
Phase dynamics in intrinsic Josephson junctions and their electrodynamics

Shizeng Lin1,2 and Xiao Hu1,2,3

1WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
2Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

3Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
�Received 30 September 2008; revised manuscript received 20 January 2009; published 11 March 2009�

We present a theoretical description of the phase dynamics and its corresponding electrodynamics in a stack
of inductively coupled intrinsic Josephson junctions of layered high-Tc superconductors in the absence of an
external magnetic field. Depending on the spatial structure of the gauge-invariant phase difference, the dy-
namic state is classified into: state with kink, state without kink, and state with solitons. It is revealed that in
the state with phase kink, the plasma is coupled to the cavity and the plasma oscillation is enhanced. In
contrast, in the state without kink, the plasma oscillation is weak. It points a way to enhance the radiation of
electromagnetic from high-Tc superconductors. We also perform numerical simulations to check the theory and
good agreement is achieved. The radiation pattern of the state with and without kink is calculated, which may
serve as a fingerprint of the dynamic state realized by the system. At last, the power radiation of the state with
solitons is calculated by simulations. The possible state realized in the recent experiments is discussed in the
viewpoint of the theoretical description. The state with kink is important for applications including terahertz
generators and amplifiers.
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I. INTRODUCTION

The electromagnetic waves in the terahertz region, which
is defined in the range from 0.1 to 10 THz, have wide appli-
cations, such as drug detection, materials characterization,
security check, and so on. This has sparked considerable ef-
forts to seek compact and low-cost solid-state generators.1,2

It has been known for a long time that Josephson junc-
tions can be used as electromagnetic oscillators. The power
radiated from a single junction, however is in the range of
picowatts, which is too small for practical applications. The
frequency is about one hundred gigahertz because of the
small superconducting energy gap for conventional
superconductors.3–6 Although one may integrate a large array
of Josephson junctions made of conventional superconduct-
ors on a chip to enhance the radiation power,7–10 the fre-
quency is still below terahertz. The discovery of intrinsic
Josephson junctions in layered high-Tc superconductors,
such as Bi2Sr2CaCu2O8+� �BSCCO� provides a very nice
candidate for terahertz oscillator.11 The advantages of intrin-
sic Josephson junctions over conventional low-temperature
junctions are as follows. First, the junctions are homoge-
neous in the atomic scale, which makes the coherent radia-
tion in large number of junctions possible. Second, the en-
ergy gap is about 60 meV which corresponds to 15 THz. The
terahertz Josephson plasma if excited is thus free from Lan-
dau damping.12

One idea to excite the terahertz wave inside the intrinsic
Josephson junctions is by the motion of Josephson vortices
lattice induced by an in-plane magnetic field and a transport
current, which has already been investigated both theoreti-
cally and experimentally.13–19 In spite of these works, it is
still lack of clear evidence of coherent radiation. Radiation
from BSCCO with injection of quasiparticles has been
reported.20–24 Alternatively, the terahertz radiation without a
magnetic field has also been attempted.25–29 Recently, a

strong coherent radiation from BSCCO in the absence of a
magnetic field was observed,27,29 where the mesa of the
single crystal of BSCCO forms a cavity. The breakthrough in
the experiments has inspired considerable theoretical and ex-
perimental efforts, aiming to reveal the mechanism of strong
radiation.30–35 A new dynamic state has been suggested to
explain the experiments.30,31

It is well known that there exist various dynamic states,
such as the McCumber state and states with solitons, with
different IV characteristics in a Josephson junction30,36 due to
the nonlinearity. In the McCumber state, the gauge-invariant
phase difference is uniform in space, which we will refer to
as the state without kink in later discussions. The soliton
solutions are also well known, especially in a single junction,
where a quantized particlelike object of 2� phase variation
travels along the junction. Recently, a new dynamic state was
found, where a �2m+1�� phase kink is localized inside the
junction with an integer m.30,31 We will refer to this state
hereafter as state with kink. Because of the complexity in the
dynamics in this highly nonlinear system, theoretical under-
standing of phase dynamics and its electrodynamics, and
finding the optimal state are expected to be helpful for ex-
perimental realizations of terahertz generators. Assessments
of such a device from a theoretical aspect are also needed.

For this purpose, in this paper we provide more details on
the new dynamic state found in the previous study.30 In Sec.
II, we first derive the Lagrangian of a stack of Josephson
junctions based on the superconductor-insulator-super-
conductor �SIS� model. From the Lagrangian we derive the
inductively coupled sine-Gordon equation. It also gives the
power balance condition. In Sec. III, we develop a general
procedure to solve the coupled sine-Gordon equation from
the spectrum analysis, from which we derive the solutions
with and without phase kink. We calculate analytically the IV
characteristics and power radiation of the state with and
without kink when the plasma oscillation is small. Numerical
simulations are performed to verify the analytical solutions
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and good agreement is attained. In Sec. IV, the energy stored
in the system is evaluated. In Sec. V, the far-field radiation
pattern from the mesa is calculated both at state with and
without kink, which can be used to distinguish the different
dynamic states. In Sec. VI, the power radiation from the state
with solitons is investigated by simulations for comparison.
At last, the paper is concluded with a short discussion.

II. LAGRANGIAN AND MODEL EQUATION

The geometry we consider is depicted in Fig. 1. We ne-
glect the thermal fluctuations so that the amplitude ��� of the
superconducting order parameter ���exp�i�� is constant. Fur-
thermore, � along the y axis is assumed to be uniform,
namely, we concentrate on the zero mode along this direc-
tion. The system is then reduced to two dimensions. The
density of energy stored in the superconducting layers, which
consists of supercurrent energy and magnetic energy, then
can be written as

Hsl�x� =
1

8�
�

l�s+D�+D

�l+1��s+D�

��s
2�� � Bsl

y �x
2 + Bsl

y2
�dz , �1�

where �s is the penetration depth, and Bsl
y is the magnetic

field in the lth superconducting layer. The energy stored in
the insulating layers is the sum of energy of electromagnetic
wave and Josephson energy

Hbl�x� = �
l�s+D�

l�s+D�+D �Bl
y2

8�
+

�cEl
z2

8�
�dz +

	0

2�c
Jc�1 − cos Pl� ,

�2�

where Bl
y �El

z� is the magnetic �electric� field in the lth insu-
lating layer �their variation along the z direction in the lth
insulating layer will be neglected in later treatment�. Jc is the
critical current density, �c dielectric constant along the z axis,
and c the light velocity in vacuum. Pl is the gauge-invariant
phase difference defined as

Pl�x� = �l+1�x� − �l�x� −
2�

	0
�

l�s+D�

l�s+D�+D

Al
z�x�dz , �3�

where 	0	hc /2e is the flux quantum and Al
z is the vector

potential. The magnetic field inside the superconducting
layer can be evaluated from the London equation Bsl

y �z�
= �sinh��s−z� /�s�Bl

y +sinh�z /�s�Bl+1
y � /sinh�s /�s�. In high-Tc

superconductors, the thickness of superconducting layer s
and insulating layer D is much smaller than �s, we have
Bsl

y 
��s−z�Bl
y +zBl+1

y � /s. Then the total-energy density can
be expressed as

H�x� = �
l

�Hsl�x� + Hbl�x��

= �
l
� D

8�
��2
 + 1�Bl

y2 − 
�Bl+1
y Bl

y + Bl
yBl−1

y ��

+ D
�cEl

z2

8�
+

	0

2�c
Jc�1 − cos Pl�
 , �4�

where we have neglected the surface effect along the stack
direction, which is valid for thick stacks of junctions. 

	�s

2 /sD is the strength of inductive coupling. It should be
noted that the inductive coupling is very strong in BSCCO;
see Table I.

To find the relation between the magnetic field Bl
y and Pl,

we derive both sides of Eq. �3� with respect to x. With the
London equation and Maxwell equation, we arrive at

	0

2�D
�xP = MBy , �5�

where P is a column vector PT= �P1 , P2 , . . . , PN� with N be-
ing the number of junctions. The column vectors for other

FIG. 1. �Color online� Schematic view of a stack of Josephson
junctions based on the SIS model. The blue/light �green/dark� area
denotes superconducting �insulating� layers.

TABLE I. Conversion of quantities among dimensionless, Gaussian, and SI units. Here �c and �ab are the penetration depth; �c is
dielectric constant along the z axis; c is the light velocity in vacuum; �0 is dielectric constant in vacuum; �p=c /�c

��c is the Josephson
plasma frequency. Jc=c	0 /8�2�c

2D is the critical current density. In the present paper, we use �c=200 �m, �ab=0.4 �m, �c=10, s
=0.3 nm, and D=1.2 nm, which are typical for BSCCO. Then �s=�sD / �s+D�2�ab=0.16 �m. The two dimensionless parameters are then

=0.02 and 
=7.1�104. Following Ref. 30, we use slightly larger 
=4 /9�106 in the present paper, and the results are insensitive to 
 as
far as it is large. The length of junction is L=80 �m.

Length Time Conductance Electric field Voltage Magnetic field Poynting vector Current Impedance

Dimensionless x t 
 E V B S J Z

Gaussian �cx t /�p c��c
 /4��c 	0�pE /2�cD 	0�pV /2�c 	0B /2��cD 	0
2�pEB /16�3D2�c

Jc	0

8�2�c
2D

Z /��c

SI �cx t /�p c��c�0
 /�c 	0�pE /2�D 	0�pV /2� 	0B /2��cD 	0
2�pEB /4�2�0D2�c

J	0

2��c
2D�0

Z /�4��c�0
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quantities are defined in the same way. M is the inductive
coupling matrix defined as37,38

M = �
2
 + 1 − 
 0 ¯ 0 − 


− 
 2
 + 1 − 
 0 ¯ 0

0 � � � 0 ¯

¯ 0 − 
 2
 + 1 − 
 0 ¯

¯ 0 � � � 0

0 ¯ 0 − 
 2
 + 1 − 


− 
 0 ¯ 0 − 
 2
 + 1

� ,

�6�

where the periodic boundary condition along the z axis is
imposed. Using the ac Josephson relation �tP=2eEzD /� and
Eq. �5�, we can rewrite the total-energy density in a compact
form,

H�x� =
1

2
�xP

TM−1�xP +
1

2
�tP

T�tP + �
l

�1 − cos Pl� , �7�

where the dimensionless quantities have been used, which,
with the conversion among SI units and Gaussian units, are
compiled in Table I. The first term at the right-hand side of
Eq. �7� represents the magnetic energy, the second term the
electric energy, and the last term the Josephson coupling. The
Lagrangian corresponding to Eq. �7� is

L�x� =
1

2
�xP

TM−1�xP +
1

2
�tP

T�tP − �
l

�1 − cos Pl� . �8�

With the Euler-Lagrangian formula, we arrive at the coupled
sine-Gordon equation

�x
2P = M�sin P + �t

2P� , �9�

where sin P	�sin P1 , sin P2 , . . . , sin PN�T. We consider the
overlap geometry37 where the current is uniformly injected
into the system. Taking the dissipation and external current
into account, we obtain the inductively coupled perturbed
sine-Gordon equation,

�x
2P = M�sin P + �t

2P + 
�tP − Jext� , �10�

where the first term on the right-hand side of Eq. �10� is the
Josephson current, the second term is the displacement cur-
rent, the third term is the quasiparticles contribution and the
last term the external current. Writing down the equation for
Pl in Eq. �10� explicitly, we have

�x
2Pl = �1 − 
��2���sin Pl + �t

2Pl + 
�tPl − Jext� , �11�

where ��2� is the finite difference operator defined as ��2�f l
	 f l+1+ f l−1−2f l. Besides the inductive coupling in Eq. �10�,
a capacitive coupling39,40 and a coupling originating from
nonequilibrium effects41,42 are also present in intrinsic Jo-
sephson junctions. These two couplings are weak in com-
parison to the inductive coupling and are neglected in the
present work.

The above calculations are based on the SIS model
�superconductor-insulator-superconductor�, which is a good
model for artificially stacked Josephson junctions. However,

for BSCCO, the superconducting layer is only of atomic
thickness, and thus the quantity �s is not well defined. To
find the relation between �s and the measurable penetration
depth �ab, we need to resort to the Lawrence-Doniach model,
which has already been discussed extensively in literatures.
The connection between �s and �ab is given by �s

=�sD / �s+D�2�ab.43,44

In the presence of dissipations and a power input, the
energy oscillates with time according to

�tH�x� = �xtP
TM−1�xP + ��t

2PT + sin PT��tP . �12�

With the help of Eq. �10�, we have for the steady state

�
0

T �
0

L

�tHdxdt = �
0

T

��tP
TM−1�xP��0

Ldt

+ �
0

T �
0

L

�tP
TJextdxdt

− 
�
0

T �
0

L

�tP
T�tPdxdt = 0, �13�

where L is the length of junctions and T is the period of
plasma oscillation. Rewriting Eq. �13� in a more transparent
form, we have the power balance condition,

�
0

T

�ETB��0
Ldt + LTEdc

T Jext − 
�
0

T �
0

L

ETEdxdt = 0,

�14�

where the first term is the power gain �loss� at edges due to
irradiation �radiation�. The second term is the input power
with Edc the dc electric field, and the last term is the energy
loss due to dissipations. It should be remarked that Eq. �14�
is general and should be valid at different states. As will be
shown later, the power balance relation is useful when the
plasma oscillation is strong and the linear expansion fails.
From Eq. �14� and E=Eac+Edc, we can see that when the
oscillation in electric field Eac is small, the IV curve is almost
Ohmic Edc�Jext /
. To have strong radiation, the oscillation
of electric field in the junctions should be large. Therefore
the optimal state for the radiation is a state having nonlinear
IV characteristics where a large part of the input power can
be pumped into plasma oscillation. The problem then boils
down to finding such a state with highly nonlinear IV char-
acteristics.

The relation between the oscillating magnetic field and
electric field at the edges of junctions is given by the bound-
ary condition. The boundary condition depends on many ef-
fects such as distribution of the order parameter near edges,
the geometry of the sample, and the dielectric materials at-
tached to the sample. In Refs. 16 and 45, the dynamic bound-
ary condition is derived from the electromagnetic wave
equations inside the dielectrics. In the present paper, we use
an effective impedance as the boundary condition,

Eac/Bac = Z = �Z����exp�i����� , �15�

where �Z� and � are parameters, and � is the frequency. This
boundary condition is general and any other boundary con-
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dition can be cast into this form. It has been pointed out that
there is a significant impedance mismatch between the intrin-
sic Josephson junctions and outside space because of the
small ratio between the thickness of the stack and the pen-
etration depth �c.

28 This means �Z��1, which is similar to
the single junction case.46

The radiation power counted by Poynting vector at one
edge with an effective impedance becomes

Sr =
1

2TN
�

0

T

Re�Eac
† Bac�dt =

cos �

2T�Z�N�0

T

Eac
† Eacdt . �16�

For ease of theoretical calculation, we consider the situation
that the radiation does not substantially change the plasma
oscillation inside the junctions. In this case, Eac can be evalu-
ated without radiation, i.e., with the simple boundary condi-
tion �xP=0. This treatment is valid when the impedance mis-
match is significant, which will be shown later to be rather
accurate by numerical simulations. When the impedance �Z�
is small, however, one should take the effect of radiation into
account in the calculation of the plasma dynamics self-
consistently.

III. SOLUTIONS

In this section, we first construct a general procedure to
solve the coupled sine-Gordon equation from the spectrum
analysis. There exist longitudinal and transverse plasma
modes in a stack of junctions. As the stack itself forms
a cavity, the plasma component can be written as
P̃l�x��cos�kjx�sin�ql / �N+1�� �Refs. 47 and 48� with
kj = j� /L, and q, j integers. There are N different disper-
sion branches with characteristic velocity cq

=1 /�1+2
�1−cos�q� / �N+1���. When the stack is thick
enough, the plasma oscillation uniform along the c axis be-
comes possible and its velocity is c0=1. We will concentrate
on this case in the present work since it supports the strong
radiation. Without an external in-plane magnetic field, the
solution including all frequency harmonics subject to the
boundary condition �xPl=0 can be expressed as30

Pl�x,t� = �t + Pl
s�x� + �

j=1

�

Re�− iAj exp�ij�t��cos�kjx� ,

�17�

where �t is the rotating part, Pl
s the static phase kink, and the

last term is the plasma oscillation including all harmonics,
with Aj the oscillation amplitude. For simplicity, the first
cavity mode along the x axis with k1=� /L is considered and
the small time dependence of Pl

s is neglected.30,31 Putting the
mth frequency component of the Josephson current sin Pl as
Sm

l exp�im�t�, and expanding sine of sine with Bessel func-
tions, we have

Sm
l = Gm

l + G−m
l� , for m � 1,

S0
l = G0

l , for m = 0, �18�

where

Gm
l �x� = − i �

�qj=−��

+�

���
j=1

�

qjj,m − 1���
j=1

�

Jqj
��Aj�cos�kjx��


�exp�i�Pl
s + �

j=1

�

qj� j�� , �19�

with Jqj
the Bessel function of the first kind. ��qj=−��

+� is the
summation over the ensemble of qj’s, and Aj = �Aj�exp�i� j�.
Substituting Eq. �17� into the coupled sine-Gordon Eq. �11�
and comparing each frequency component in sin Pl, we have
for the mth �m�1� component,

�ikm
2 − i�m��2 − 
m��Am cos�kmx� = �1 − 
��2��Sm

l .

�20�

From Eq. �20�, Am is given by

Am =
Fm

ikm
2 − i�m��2 − m
�

, �21�

with

Fm 	
2

L
�

0

L

�1 − 
��2��Sm
l cos�kmx�dx . �22�

The functional Fm represents the coupling of the plasma to
the cavity modes, which is the central quantity for the exci-
tation of plasma. Other mechanism such as the modulation of
the critical current is also possible,28,49 although it is practi-
cally very hard to achieve a homogeneous modulation along
the z axis. In the present solution, Pl

s is inherently one part of
the solution. Since we have assumed that phase is uniform
along the y direction, or equivalently, we have considered the
�1,0� cavity mode, only the kink in the x direction contributes
to Fm. If there exits a kink along the y direction simulta-
neously, the functional Fm will be enhanced further.34 In the
case of cylinder geometry, the plasma is coupled to the cav-
ity fully via the kink so that Fm is maximized.34

It should be noted that Am is independent of l in Eq. �21�,
which imposes a constraint on the arrangement of Pl

s in the z
direction. As will be shown later, periodic arrangements such
as those in Figs. 2�a� and 2�b� diagonalize the finite differ-
ence operator and make Fm independent of l.

For the 0th component �static part�, we obtain

�x
2Pl

s − 
� + Jext = �1 − 
��2��S0
l . �23�

The current conservation relation reads Jext=
�+ �S0
l �x

��¯�x is the spatial average�. The remaining terms in Eq.
�23� which do not contribute to the net current is

�x
2Pl

s = − 
��2�S0
l , �24�

where 
�1 is taken into account.
From Eqs. �17�, �21�, and �24�, we can calculate the

plasma oscillation, IV characteristics and Pl
s. We consider

explicitly the case where the fundamental mode A1 is
small and thus higher harmonics can be safely neglected. We
also approximate J1��A1�cos�k1x��
�A1�cos�k1x� /2 and
J0��A1�cos�k1x��
1. We will refer to this approximation as
linear approximation in later discussions, and the validity of
this approximation will become clear later. It should be noted
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that the nonlinearity of the coupled sine-Gordon equation is
still retained in the equation for Pl

s, Eq. �24�. With this ap-
proximation, we can calculate A1

A1 =
F1

ik1
2 − i�2 − 
�

, �25�

where F1= −2i
L �0

L�1−
��2��exp�iPl
s�cos�k1x�dx.

The IV characteristic is given by the current conservation

Jext = 
� + �S0
l �x = 
� +


��F1�2/4
�k1

2 − �2�2 + 
2�2 , �26�

where the first term at the right-hand side is the normal cur-
rent and the second term is the dc part of the Josephson
current.

The equation for Pl
s is given by

�x
2Pl

s =
A1
i

2
cos�k1x���2� exp�− iPl

s� . �27�

Equation �27� has many solutions, such as the trivial vacua
solution and solutions with phase kink, which will be dis-
cussed separately in Secs. III A and III B.

A. State with kink

Equation �27� has solutions with �2m+1�� kink with m
being an integer.30,31 Let us consider the two simplest peri-
odic configurations of Pl

s depicted in Figs. 2�a� and 2�b�
where Pl

s= f lP
s0 with f l= �1 depending on l, which diago-

nalize Eq. �27�,

�x
2Ps0 = 
q Re�A1�cos�k1x�sin Ps0, �28�

where q=1 for the configuration in Fig. 2�a� and q=2 for the
configuration in Fig. 2�b�. It should be noted that other peri-
odic configurations are also possible. Equation �28� is invari-
ant under the transformation x←L−x and Ps0← �2m+1��
− Ps0, which clearly renders a kink at the center of junction.
Equation �28� subject to the boundary condition �xP

s0=0 is
solved numerically and the results are detailed in the Fig. 2,
where the �2m+1�� phase kink of characteristic length �P

	1 /�
q�Re�A1�� is at the center of junction x=L /2. It is this
�2m+1�� phase kink that pumps the dc power into plasma
oscillation.

In Fig. 2, we can see that �x
2Ps0 forms an unquantized

static vortex with characteristic length �P, therefore it does
not contribute to the net supercurrent �sin Pl�xt. There is a dc
magnetic field in each layer associated with the static vortex.
As it points in opposite directions in different junctions, the
total magnetic field across the intrinsic Josephson junctions
vanishes. Therefore it is impossible to realize the kink state
in a single junction.

In addition to the �2m+1�� phase kink, there exist the
well-known solitons with 2� phase variation superposing to
the �2m+1�� phase kink, as observed in our simulations �not
shown in Fig. 2�. In the region of �x0−L /2���P, because
cos�k1x� is almost a constant in the narrow region ��
	1 /�
q�Re�A1�cos�k1x0��, Eq. �28� can be approximated as

��2�x
2Ps0 = sin Ps0. �29�

Equation �29� has the usual soliton solution Ps0

=4 arctan�exp��x−x0� /����. The total resultant Pl
s is �2m

FIG. 2. �Color online� ��a� and �b�� Schematic view of two simplest configurations of the static phase Pl
s�x�. ��c�, �e�, �g� and �i�� �2m

+1�� phase kink for m=0, 1, 2, and 3, respectively. ��d�, �f�, �h�, and �j�� Their corresponding unquantized static vortices.
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+1�� phase kink at the center of junction and solitons with
�2� phase variation away from the center of junction. The
solitons with �2� phase variation do not contribute to F1 as
well as the net supercurrent, and therefore are omitted in the
following discussions.

The IV characteristics shown in Fig. 3 is calculated from
Eq. �26�. One remarkable feature in the IV characteristics is
the self-induced current step, i.e., IV branch with constant
voltage. From Eq. �26�, it is found that the IV characteristics
for kink solutions with different m, e.g., the kink solutions in
Figs. 2�c�, 2�e�, 2�g�, and 2�i�, is almost the same, because
the kink renders itself approximately as a step function and
the dc current contributed from the kink region of width �P
is negligible. It should be noted that there exist two branches
at the cavity resonance, and the right branch has a negative
differential resistance.

The radiation power can be readily calculated from Eq.
�16�. With the linear approximation, the power is

Sr = cos ��A1��2/2�Z� . �30�

The dependence of Sr on � and �Z� is consistent with the
results shown in Fig. 5 of Ref. 30. The results of Sr are
displayed in Fig. 4. Similar to the IV characteristics, the ra-
diation powers for the states with different phase-kink con-
figurations are almost the same.

To check the applicability of the analytical treatment, we
solve the equation of motion Eq. �11� by computer
simulations.30 The time step in all simulations is set to �t
=0.0018 and the mesh size is set to �x=0.002. The accuracy
is checked with smaller �t and �x. We use the periodic
boundary condition along the z axis to minimize the surface
effect, and attach an effective RC circuit to the junctions as
the boundary condition along the x direction.50,51 In this case,
the impedance is Z=R− i /C�, where R is the resistance and
C is the capacitance of the RC circuit. R and C are chosen to
make sure that �Z��1.

The simulation results of the IV characteristics and radia-
tion power are presented in Figs. 3 and 4. For the IV char-
acteristics, there is good agreement between the theory and
simulation, except that the theory is incapable of describing
the height of the current step. For the radiation power, the
linear theory is valid off or near resonance but fails inside the
current steps. The failure of the analytical treatment is caused
by the strong plasma oscillation and existence of harmonics
in the current step.30

To derive a better estimate of the power radiation at the
current steps, we resort to the power balance equation which
is valid in the whole region of the IV characteristics. Taking
the plasma solution Eq. �17� and substituting into the power
balance equation Eq. �14�, we obtain the IV characteristics in
the presence of radiation

�Jext = 
�2 +



4 �
j=1

�

�j�Aj�2 +
cos �

L�Z� �
j=1

�

�j�Aj�2. �31�

In other words, the radiation power can be evaluated if we
know the IV characteristics. Therefore it is useful to intro-
duce an effective conductance 
� defined as

Jext = 
�� = �
 + 
d + 
r�� , �32�

where 
d	 

4 � j=1

� �jAj�2 is the conductance due to damping of
plasma oscillation, 
r	 cos �

L�Z� � j=1
� �jAj�2 is the conductance

due to radiation at both edges. From Eq. �31�, we can calcu-
late Aj from the IV characteristics. The radiation power at
one edge then can be evaluated by

Sr = 
r�
2/2 = Je��� 
�Z�

2 cos �
+

2

L
� , �33�

where Je	Jext−
� is the excess current. From the foregoing
analysis, if we can screen the radiation at one edge, the ra-
diation at the other edge is enhanced. It should be remarked

FIG. 3. �Color online� IV characteristics calculated by numerical
simulations �symbols� and the linearized theory �lines�. The inset is
an enlarged view.

FIG. 4. �Color online� �a� Radiation power at the first current
step obtained by simulations �symbol�, the linear theory �solid line�,
and the power balance relation Eq. �33� �dashed line�. The results
are obtained with C=0.000 177 and R=707.1. The arrow is the
starting point of the first current step.
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that not the whole energy pumped into plasma oscillation
radiates into outside space. Most part of it is damped by
dissipations inside the intrinsic Josephson junctions. The ra-
diation power at current steps obtained by numerical simula-
tions and power balance condition is depicted in Fig. 5. In
contrast to the linear approximation, the estimated radiation
power by Eq. �33� is consistent with simulations even inside
the current steps where the amplitude of plasma oscillation is
large and high harmonic components are present. The power
increases linearly with the Jext and the maximum power is as
high as 8000 W /cm2 from simulations �at the sixth cavity
mode�. The maximal total radiation power at the first cavity
mode is about 10 mW if we use a mesa of similar dimension
as the experiments,27 which is capable of practical applica-
tions.

The cavity quality factor Qc at the cavity resonance �
=k1 is given by

Qc 	 �
Energy Stored

Power Loss
=

�


 + 4 cos �/L�Z�
, �34�

which has the order of magnitude of 100 for 
=0.02 and
�Z��1. The half-width of the radiation frequency spectrum
�=� /Qc is about 10 GHz, so that the radiation is almost
monochromatic. The efficiency defined as the ratio of the
radiation power to the total power input is

Qe =
Je

Jext
�� 
�Z�

4 cos �
+

1

L
� . �35�

The efficiency Qe at the current step corresponding to a
lower cavity mode is larger than that of a higher mode be-
cause of the smaller Ohmic dissipations. Qe at the top of the
first current step in Fig. 5 is about 7.5%.

The distribution of the c-axis uniform electromagnetic
�EM� wave along the x direction of the junctions, as well as
the supercurrent, obtained from simulations at the bottom
and top of the first current step are shown in Fig. 6. The
supercurrent has the same period as Pl

s along the c axis, and
we only visualize it at one layer. We divide the Josephson
current into the symmetric part Jsym and antisymmetric part
Jasym with respect to the center of junction, i.e., sin Pl�x�
=Jasym�x�+Jsym�x�. Off resonance, Jsym is zero except the
center of junction, while Jasym oscillates from −1 to +1; the
magnetic field is symmetric and electric field is antisymmet-
ric with respect to the center of junction. However, at the top
of the current step, the even part of Josephson current be-
comes more important, so the radiation is of dipole type. The
corresponding distribution for EM wave is neither symmetric
nor antisymmetric because the higher harmonics in Eq. �17�
become important.

FIG. 5. �Color online� Radiation power on current steps. The
symbols are from the simulations and the lines are given by Eq.
�33�. The results are obtained with C=0.000 177 and R=707.1.

FIG. 6. �Color online� Configurations of Jasym, Jsym and electromagnetic wave at successive time t1=0.06T1, t2=0.31T1, t3=0.83T1, and
t4=0.94T1, where T1	2� /k1 is the period of plasma oscillation at the first cavity mode. We have subtracted the static part of Ez. The top
figures are taken at the bottom of the first current step while the bottom figures are at the top of the first current step in Fig. 3.
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B. State without kink

Equation �27� also has trivial vacua solutions Ps0=m�.
Without losing generality, we take m=0. From Eq. �25�, we
know that the transverse plasma cannot exist without a kink.
Therefore the solution becomes

Pl = �t − iA1 exp�i�t� , �36�

which is nothing but the McCumber solution. Here only the
fundamental mode is taken, which is sufficient because of
the small plasma oscillation in this solution. Then Eq. �25� is
reduced to

A1 = 1/��2 − i
�� , �37�

and its corresponding IV characteristics without radiation is

Jext = 
� +



2��3 + 
2��
. �38�

The radiation power at one edge obtained with Eq. �16� is

Sr = cos �/�2��2 + 
2��Z�� . �39�

From the power balance condition, the IV characteristics
with radiation is given by

Jext� = 
�2 +



2��2 + 
2�
+

cos �

��2 + 
2��Z�L
, �40�

where the last term represents the correction due to radiation.
The minimum value of Jext in Eq. �40� is the retrapping cur-
rent Jr, at which the input power becomes insufficient for the
phase particle to travel across the damped tilted washboard
potential. In the weak damping limit 
�1 as in the present
system, Jr is

Jr =
4

3

3/4�3 cos �

�Z�L
+

3


2
�1/4

. �41�

Its corresponding voltage is �r= �1.5+3 cos � / �Z�L
�1/4�1,
which justifies the approximation made in Eqs. �36� and �37�.

The IV characteristics calculated from the analytic for-
mula and numerical simulations are presented in Fig. 7.
Good agreement between the simulation and theory can be
spotted. This further verifies the approximation of neglecting
the effect of radiation on the phase dynamics in junctions
when Z is large. The radiation power increases continuously
with decreasing current and reaches the maximum at the re-
trapping point. The local minima in the curve are caused by
the small spatial modulation of electromagnetic field, which
changes with the voltage, similar to a cavity behavior. The
frequency harmonics is indiscernible even at the maximum
radiation because the plasma oscillation is weak. The distri-
butions for P, By, and Ez obtained by numerical simulations
with open boundary condition are displayed in Fig. 8, where
there is a small phase gradient created by radiation which is
hard to see in the present scale. The magnetic field is anti-
symmetric with respect to the center of the junction, while
the electric field is almost uniform along the x direction,
except the small modulation created by radiation.

The state without kink �McCumber state� is unstable in
the certain region of IV curve. In a long Josephson junction,

the system evolves into soliton states due to the parametric
instability.52 We have investigated the stability of the state
without kink in a stack of intrinsic Josephson junctions. The
system favors the state with kink due to the instability of the
state without kink near the cavity resonance.

IV. ENERGETIC ANALYSIS

Similar to conventional laser systems, most part of the
input power is stored and dissipated in the junctions and only
a small portion radiates into space. Therefore it is worthy of
looking at the energy oscillation inside the junctions. One
might consider that the state with kink costs more energy
than that without kink. To see whether the state with kink can
be realized in reality, it is necessary to know the energy cost
to construct the kink. In this section, we calculate the energy
stored in the intrinsic Josephson junctions.

As can be read from Eq. �7�, the system energy consists of
the magnetic energy EB, electric energy EE, and Josephson
coupling EJ,

EB = ��xP
TM−1�xP�xt/2N ,

EE = ��tP
T�tP�xt/2N ,

FIG. 7. �Color online� Radiation power from the state without
kink and its corresponding IV characteristics. Symbols are for simu-
lations and lines are for theory. The vertical dashed line is the re-
trapping point obtained from the theory. The inset is the frequency
spectrum at the strongest radiation. The results are obtained with
C=0.716 and R=10.0.

FIG. 8. �Color online� Configurations of phase P, magnetic field
By, and electric field Ez at successive time t1=0.07Tr, t2=0.17Tr,
t3=0.33Tr, and t4=0.4Tr, where Tr is the period at the retrapping
point. The phase is normalized into �0,2�� and we have subtracted
the static part of Ez. The results are obtained by simulations with
C=0.716 and R=10.0.
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EJ = ��
l

�1 − cos Pl��
xt
�N ,

where the energy has been normalized by the number of
layers N. In the state with kink, the magnetic energy has
contribution from the static kink EBs= ��xP

sTM−1�xP
s�xt /2N

and from the plasma oscillation EBp= ��xP̃
TM−1�xP̃�xt /2N.

Here we show that EBs�EBp. From Eq. �28�, �xPl
s has the

order of magnitude �
q�Re�A1�� in the narrow region
1 /�
q�Re�A1��. Thus, the order of EBs is ��q Re�A1�� /
�1.
On the other hand, EBp is proportional to �A1k1�2, which is of
order of 10 with the parameters used in the present system.
This also indicates that the magnetic energy for different
kinks is roughly the same �thus we only show the magnetic
energy for one kink configuration in Fig. 9�a��. It is quite
different from the usual solitons in a single Josephson junc-
tion.

With the linear expansion of Josephson current, similar to
Eq. �26�, the Josephson energy EJ in the state with kink can
be obtained

EJ = 1 −
�k1

2 − �2��F1�2/4
�k1

2 − �2�2 + 
2�2 . �42�

It first decreases and then increases inside the current step,
while is close to unity off resonance. The calculation of the
electric energy and total energy is straightforward. The re-
sults are shown in Figs. 9�b� and 9�d�. The total energy for
different kinks is approximately the same. Therefore the
states with kink occupy finite volumes in the phase space
with the same energy, which makes this state easily acces-
sible.

In the state without kink, the magnetic energy is obvi-
ously zero. The Josephson coupling is

EJ = 1 +
1

2��2 + 
2�
. �43�

It decreases from its maximum at the retrapping point and
saturates to unity at large currents, which is consistent with
the results shown in Fig. 9�c�. EJ in the region of Jext�Jr is
very close to 0, which cannot be described by Eq. �43� be-
cause the system is retrapped into superconducting state. The
total energy is the same as that of state with kink in the linear

Ohmic IV curve, while it is larger than that of state with kink
in the current step.

The electric energies in Fig. 9 is much larger than other
energy in the state without kink in a sharp contrast to cases at
equilibrium, where different energy contributions are ex-
pected to be the same. The reason can be understood if we
consider Eq. �11� as the equation of motion of phase particle
in a titled washboard potential. In the presence of external
current, the phase particle is accelerated and starts to run in
the tilted washboard potential. In response to the modulated
potential, small oscillations of phase particle are created in
addition to the motion with a constant velocity. Meanwhile,
the motion of phase particle causes dissipation. The steady
state is reached when the input power and dissipation are
balanced. On the other hand, the magnetic energy and Jo-
sephson coupling are solely contributed from the small os-
cillation of the phase particle. As the most part of input
power converted into the motion with a constant velocity, the
electric energy occupies the most part of energy stored in the
system, as shown in Fig. 9. However, in the state with kink,
as a significant portion of the input power is converted into
plasma oscillation in the current steps, rather than to solely
increase the velocity of the phase particle, the electric energy
and magnetic energy become comparable to each other.

V. RADIATION PATTERN

In this section, we calculate the far-field radiation pattern
for the mesa operated in the state with kink and without kink,
which is important both for applications and for differentiat-
ing various states.

To calculate the radiation pattern, we resort to the Huy-
gens principle in which the pattern is determined by the os-
cillation of the electromagnetic fields at the edges of
samples, which can be casted into the edge magnetic current
and electric current in the formula of equivalence principle.53

Since there exists a significant impedance mismatch, the
electric current produced by the oscillating magnetic field is
much smaller than the magnetic current produced by the os-
cillating electric field, so we can neglect the contribution
from the electric current. The equivalent magnetic current
Me in the dimensionless units is given by

Me = Ee � n , �44�

where Ee is the oscillating electric field at the edges of mesa
and the vector n is normal to the edges. As we know that the

FIG. 9. �Color online� Energy per junction stored in a thick stack of intrinsic Josephson junctions in the state with and without kink, �a�
magnetic, �b� electric, �c� Josephson, �d� total energy. The results are obtained without radiation, and the results for the state with kink are
obtained in the first current step shown in Fig. 3. Because the energy for different kink configurations is same, only the energy for the kink
configuration PsT= �−� , +� ,−� , +�� is shown in this figure.
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radiation pattern critically depends on the geometry of the
source, we need to consider the three-dimensional �3D� sys-
tem. The extension from previous analysis of two-
dimensional �2D� system to 3D is given in Ref. 34. The
coordinates for the 3D system are sketched in Fig. 10�a�. We
use the similar dimension as in the experiments,27,29 i.e., Lx
=80 �m, Ly =300 �m, and Lz=1 �m. Because k�Lz�1
with k�	� /c, the sources at different z coordinates do not
interfere too much, and can be treated as uniform. In this
case, the far-field Poynting vector in the dimensionless units
is

Sr =
�2Lz

2

32�2r2�3/2 �G�2er, �45�

with

G = �
edges

Me�r��exp�− i
�

��
r� · er��er � el��dl�, �46�

where the integral is taken over the perimeter of the crystal,
r is the distance between the observer and the mesa and � is
the dielectric constant of vacuum normalized by �c. With the
size we use, the interference is mainly contributed from the
source along the y direction since Ly is comparable to the
wavelength.

In the state with kink, the oscillation of the electric field in
the frequency domain can be well described by

Ez = A1� cos�nx�/Lx�cos�ny�/Ly� , �47�

for the cavity mode �nx ,ny� when the plasma oscillation is
weak.34 The radiation pattern from the mode �nx ,ny� can be
evaluated with Eq. �45� and is reported in Refs. 28 and 54.
Inside the current step, the higher harmonics become impor-
tant so numerical simulations are needed. We use computer
simulations to calculate the oscillation of electric field at
edges and then substitute the results into Eqs. �44� and �45�
to obtain the radiation pattern. The results at current steps
corresponding to the cavity modes �1,0� and �1,1� are shown
in Figs. 10�b� and 10�c�. For mode �1,0�, the radiation power
is maximal at the top of the mesa �=0, and it has a maxi-
mum at the middle of Lx while a minimum at the middle of
Ly; for mode �1,1�, the radiation power is minimal at the top
of the mesa �=0, and at the middle of Lx and Ly.

In the state without kink, the oscillation of the electric
field is homogenous in the xy plane, which corresponds to

the �0,0� mode. The radiation pattern at the retrapping point
is presented in Fig. 11. It has a minimum both at the top of
the mesa and at the middle of Ly, and a maximum at the
middle of Lx. The anisotropy of the pattern in the xy plane is
due to the fact Ly �Lx.

VI. STATE WITH SOLITONS

To be comprehensive, we present here the results of nu-
merical simulations on the state with solitons. It should be
noted that in the present system, the length scale is �c rather
than �J as in conventional Josephson junctions and in the
presence of magnetic field. Therefore, to have solitons, the
length of the junctions must be larger than �c. Because of
repulsive interaction, it is believed to be hard to achieve
in-phase motion of solitons in a stack of junctions, despite
some simulations suggest that the solitons in high velocity
have attractive interaction.38,55 Here we investigate the radia-
tion due to soliton motions in a single junction, which is
equivalent to a stack of junctions if one realizes the in-phase
motion of solitons in different junctions.

It is well known that periodic motions and reflections of
solitons and antisolitons give birth to the zero-field steps at
V=2n� /L, which corresponds to the even cavity modes,56,57

with n the number of solitons. When a soliton hits the bound-
ary, it emits an electromagnetic pulse.58 Here we only inves-
tigate the radiation from zero-field steps and will not discuss
the Cherenkov radiation.59 We perform computer simulations

FIG. 10. �Color online� �a� Coordinate system for the calculation of radiation pattern from the mesa. �b� Radiation pattern of the mode
�1,0�. �c� Radiation pattern of the mode �1,1�. Here Lx=80 �m, Ly =300 �m, and Lz=1 �m.

y

x

z

FIG. 11. �Color online� Radiation pattern of the state without
kink biased at the retrapping point. Here Lx=80 �m, Ly

=300 �m, and Lz=1 �m. The anisotropy of the pattern in the xy
plane is due to the fact Ly �Lx.
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to trace out all the zero-field steps. We use L=5�c so that
there exist five steps. The IV characteristics are shown in the
inset of Fig. 12, where the zero-field steps occur at the volt-
age corresponding to the even cavity modes. The radiation
power at each step is shown in Fig. 12, which is higher than
that from the state with kink if one assumes in-phase motion
of solitons. The discontinuous drops in the radiation power
when ramping up the current are caused by the change in the
wavelength of the Josephson plasma excited by the motion
of solitons. The frequency spectrum at the first zero-field step
is sketched in Fig. 13 and there are many frequency harmon-
ics with the fundamental frequency not satisfying the ac Jo-
sephson relation. In the state with solitons, the radiated fre-

quency depends on the configuration of solitons except the
first zero-field step.60 It is noticed that, as indicated in Fig.
13, the fundamental frequency and voltage at all the steps
never satisfy the ac Josephson relation, contrasting with the
state of kink revealed theoretically30 and the experimental
observations.27,29

VII. DISCUSSIONS AND CONCLUSIONS

In the present work, the phase dynamics and its electro-
dynamics in a thick stack of intrinsic Josephson junctions in
the absence of external magnetic field are investigated both
analytically and numerically. There is good consistency be-
tween the analytical theory and simulations.

In the state with phase kink, there are many current steps
at both even and odd cavity modes. The phase kink plays a
role of coupling the plasma to the cavity modes, as such the
plasma oscillation is largely enhanced. The radiation power
from the state with phase kink is �4 times larger than that
without phase kink. The plasma oscillation is uniform
through the c axis. Thus the far-field radiation power grows
as N squared, the so-called super-radiation. At the bottom of
the first current step, the magnetic field is symmetric with
respect to the center of the junction. The antisymmetric com-
ponent becomes more and more important when going into
the current step. The states with different phase-kink con-
figurations are degenerate in the sense that they have the
same IV characteristics, power radiation, and energy stored
in the system.

In the state without phase kink, the plasma oscillation
does not couple to the cavity mode, and thus the radiation
power is very small. The power increases with decreasing
current and reaches the maximum at the retrapping point.
The radiation occurs in a broad region of voltage. The fre-
quency satisfies the ac Josephson relation, and high-
frequency harmonics are almost invisible. The magnetic field
is antisymmetric in this state. The far-field radiation pattern
in this state is quite different from that in the state with phase
kink, which is a clear fingerprint of the dynamic state real-
ized by the system.

In the state with solitons, electromagnetic pulses are radi-
ated from junctions when solitons hit the boundary. There are
many frequency harmonics, but the fundamental frequency
never satisfies the ac Josephson relation. It would be ideal for
exciting strong terahertz wave with solitons because the
power is about 25 000 W /cm2, presuming one could realize
the in-phase motion of solitons in a thick stack of long in-
trinsic Josephson junctions.

It is illuminating to discuss the dynamic state realized in
the recent experiments for terahertz radiation27,29 in light of
the present theoretical analysis. Coherent radiations were de-
tected in the resistive curve in Ref. 27 with the frequency
corresponding to the first cavity mode. One order of the mag-
nitude stronger radiations were observed in the region of
voltage with anomalous IV characteristics in Ref. 29, and
there are many frequency harmonics at a given voltage. In
both experiments, the frequency obeys the ac Josephson ef-
fect and thus the state with traveling solitons can be ruled
out. On the other hand, large cavity resonances cannot be

FIG. 12. �Color online� Radiation power from the zero-field
steps caused by soliton motions. The inset is the IV characteristics.
The vertical dashed lines are the assignment of cavity mode accord-
ing to kn=n� /L with n being an integer and the ac Josephson rela-
tion. The results are obtained with C=0.000 177 and R=707.1.

FIG. 13. �Color online� Frequency spectrum at the first zero-
field step at Jext=0.57. The vertical dashed line is the frequency
given by the ac Josephson relation with voltage V=2� /L. The fun-
damental peak does not come to the dashed line means that the ac
Josephson relation is broken. The results are obtained with C
=0.000 177 and R=707.1.
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excited in the state without phase kink; furthermore, the ra-
diation from the state without phase kink occurs weakly in a
wide range of voltage. Therefore, it is unlikely relevant to the
experimental observations. The state with phase kink, in con-
trast, seems to be consistent with the experiments so far. In
this state, the plasma oscillation is uniform through the stack
of Josephson junctions, it thus supports super-radiation as
observed in the experiments. Moreover, the periodic arrange-
ment of static kink along the stack direction allows to pump
dc powers into large plasma oscillations, which yields self-
induced current steps. It is noticed that, to obtain the overall
shape of the IV curve, we need to take the heating effect into
account. More works are needed to clarify the synchroniza-
tion process.

It should be remarked that there are propagating waves
besides the standing wave in Eq. �17� because of the radia-
tion. The amplitude of the propagating waves has the order
of magnitude of 1 / �Z� and thus can be safely neglected as the
first-step approximation, which is confirmed by the numeri-
cal simulations. The radiation has only some negligible ef-
fects on the dynamics inside the junctions, which permits us
to calculate the radiation perturbatively. When the mismatch
of impedance at the edges is reduced, e.g., the thickness of a
stack of intrinsic Josephson junctions is comparable to �c,

one has to consider the radiation and interference for the
analysis of phase dynamics inside the junctions self-
consistently.

The essential property of the stack of junctions for real-
ization of the state with kink is the strong inductive coupling.
As for other possible effects on the state with phase kink, we
find in the simulations that this state is very stable against
small magnetic fields, thermal fluctuations.61 In Ref. 31, it is
shown that the state with kink is stable against the modula-
tion of critical current. Thus it is likely to be realized experi-
mentally. The state with kink is promising for the application
of terahertz radiation. It is also useful for terahertz detectors,
amplifiers, and mixers.
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