

and FEAST can also depend on fine tuning parameters such as
the choices of the size of the subspace M0 �M0=1.5M here
for both algorithms�, the inner systems solvers, the number
of contour points Ne for FEAST, or the stopping criteria for
obtaining the residual. The simulation results in this section
are then not intended to compare quantitatively the two solv-
ers but rather to point out the potentialities of the FEAST

algorithm.
In our experiments, the convergence criteria on the rela-

tive residual for FEAST is obtained when the relative error on
the trace of the eigenvalues �m�m in the search interval is
smaller or equal to 10−13. Table II shows the variation of the
relative error on the trace with the number of outer-iterative
refinement for FEAST. These results demonstrate that only

two to three refinement loops are necessary to obtain the
small relative residuals for the different cases reported in
Table I. It should be noted that only one loop is necessary to
obtain the eigenvalues with an accuracy of �10−5 or below.

The simulation results in Table I demonstrate very good
scalability for FEAST while the search interval keeps increas-
ing but the number of contour points Ne stays identical �i.e.,
the number of numerical operations stays the same for a
given loop of FEAST with a fixed Ne=8 linear systems to
solve�. In addition, from Table III, one can see how the ro-
bustness of the FEAST algorithm is affected while the number
of contour points Ne changes. In particular, Ne=4 points
along the contour did suffice to capture M =100 eigenpairs
with a relatively small residual �decreasing the simulation
time reported in Table I for this case�, while the case Ne
=16 points generated a residual smaller than the one ob-
tained by ARPACK �using M0=1.5M�.

B. Example II

In another set of numerical experiments, we intend to
demonstrate the robustness of FEAST in capturing the multi-
plicity of the eigenvalues. We propose to create artificially
new Test-CNT systems called k�N ,M�, where the matrices A
and B are repeated k times along the main diagonal �the new
system matrix is block diagonal with k blocks�. Physically,
these systems can describe the cross section of a bundle com-
posed by k CNTs, where we do not consider the interactions
between the different tubes such that each eigenvalue is now
k times degenerate. If we keep the same search interval used
to obtain M =100 eigenpairs for k=1 �where the size of the
matrices A and B is N�, 100k eigenpairs must now be found
for k�1, where each one of them has the multiplicity k. In
Table IV, we report the simulation times and relative residu-
als obtained using ARPACK and FEAST on these k�N ,M� Test-
CNT systems. For the case 8�N ,M�, for example, the size of
the new system matrix is 99 600 and the first 100 eigenval-
ues have all the multiplicity 8 �so 800 eigenpairs are found in
total�. The simulation results show linear scalability perfor-
mances with the size of the system and the number of eigen-
pairs. In contrast to ARPACK where the number of matrix-
vector multiplications and linear system solves would keep
increasing with k, the number of operations in FEAST stays
the same for all these cases. The scalability of the algorithm
depends then mainly on the scalability of the linear system
solver.

TABLE I. Simulation times and relative residual maxi�
Axi
−�iBxi
1 / 
Axi
1� obtained by the solver ARPACK and FEAST on the
Test-CNT system seeking M �lowest� eigenpairs for different search
intervals. The simulations are performed on a Intel Clovertown
�eight cores, one node, 2.66 GHz, 16 Gb�. The shift strategy has
been used in ARPACK to accelerate the convergence �the regular
mode would give �300 s for M =100�. The inner linear systems in
ARPACK and FEAST are both solved using the direct parallel solver
PARDISO �Ref. 15� on eight cores. Finally, the size of the subspace
has been chosen to be M0=1.5M for both algorithms and the num-
ber of contour points for FEAST is fixed at Ne=8.

Test-CNT
N=12 450

ARPACK FEAST

Time�s� Residual Time�s� Residual

M =100 12.2 2.0�10−11 7.8 4.5�10−10

M =200 31 2.0�10−11 14 5.5�10−10

M =400 86 1.4�10−11 21 1.8�10−10

M =800 213 4.5�10−9 58 3.4�10−11

TABLE II. Variation of the relative error on the trace of the
eigenvalues �m�m for different search intervals with the number of
iterative refinement loops. The convergence criteria are set to 10−13

where the final relative residual on the eigenpairs is reported in
Table I.

Test-CNT
N=12 450

Relative error on the Trace

First loop Second loop Third loop

M =100 3.0�10−6 2.9�10−12 1.0�10−15

M =200 1.8�10−5 4.8�10−12 2.1�10−14

M =400 2.4�10−8 3.2�10−16

M =800 1.8�10−9 4.3�10−16

TABLE III. Performance results obtained by FEAST seeking M
=100 eigenpairs for different values of Ne. The convergence is ob-
tained when the error on the trace is equal or smaller to 10−13.

Test-CNT
M =100

FEAST

Time�s� Residual No. of loops

Ne=4 7.0 8.3�10−8 6

Ne=8 7.8 4.5�10−10 4

Ne=16 10.2 3.4�10−12 3
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C. Example III

We have shown that FEAST can reuse the computed sub-
space as suitable initial guess for performing iterative refine-
ments. This capability can also be of benefit to modern ap-
plications in science and engineering where it is often
necessary to solve a series of eigenvalue problems that are
close one another. In band-structure calculations, in particu-
lar, many eigenvalue problems of the form �A+Sk�xk
=�kBxk need to be solved at different locations in the k
space �i.e., for different values of k and where S is Hermitian
with S0=I�. Let us consider the eigenvalue sparse system of
size N=492 982 obtained for a �5,5� metallic CNT using our
in-house DFT/real-space mesh technique framework for
band-structure calculations of nanowires-type structure.16 In
Fig. 3, we propose to solve this eigenvalue problem using the
same search interval for the eigenvalues � for different loca-
tions of k where the subspace computed by FEAST at the
point k−1 is successively used as initial guess for the neigh-
boring point k. In addition, the inner linear systems in FEAST

are solved using an iterative method with preconditioner
where a modest relative residual of 10−3 is used �e.g., a suit-
able banded preconditioner can be obtained using a mode
approach9�. It should be noted that the convergence criteria
for the relative error on the trace of the eigenvalues are cho-
sen much smaller at 10−8, while the eigenvectors are ex-
pected to be obtained within the same �or a smaller� order of
accuracy than the one used for the solutions of the inner
systems. Figure 3 shows that 13 to 20 eigenvalues �i.e., en-
ergies� are found within the selected search interval along the
different k points �from the � to the X point in the graph�.
Although the size of the subspace stays identical at M0=25,
after the first initial point at k=0 �
 point in the graph�
FEAST converges within only one refinement loop for almost
all the other k points.

V. DISCUSSIONS

In comparison to iterative Krylov subspace techniques,
FEAST can be cast as a “direct” technique which is based on
an exact mathematical derivation �3�. FEAST does naturally
then capture all the multiplicity and no-orthogonalization
procedure is necessary �such as Gram-Schmidt orthogonal-
ization process�. As described above, the main computational
tasks in FEAST consist of solving Ne-independent linear sys-
tems along the contour with M0 right-hand sides and a re-
duced dense generalized eigenvalue problem of size M0.
Since FEAST has the ability to reuse the basis from the pre-
viously computed subspace, an outer-iterative refinement
procedure is proposed to improve the accuracy of the solu-
tions. The capability to take advantage of suitable initial
guess can also be of benefit to modern applications in sci-
ences and engineering where it is often necessary to solve a
series of eigenvalue problems that are close one another

TABLE IV. Simulation times and relative residual maxi�
Axi
−�iBxi
1 / 
Axi
1� obtained by the solver ARPACK and FEAST on the
k�N ,M� Test-CNT systems which artificially reproduce k times the
original Test-CNT system. The kM �lowest� eigenpairs are found
where each eigenvalue has a multiplicity of k.

Test-CNT
N=12 450
M =100

ARPACK FEAST

Time�s� Residual Time�s� Residual

�N ,M� 12.2 2.0�10−11 7.8 4.5�10−10

2�N ,M� 85 3.5�10−11 27 7.7�10−10

4�N ,M� 668 4.6�10−11 109 8.8�10−10

8�N ,M� 5492 6.2�10−11 523 6.5�10−10
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FIG. 3. Band-structure calcu-
lations of a �5,5� metallic CNT.
The eigenvalue problems are
solved successively for all the k
points �from � to X�, while the
computed subspace of size M0

=25 at the point k is used as ini-
tial guess for the point k+1. The
number of eigenvalues found
ranges from 13 to 20 and by the
third k point, the FEAST conver-
gence is obtained using only one
refinement loop. The convergence
is obtained with the relative error
on trace of the eigenvalues
smaller or equal to 10−8, while the
inner linear systems are solved us-
ing an iterative method with an
accuracy of 10−3. The final rela-
tive residuals on the eigenpairs
range from 10−3 to 10−5.
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�e.g., band-structure calculations in Sec. IV C�.
In one sense, the difficulty of solving an eigenvalue prob-

lem has been replaced by the difficulty of solving a linear
system with multiple right-hand sides. For large sparse sys-
tems, this latter can be solved using either a direct system
solver such as PARDISO �Ref. 15� �as proposed in Sec. IV� or
an iterative system solver with preconditioner. In turn, for
banded systems or banded preconditioner, FEAST can be seen
as an outer layer for the author’s SPIKE parallel system
solver.17 It should be noted that the inner linear systems aris-
ing from standard eigenvalue solvers �using the shift strat-
egy� need often to be solved highly accurately via direct
methods. Direct system solvers, however, are not always
suited for addressing large-scale modern applications be-
cause of memory requirements. In Sec. IV C we have shown
that FEAST can take advantage of iterative solvers for solving
the inner linear systems with modest relative residual and
obtaining the eigenvectors solution within the same order of
accuracy. The resulting subspace could also be used as a very
good initial guess for a one step more accurate refinement
procedure �i.e., using more accurate relative residual for the
inner systems�.

FEAST exhibits important potentialities for parallelism at
three different levels: �i� many search interval ��min,�max�
can be run independently, �ii� each linear systems can be
solved simultaneously �e.g., on each node of parallel archi-
tecture where the factorization of the linear system can be
done only once for all the refinement loops�, and �iii� the
linear system solver can be parallel �e.g., within a given node
as in Sec. IV�. Depending on the parallel architecture at

hand, the local memory of a given node, and the properties
of the matrices of the eigenvalue problems, one may prefer-
ably select one parallel option among the others or just take
advantage of a combination of those. In particular, there will
be a trade off between how many search intervals to consider
and how many eigenpairs FEAST can handle by intervals. For
example if M0 is more than few thousands, one could either
�i� solve the obtained reduced system of size M0 using effi-
cient dense parallel symmetric eigenvalue solvers18 or �ii�
propose to divide the initial search interval into two or more
to be processed in parallel. In addition, it should be noted
that the orthonormalization step is absent from FEAST which
will drastically reduce the communication overhead for per-
forming scalar products on high-end parallel architectures
�the scalar product in step 3 in Fig. 2 has to be done only
once per iterative refinement�. Given the recent advances in
parallel architectures and parallel linear system solvers, it is
reasonable to envision using FEAST in a near future for ob-
taining up to millions of eigenpairs of large sparse symmetric
eigenvalue problems. Finally the capabilities of FEAST could
potentially be enhanced for addressing nonsymmetric eigen-
value problems where the contour integration would then be
performed in a given region of the complex space.
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