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Graphene is a realization of an uncommon class of materials—electronic crystalline membranes. We study
the interplay between the free electrons and the two-dimensional crystal and find that it induces a substantial
effect on the elastic structure of the membrane. For the hole-doped membrane, in particular, we predict a
spontaneous buckling. In addition, an attenuation of elastic waves is expected due to the effect of corrugations
on the bulk modulus. These discoveries have a considerable magnitude in graphene, affecting both its meso-
scopic structure and its electrical resistivity, which has an inherent asymmetry between hole- and electron-
doped graphene.
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I. INTRODUCTION

The isolation of graphene1 has not only provided the cata-
lyst for countless discoveries2,3 but also heralded the unifica-
tion of two independent branches of physics: the structure of
crystalline membranes on one hand,4,5 and the properties of
quantum field theories �QFTs� of fermions in two dimensions
�2D� on the other hand.6,7 In its structure, graphene is the
ultimate crystalline membrane made of carbon atoms ar-
ranged in a 2D hexagonal lattice. Its low-energy electronic
structure is analogous to a massless Dirac fermion, establish-
ing graphene as a table-top experimental device for the study
of 2D QFT.8 Clearly, graphene offers an unprecedented op-
portunity to examine the interplay between these aspects of
the material.

The two-dimensional structure is known to be an impor-
tant element in the electronic transport properties, due to
scattering of charge-carriers off corrugations9 and in-plane
deformations.10,11 However, is the surface structure affected
by the electronic properties? In this Brief Report we argue
that the answer to this question is positive. We evaluate the
contribution of the free electrons to the elastic free energy
and find that the electron-phonon interactions lead to a sub-
stantial effect on the elastic constants. In particular, we find
that the bulk modulus acquires a correction which depends
on the wavelength of the excited elastic waves, thus imply-
ing an attenuation of these waves. In addition, and more
important, we find that a mesoscopic appearance of ripples,
i.e., buckling, is possible for a hole-doped membrane. To our
knowledge, this is a unique property of electronic crystalline
membranes in general and graphene in particular. Seeing that
the scattering of charge-carriers off ripples increases the re-
sistivity of the material; this prediction hints that the origin
of the asymmetry found experimentally12,13 between the re-
sistivity of hole- and electron-doped graphene is this cou-
pling of the physical structure and electronic characteristics.
As such, this esoteric effect should be taken into account
when designing graphene-based technological applications.

II. ELASTIC PROPERTIES OF GRAPHENE

As a 2D material, the mere existence of graphene was in
doubt due to the Mermin-Wagner theorem,14 which forbids

the existence of long-range order in two dimensions. This
seeming contradiction can be resolved by introducing small
out-of-plane crumpling, which suppresses thermal
vibrations.4,15 Extensive theoretical, numerical, and experi-
mental investigations of crystalline membranes have estab-
lished the existence and stability of a low-temperature phase
characterized by corrugations and ripples, however asymp-
totically flat.5 The stability of graphene, even without the
support of a substrate, was found experimentally16 and
numerically.17

In order to model this “almost-flat” phase of a membrane,
it is useful to describe the deviation from the ideal phase, i.e.,
a flat surface with perfect lattice. In-plane deformations are
characterized by a two-dimensional vector field u� and the
out-of-plane deformation by a field h. This deformation
changes the distance between two points on the surface, ini-
tially separated by an infinitesimal vector dx� = �dx1 ,dx2�, by
2�i,j=1

2 uijdxidxj, where uij is the strain tensor uij =
1
2 ��iuj

+� jui�+ 1
2 ��ih��� jh�. The mesoscopic structure of the surface

is determined by a free-energy functional, which has to pre-
serve the homogeneity and isotropy of this limit—the elastic
free energy,

F�u,h� =
1

2
� d2x����h�2

+
1

2
� d2x��2� �

i,j=1

2

uij
2 + ���

i=1

2

uii	2
 . �1�

The coefficients are the elastic properties of the membrane,
its bending energy ��1.1 eV, bulk modulus �+�
�11 eV Å−2, and shear modulus ��9 eV Å−2.17,18 They
originate in the � bond between the carbon atoms, which is a
consequence of sp2 hybridization that forms a deep valence
band. This fact is evident in the high creation energy for
structural defects reflected experimentally in the high lattice
quality. In fact, lattice defects were not observed in graphene,
even at strain values of about 1%,16,17,19 validating the elastic
approximation up to high strains.

III. ELECTRONIC STRUCTURE OF CORRUGATED
GRAPHENE

An additional electron in a p orbital differentiates
graphene from other crystalline membranes. This orbital,
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which is perpendicular to the planar structure, forms a half
filled � band. This electron is responsible for one of the
unusual aspects of graphene—its celebrated Dirac-type low-
energy excitations. At low energy, the hexagonal lattice leads
to a linearly vanishing density of states around two points
named Dirac points in the reciprocal space.20 This dispersion
relation characterizes massless chiral Dirac fermions, with an
effective speed of light v f �c /300, whose size is dictated by
the hopping integral of the carbon bond. This picture leads to
a ballistic movement of the electron. Experimentally this mo-
bility is limited, probably due to the interaction of electron
with phonon fields, i.e., the surface structure.10–13

The dominant effect that the complex mesoscopic struc-
ture has on the ideal QED electronic structure arises from the
deformation of the lattice. The source of this deformation
potential is the local change in the Fermi energy measured
from the bottom of the � bond, proportional to the change in
area �S	�i=1

2 uii. The resulting deformation potential has the
form Vs=D��i=1

2 uii� with D=10–30 eV.21 We note as stated
by Hwang and Das Sarma10 that since the source of this
potential is not a Coulomb potential, its screening can be
neglected.

Another effect of the deformation of the lattice is a
change in the hopping integral, which manifests itself as an
effective gauge field in the Dirac picture.21,22 Its structure is
determined by the symmetry of the lattice, and its character-
istic size is much smaller than the deformation energy g2
�1–4 eV �Ref. 21�; thus we will postpone the discussion
on its effect on the elastic free energy to a different work.23

We comment, however, that this pseudomagnetic field leads
to preferred directions of ripples, following the underlying
lattice symmetry.

The energetics of the � electron, in the continuum limit,
can be summarized in a QED-like action, of a fermion in a
nonzero chemical potential. The Matsubara action of an elec-
tron, of inverse temperature 
, is

S = − �
n=1

N �
0




d�� d2x��̄n��,x��

��0��0 + i�Duii + �V�� + v f�� · ��  · �n��,x�� .

Here, n is the index due to the N=2 spin degeneracy, � is a
four component Dirac fermion, reflecting the two sublattices
and two Dirac cones. The � matrices satisfy the Clifford
algebra ��� ,��=2���. Note that the total electrochemical
potential V is a sum of the deformation energy and of any
other external electrochemical potential �V. As will be
shown later, the interaction of the deformation energy with
an external electrochemical potential can lead to buckling in
graphene, as the external potential can compensate a defor-
mation energy, allowing a deformed lattice. In this way, a
buckled phase can be favored. In order for this state to be the
equilibrium phase, a mutual minimization of the elastic
membrane energy �Eq. �1�� and the electron energy is
needed.22,24

IV. CONTRIBUTION OF FREE ELECTRONS TO THE
FREE ENERGY

Prominent is the fact that the characteristic time scale of
the electrons is determined by v f �108 cm /s, whereas the

mesoscopic structure of graphene changes in a much longer
time scale dictated by the speed of sound vph�2
106 cm /s. As a result, electronic excitations are substan-
tially more energetic than the phonons—or elastic—
excitations, and thus the electronic degrees of freedom can
be integrated out. In addition, we assume that the strength of
the electrochemical potential is weak, keeping terms only to
the second order in the strength V2. The resulting contribu-
tion of the � electrons to the free energy is Felectron

= 1
2� d2q�

�2��2 �V�q� ;
�Vq
2, where the subscript q denotes Fourier

transform, i.e., for a constant external electrochemical poten-
tial Vq=D��i=1

2 uii�q+ �2��2�V��q��. �V�q� ;
� is the polariza-
tion operator of momentum q, which in the one-loop level is

�V�q�� �
2



�

n=−�

n=� � d2k�

�2��2

k��k + q�


k2�k + q�2 Tr �0���0�
,

where the Matsubara frequencies are kn
0= 2�


 �n+ 1
2 �. The po-

larization operator of the static electrochemical potential, i.e.,
q0=0, is thus25

�V�q� ;
� =
4

���v f�2

�

0

1

dx ln�2 cosh��v f
q

2
�x�1 − x�	
 .

For �v f
q�1, one can show that �V�q ;
�= 4 ln 2
���v f�2


. In the

opposite limit �v f
q�1, �V�q ;
�= q
4�v f

. The transition be-
tween these asymptotic behaviors occurs rather abruptly, for
�v f
q�2, as can be seen in Fig. 1.

V. EFFECT OF FREE ELECTRONS ON THE BULK
MODULUS

One can clearly see that the contribution to the free en-
ergy leads to a term in the free energy which is proportional
to ��i=1

2 uii�2, i.e., increases the bulk modulus. Specifically, the
Lame constant � is renormalized ��q���+D2�V�q� ;
�. This
implies a finite contribution even for q→0 of
0.6 eV Å−2� D

30 eV�2� T
300 °K �. For ripples on the order of

50–150 Å, which are found experimentally on graphene16,17

and around room temperature, the appropriate limit is
�v f
q�1, which implies an addition of
3.85 eV Å−2� D

30 eV�2� q
0.1 Å−1 �. This contribution is substantial

FIG. 1. �Color online� Dimensionless polarization operator
��v f�2
�V as a function of the dimensionless momentum �v f
q.
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compared to the experimentally found �=2 eV Å−2 and de-
pends on the wave number, thus should be observed as an
attenuation of sound wave packets in graphene.

The dependence of this attenuation on the deformation
energy D is quadratic. This strong dependence can be used to
measure this parameter, whose value is known rather poorly.
This parameter is of immense importance, as the resistivity
induced by the deformation potential is considered to be the
dominant source of carrier scattering at high carrier
densities.13 D is usually extracted from its contribution to
resistivity, hence an independent measurement, as suggested
here, is valuable.

VI. SPONTANEOUS BUCKLING

However, the most interesting effect stems from the term
in Felectron proportional to the cross product of �Vq and
�i=1

2 uii, which has the form �F=��d2x��i=1
2 uii with �

=D�V�q� =0;
��V. This term leads to a buckling instability.
The reason for that is easily seen when considering vanishing
in-plane deformations and keeping quadratic terms in h. In
this case,

F�u,h� =
1

2
� d2x� ����h�2 + ���� h�2� . �2�

If ��0, this free energy is minimized when the spatial con-
figuration has a correlation length on the order of
�=2�� �

��� .
22,26 Intuitively, one may understand the condition

��0 by thinking about a piece of paper, which is not buck-
led when stretched, but is buckled when contracted. The
same happens here, with the chemical potential, which takes
the part of the contraction stress in the analogy to a paper. A
negative potential pulls the ions, which are held by the elas-
tic forces. The competition can be resolved by the ripple
creation. A positive potential, however, results in local
stretching, with no advantage in rippling.

The external potential �V, in the single electron picture, is
reflected in the chemical potential of an electron. Sources of
such chemical potential are numerous. For example, the ad-
sorption of molecules on graphene could provide a simple
possible mechanism to check the theory, predicting an inher-
ent difference between exothermic and endothermic adsorp-
tions. For example, doping with NO2 molecules, which be-
have as holes �acceptors�, has been demonstrated to high-
doping levels n	1013 cm−2.27,28 Another interesting source
of chemical potential is a finite density of surface charge
carriers. A source of such charge carriers, of immense impor-
tance for future technological applications, is an external
gate through the electric-field effect.1 The charge-carrier den-
sity n is a result of the capacitance of the gate, thus n is
linear in the gate voltage Vg. Both in chemical doping and in
electrical doping, the resulting change in the chemical poten-
tial can be estimated by �V=sgn�n��v f

���n�.
As a result, the buckling is characterized by ripples with a

characteristic size

� = 2�����v f�2
�

4 ln 2D�V

or numerically

� � 144 Å� T

300 ° K
	−1/2� D

30 eV
	−1/2� �n�

1012 cm−2	−1/4

.

�3�

In the case of adsorbed molecules, where carrier concentra-
tions on the order of 1013 cm−2 have been reached,28 we
predict ripples of wavelength as small as 100 Å. For electri-
cal doping, where the carrier concentration is controlled by
the gate voltage, the size of the induced ripples is easily
calculated to be ��270 Å�

�Vg�
10 V �−1/4.

This rather amazing outcome that can and should be
checked experimentally reflects the possibility of geometric
response of the graphene to external potential. It is clear that
this effect is valid mainly for suspended graphene, as the
forces exerted by a substrate would pin the structure of the
surface to that of the substrate. In addition, it is important
that the graphene would not be covered by a thin layer of
water, as suggested in Ref. 27, as this will screen the effect
of adsorbants.

VII. ADDED RESISTIVITY INDUCED BY THE BUCKLING

These ripples predicted for hole-doped graphene only will
increase the resistivity of the matter,9,16 creating an asymme-
try in the transport properties of hole- and electron-doped
graphene. Such an asymmetry is also expected due to
charged impurities in the substrate29 and due to a formation
of a p-n junction at the contacts.30 In order to estimate the
contribution of corrugations to the electrical resistivity, we
use the calculations of Ref. 9, where this added resistivity is
related to the scattering of electrons on excited flexural
phonons within the ripples. For low temperatures kBT

�2�
�vph

� �100 °K, phonon excitations are not allowed, thus
these will not contribute to the resistivity. For high tempera-
tures, one can approximate the contribution to the resistivity
by

�� �
�

e2� kBT

�

�

2�a
	2

� 200 – 600 �� T

300 ° K
	 · � �n�

1012 cm−2	−1/2

,

where a is the interatomic distance.
As previously mentioned, corrugations on the order of

50–150 Å were found in suspended graphene sheets.16 This
fact can be explained by the effect presented here, through
molecular hole doping. However, the hole-doped buckling
cannot reproduce the buckling found in quantum Monte
Carlo simulations, which do not take into account the �
electrons.17 In Refs. 16 and 17, these ripples were associated
with quenched ripples originating in a substrate or with pe-
culiarities in the carbon bond. The production of ripples in
the process of isolation of one graphene layer, which com-
petes with the effect presented here, can be minimized by
depositing graphene on liquid substrates.13 However, the
buckling which originates in the carbon bond will manifest
itself, in the elastic free energy, with the same term that leads
to the effect discussed here.22 As a result, it will interfere
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constructively with the effect predicted here. A distinction
between all these effects can be made by the different depen-
dence on the thermodynamic conditions, as the contribution
to resistivity of quenched ripples or those originating in the
properties of the chemical bond are quadratic in temperature
and inverse proportional to the charge-carrier concentration13

and do not create an electron-hole asymmetry.
The asymmetry in the electron mobility between hole-

doped and electron-doped samples has been found in many
experiments, e.g., Refs. 12 and 13. In particular, recently,
Bolotin et al.12 pointed out an unexpected dependence of the
resistivity in charge-carrier densities—mainly in hole-doped
graphene—that can be qualitatively explained by the effect
predicted in the current work.23

VIII. SUMMARY

We have presented a theoretical investigation of the effect
2D relativistic fermions have on the structure of the 2D lat-
tice on which they reside. This is achieved by evaluating the
contribution of the fermions to the elastic free energy of the
surface; a method which leads to the dependence of the elas-
tic constants on the momentum of the excitations. This phe-
nomenon is interpreted as an attenuation of sound waves
excited on the surface. In addition, we predict a possibility of
structural change reflected in a spontaneous buckling of the

surface due to a nonzero fermion chemical potential.
This study is motivated by and demonstrated on graphene.

It would be interesting to see whether the same theoretical
approach can lead to the better understanding of other mate-
rials of two-dimensional character. In graphene, these phe-
nomena are found to have an observable effect on the elastic
constants due to the large deformation energy of the lattice,
thus offering a different experimental path to measure this
poorly known quantity. The spontaneous buckling of hole-
doped graphene, which can be realized by chemical doping
or by electrical doping via the electric-field effect, is ex-
pected to create ripples which can be directly observed and
to have an effect on the resistivity of this phase of the mate-
rial. Clearly, an experiment which will provide a direct ob-
servation of the rippling as well as the predicted sound at-
tenuation is called for.

The theoretical procedure presented here provides an im-
portant tool for characterizing the structure of graphene and
its transport properties—the key elements in the design and
quality control of any future technological application.
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