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Analytical expressions involving features from torque curves are derived for an exchange coupled ��AF�/�F��
bilayer, a coupled trilayer ��F�/�N-M�/�F��, and a magnetic tunnel junction �MTJ�-like ��AF�/�F�/�N-M�/�F��
system. Included in the model are the exchange anisotropy field HE, the off-alignment angle �, the bilinear J1,
and the biquadratic J2 coupling strengths and the in-plane magnetocrystalline anisotropy fields of the two
layers whose easy axes make an angle �. It will be shown how these parameters can be analytically derived
from the torque curve. For the strong coupling case the MTJ-like system behaves as �AF�/�F� bilayer; for
arbitrary � value, the magnetic anisotropy field of the resulting system has a nonlinear relationship with the
individual layer anisotropy fields.
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I. INTRODUCTION

A magnetic tunnel junction �MTJ�-like system �spin
valve� has been lately the subject of a lot of experimental and
theoretical studies because, among other reasons, of its use
as giant magnetoresistive head in magnetic recording. Such a
system may consist of a stacking of an antiferromagnetic
�AF� thin film and two ferromagnetic �F� layer thin films
�noted here A and B� separated by a nonmagnetic �N-M�
interlayer1–3 �see Fig. 1�. The interaction at the interface of
layer �A� with �AF� gives rise to a unidirectional anisotropy
called exchange anisotropy.4–16 This anisotropy can be mod-
eled as a magnetic field HE, the exchange anisotropy field. It
is also found that in some cases, the unidirectional aniso-
tropy axis and the anisotropy axis of the ferromagnetic layer
�A� are not parallel but make an angle � known as the off-
alignment angle.12–16 Layers �A� and �B� are magnetically
coupled. The magnetic coupling can be described by the bi-
linear J1 and the biquadratic J2 coupling parameters.17–26 The
former may favor a parallel alignment �ferromagnetic cou-
pling� or an antiparallel alignment �antiferromagnetic cou-
pling� of the magnetizations MA and MB while the latter one
�J2� may lead to a perpendicular configuration of MA and
MB.

In previous work, ferromagnetic resonance �FMR�
modes27 and analytical expressions for the hysteresis
curves28 were investigated for such a system. In the present
work some features of the torque curves are studied for this
system; included in the model are the effects of the magnetic
coupling strength, the exchange anisotropy field �HE�, the
off-alignment angle �, and the uniaxial anisotropy fields �HA
and HB� of the two ferromagnetic layers, with their easy axes
making an angle � between them.

One of the objectives of the present work is to derive
analytical formulas giving the pertinent magnetic parameters
of the system such as HE, �, �, and the interlayer magnetic
coupling, as a function of some experimentally measurable
quantities from torque curves. This may constitute an alter-
native method for a straightforward derivation of these pa-
rameters to the method based on the best fit as is usually
done. Incidentally, some interesting behaviors of the system,
at a relatively more fundamental level, are encountered and

will be discussed. Some of these results confirm the ones
inferred from FMR analysis27 and from hysteresis curves.28

The geometry of the system and the energy will be displayed
in Sec. II. Some pertinent torque relations will be derived in
Sec. III. The effect of different parameters will be discussed
in Sec. IV for single layer, exchange ��F�/�AF�� bilayer, a
trilayer ��F�A/N-M/�F�B� coupled system and a MTJ-like �or
spin valve� system.

II. GENERAL CONSIDERATIONS

The magnetic systems under study in the present work are
shown in Fig. 1. The more general one is the MTJ or spin
valve. It consists of an antiferromagnetic layer �AF� on top
of which is deposited a first ferromagnetic �F� layer �labeled
A�; layer A is separated from a second ferromagnetic layer B

(AF)

(F) A (N-M)

(F) B

(F) A

(a) (b)

(N-M)

(F) B

(F) A

(AF)

(c)

x

z

EA(B)

H

MA
MBHE

y

FIG. 1. The configuration of the three systems along with the
coordinate system �a� exchange �F�/�AF� bilayer, �b� coupled
trilayer, and �c� magnetic tunnel junction or spin valve structure. �F�
ferromagnetic, �AF� antiferromagnetic and �N-M� nonmagnetic lay-
ers. HE exchange anisotropy field, H applied magnetic field, MA

�MB�: magnetization of layer A�B� and EA�B� layer B in-plane
anisotropy easy-axis direction. All the vectors are in the film planes
�xOy plane�. The angles between the x axis and H, HE, EA�B�, MA

and MB are denoted respectively �, �, �, �A, and �B.
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by a nonmagnetic �N-M� interlayer �see Fig. 1�c��. All the
thin film layers are assumed to lie in the x-y plane, with the
z axis normal to the film planes �Fig. 1�. The magnetization
MA of layer A is defined, in spherical coordinates, by the
angles �A and �A; and similarly MB �layer B� by the angles
�B and �B. Two magnetic phenomena arise in this system:

�i� First, the exchange anisotropy at the interface
antiferromagnetic-A layers, this is modeled as a magnetic
field HE, the exchange anisotropy field. The field HE is taken
in the film plane making an angle � �the off-alignment angle�
with the x axis; layer A is supposed to have an in-plane
uniaxial magnetocrystalline anisotropy with constant KA and
the easy axis taken to be along the x axis �see Fig. 1�.

�ii� Second, the magnetic coupling between two ferromag-
netic layers separated by a nonmagnetic interlayer. This in-
teraction will be described by the bilinear J1 and biquadratic
J2 coupling parameters. For layer �B�, the in-plane magneto-
crystalline anisotropy easy axis �EA� is assumed to be in a
direction making an angle � with the x axis �Fig. 1�.

The external applied magnetic field H is taken to be in the
plane of the films, making an angle � with the x axis. At
equilibrium, the magnetizations MA and MB are expected to
lie in the film plane, i.e., �A=�B=� /2, due to the strong
demagnetizing field of the thin films and to the fact that the
applied magnetic field is in plane. Note that contrary to
ultrathin films consisting of one or a few atomic planes
where it was observed that the magnetization can be perpen-
dicular to the film plane due to a strong positive
magnetocrystalline29 �or surface� anisotropy, may oscillate
from in plane to out of plane30,31 as the thickness varies or
may be tilted,32 here it is assumed that the films are in the
thickness range where the shape anisotropy dominates and
the magnetizations lie in the film planes.

With all these considerations, the total free energy of the
system per unit area can be explicitly written as

E = tA�− MAH cos�� − �A� + KueffA

− KA cos2 �A − MAHE cos�� − �A��

+ tB�− MBH cos�� − �B� + KueffB − KB cos2��B − ���

− J1 cos��A − �B� − J2 cos2��A − �B� . �1�

In the two first lines of Eq. �1�, tA and tB are the thick-
nesses of layers A and B, respectively. The total energy E
consists for layer A �the first line� of the Zeeman energy
�interaction of the external magnetic field H with the mag-
netizations�, the shape and any out-of-plane uniaxial aniso-
tropy with effective constant KueffA �KueffA=Ku−2�MA

2 , Ku
being the uniaxial magnetocrystalline anisotropy constant�,
the in-plane magnetocrystalline anisotropy with constant KA
and the exchange anisotropy with exchange anisotropy field
HE. For layer B �the second line in Eq. �1��, the Zeeman
energy, the effective uniaxial, and in-plane anisotropy terms
are displayed. The interlayer coupling energy is given by the
two last terms �third line in Eq. �1��. The angles �A,B are
given by the following two coupled equations �the equilib-
rium conditions�:

H sin�� − �A� =
HA

2
sin 2�A − HE sin�� − �A�

+
J1

a
sin��A − �B� +

J2

a
sin 2��A − �B�

�2a�

and

H sin�� − �B� =
HB

2
sin 2��B − �� −

J1

b
sin��A − �B�

−
J2

b
sin 2��A − �B� , �2b�

where HA=2KA /MA and HB=2KB /MB are the planar aniso-
tropy fields for layers A and B, respectively, and a= tAMA
and b= tBMB.

III. GENERAL TORQUE RELATIONS

In the following, expressions for the torque curves and the
slope of the curve at any point will be derived and discussed
as a function of the different parameters: the exchange and
anisotropies fields, the � and � angles and the magnetic cou-
pling strengths.

The torque relation can be obtained from the total energy
in Eq. �1�. The torque, per unit area, is found to be

T =
aHA

2
sin 2�A + aHE sin��A − �� +

bHB

2
sin 2��B − �� .

�3�

The angles �A and �B are given by Eqs. �2a� and �2b�.
The torque curve slope, s, is defined as the derivative

of the torque with the respect to the applied field angle �,
i.e., s= dT

d� . Torque curve slopes have been used to study
the magnetic anisotropy in single thin films,33 the
magnetic coupling in a coupled layer system
�ferromagnetic/nonmagnetic/ferromagnetic�34 and the ex-
change anisotropy field in bilayer exchanged thin films
�ferromagnetic/antiferromagnetic�.35

The torque T in Eq. �3� depends explicitly on the angles
�A and �B and implicitly on the applied field angle �. The
derivative of T with respect to � will then be found by com-
puting the derivatives of T with respect to �A and �B from
Eq. �3� and the derivatives of �A and �B with respect to �
which can be found from Eqs. �2a� and �2b�. This can be
done by taking the total variation of both sides of Eqs. �2a�
and �2b�, dividing by d�, and solving the two resulting equa-
tions for the derivatives of �A and �B with respect to �.
Following this method, one can show that the slope is given
by the expression
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s =
H�aXBYA cos�� − �A� + bXAYB cos�� − �B� + Jeffe�YA + YB��

XAXB + Jeff�XA + XB�
, �4�

where

XA = a�H cos�� − �A� + HA cos 2�A + HE cos�� − �A�� ,

�5a�

XB = b�H cos�� − �B� + HB cos 2��B − ��� , �5b�

YA = a�HA cos 2�A + HE cos�� − �A�� , �5c�

YB = bHB cos 2��B − �� , �5d�

e = a cos�� − �A� + b cos�� − �B� , �5e�

and the effective magnetic coupling parameter

Jeff = J1 cos��A − �B� + 2J2 cos 2��A − �B� . �5f�

IV. DISCUSSIONS

A. Single and exchange-coupled layers

When the layers �A� and �B� are uncoupled, J1=J2=0. If
the two layers were separate, then experimentally, one ob-
tains either the curves corresponding to �AF�/�A� �Fig. 2�a��
or those of the single �B� layer �Fig. 3�. When the two fer-
romagnetic layers are uncoupled in a spin valve system, then
one gets the sum of the two corresponding curves. For the
latter case, the slope of the torque curve at any point is given
by substituting Jeff=0 in Eq. �4�. Replacing the different
quantities by their values �Eqs. �5a�–�5e��, one finds

s�Jeff = 0� =
aH�HA cos 2�A + HE cos�� − �A��cos�� − �A�
H cos�� − �A� + HA cos 2�A + HE cos�� − �A�

+
bHHB cos 2��B − ��cos�� − �B�

H cos�� − �B� + HB cos 2��B − ��
. �6�

The slope given by Eq. �6� is just the sum of the slopes of the
torque curves corresponding to the �A� layer with off-aligned
exchange anisotropy �the first term� and to layer �B� with
tilted in-plane uniaxial anisotropy axis.

The �AF�/�A� curves shown in Fig. 2�a� correspond to the
aligned case, �=0 �solid line� and the off-aligned one, �
�0 �dashed line�. These are typical curves for the system
with exchange anisotropy, i.e., �i� they have only one stable
position, �ii� the shift of the curve �dashed one� is due to the
off-alignment. It is easy to relate the shift �0 in the torque
curve �the point where the curve crosses the � axis� to the
off-alignment � angle. Figure 2�b� presents an example of
the variation in the slope at �0=0 �for �=0, solid line� and at
�0 �for �=20°, dashed line� with the exchange anisotropy
field HE; as one can see the variation in the slope is quite
clear and easily detectable. Also the variation in the shift �0

with HE is shown in this figure as a dotted line.
From an experimental torque curve, on can measure the

shift �0, the slope s0 of the curve at �0, the maximum Tm of
the curve and the angle �m where the maximum occurs. Re-
call that the shift or crossing point �0 is given by T��0�=0
which is achieved by the condition �0=�A and leads �from
the A part of the torque, i.e., the two first terms of Eq. �3�� to
the following equation:

HA

2
sin 2�0 = HE sin�� − �0� . �7a�

From the first part �corresponding to the �AF�/�A� system� of
Eq. �6�, the slope s0 at �0 will then be given by

FIG. 2. �Color online� �a� Torque vs applied field angle for an
�AF�/�F� exchanged coupled layers �layer �A� here�, with HE

=0.25 kOe and the aligned case �=0 �solid line� and the off-
aligned case �=20° �dashed line� �b� Variation in the slope �solid
line for �=0 and dashed line for �=20°� and the shift �0 �dotted
line� with the exchange anisotropy field HE. Other parameters used
in the computation: 4�MA=10 kG, HA=0.1 kOe, tA=20 nm. Ap-
plied magnetic field H=1 kOe.
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s0 =
aH�HA cos 2�0 + HE cos�� − �0��
H + HA cos 2�0 + HE cos�� − �0�

. �7b�

The maximum Tm of the curve occurs at �=�m such that
s��m�=0 whose solution can be �A=�m−� /2 �considering
the first branch without loss of generality�. Inserting this so-
lution in the A part of the torque �the two first terms in Eq.
�3�� will lead to the following expression for Tm:

Tm = −
aHA

2
sin 2�m − aHE cos��m − �� . �7c�

After some algebraic manipulations, the following analytical
relations are found for the in-plane anisotropy field HA, the
exchange anisotropy field HE, and the off-alignment angle �:

HA =
1

F
� Hs0

s0 − aH
cos��m − �0� −

Tm

a
� , �8�

where F is a function of the angles ��0 , �m� and is given by
�sin �m cos �m+sin3 �0 sin �m−cos3 �0 cos �m�. In order to
derive Eq. �8�, one has to express HE cos��m−�� in Eq. �7c�
in terms of HA and measurable quantities from torque curve
�s0, �0, �m, and Tm�. For that, one has first to make use
of a trigonometric relation which gives HE cos��m−��
= HE sin�� − �0�sin��m − �0� + HE cos�� − �0�cos��m−�0�.
Then one can find HE sin��−�0� and HE cos��−�0� from
Eqs. �7a� and �7b�, respectively. Substituting these expres-
sions into Eq. �7c� and solving for HA, one will get Eq. �8�.

Having found HA from Eq. �8�, HE will then be given, in
terms of Tm, HA, �0, and �m by

HE =
1

cos��m − �0��Tm
2

a2 +
HA

2

4
�G2 + I2� +

TmHAG

a
�1/2

,

�9a�

where G and I are trigonometrical functions of �0 and �m
and are given, respectively, by �sin 2�m+sin 2�0 sin ��m

−�0�� and �sin 2�0 cos��m−�0��. Alternatively HE can be
obtained using �0 and s0 only by:15

HE =
1

2
�HA

2 sin2 2�0 + 4� s0H

aH − s0
− HA cos 2�0�2�1/2

.

�9b�

With the knowledge of HE and HA, the off-alignment angle �
will then be given by

� = �0 + sin−1�HA sin 2�0

2HE
� . �10�

Note that in the aligned case, where �=0, the shift is equal to
zero �see Eq. �10�� and Eqs. �9a� and �9b� reduce simply to
the following forms:

HE =
1

cos �m
�Tm

a
+

HA sin 2�m

2
� �11�

and

HE =
s0H

aH − s0
− HA. �12�

Thus with the measure of the shift �0, the slope s0 of the
curve at �0, the maximum Tm of the curve and the angle �m
where the maximum occurs, one can obtain in a straightfor-
ward and unique manner the in-plane anisotropy field HA,
the exchange anisotropy field HE, and the off-alignment
angle �. This analysis could be useful for investigating �AF�/
�F� exchange bilayer thin film.

The curve corresponding to layer �B� �Fig. 3� is that of a
single ferromagnetic layer with in-plane magnetic anisotropy
with �i� the easy direction along the x axis �the easy direc-
tions of layers A and B are parallel� �solid line�, �ii� an arbi-
trary easy-axis direction given by the tilt angle � �dashed
line�. The latter curve is shifted due to the tilt angle �; if �
=0, then the curve will cross the � axis at �B=0 �solid line�.
Here, it is easy to show that the shift angle �B is simply
equal to the tilt angle �. Moreover the measure of the torque
curve slope, at �=�B, sB��B� will lead to the value of the
in-plane anisotropy field intensity HB:

HB =
sB��B�H

tBMBH − sB��B�
. �13�

B. Strongly coupled MTJ system

The other extreme case, i.e., very strongly coupled layers
will now be considered. When the coupling is ferromagnetic,
then the two magnetizations MA and MB are always parallel
under the strong magnetic coupling, i.e., �A=�B=�F for all
� angles. The torque will then be given by Eq. �3� substitut-
ing the magnetizations angles by �F. For the torque curve
slope, one may keep only the Jeff term in Eq. �4�. After some
algebraic manipulations, Eq. �4� will then reduce to the fol-
lowing form for the slope s� �F� �for infinite ferromagnetic
coupling�:

FIG. 3. �Color online� Torque vs applied field angle for a single
ferromagnetic layer with in-plane magnetocrystalline anisotropy
�layer �B�� with HB=0.1 kOe and tilt angle �=0 �solid line�, �
=30° �dashed line�. Other parameters used in the computation:
4�MB=6 kG, tB=10 nm. Applied magnetic field H=1 kOe.
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s��F� =
�a + b�H�Hp

F cos 2��F − �eq� + HE
F cos��eq − �F��cos�� − �F�

H cos�� − �F� + Hp
F cos 2��F − �eq� + HE

F cos��eq − �F�
�14a�

and the angle �F will be given by

H sin�� − �F� =
Hp

F

2
sin 2��F − �eq� − HE

F sin��eq − �F� .

�14b�

The torque curve corresponding to this strong ferromagnetic
coupling is shown in Fig. 4 �solid line�. Equations �14a� and
�14b� �compare these equations to Eqs. �6� and �2�� as well as
the torque curve for this strongly coupling case �compare the
curves in Figs. 2�a� and 4� show that this strongly coupled
MTJ system is equivalent to an �F�/�AF� exchanged bilayer
thin film with effective in-plane and exchange anisotropy
fields Hp

F and HE
F and effective tilt �eq and off-aligned �eq

angles. These quantities are given respectively by

Hp
F =

	�aHA + bHB cos 2��2 + b2HB
2 sin2 2�

a + b
, �15�

HE
F =

aHE

a + b
, �16�

�eq =
1

2
tan−1� bHB sin 2�

aHA + bHB cos 2�
� , �17�

while �eq=�.
For the strong antiferromagnetic coupling, assuming

a�b, the �A� magnetization will tend to align along the H
direction while the �B� magnetization will be antiparallel to
MA; one has, for all � angles, �A=�AF and �B=�+�AF.
Following the same procedure as for the previous case, one
finds that the slope s� �AF� �for infinite antiferromagnetic
coupling� can be written �in the same form as Eq. �14a��

s��AF� =
�a − b�H�Hp

AF cos 2��AF − �eq� + HE
AF cos��eq − �AF��cos�� − �AF�

H cos�� − �AF� + Hp
AF cos 2��AF − �eq� + HE

AF cos��eq − �AF�
�18�

and the angle �AF is given by an equation similar to Eq.
�14b� by substituting Hp

F and HE
F by Hp

AF and HE
AF, respec-

tively. Here the effective in-plane anisotropy field Hp
AF is

given by

Hp
AF =

	�aHA + bHB cos 2��2 + b2HB
2 sin2 2�

a − b
�19�

and the effective exchange anisotropy field

HE
AF =

aHE

a − b
. �20�

The torque curve for this strong antiferromagnetic coupling
is shown in Fig. 4 �dashed line�. Once again this strongly
�antiferromagnetic� coupled MTJ system is equivalent to an
�F�/�AF� exchanged bilayer thin film with effective in-plane
and exchange anisotropy fields Hp

AF and HE
AF �different for

those found in the ferromagnetic coupling case�. The effec-
tive tilt angle is the same as in the ferromagnetic coupling
case, i.e., �AF=�F=�eq �given by Eq. �17�� and the effective
off-aligned angles ��AF=�F� are equal to original off-aligned
angle ���.

Note that there is a nonlinear relationship between the
effective in-plane field for the strongly coupled MTJ system
and the in-plane anisotropy fields for the individual layers

�see Eqs. �15� and �19��. Some particular cases are worth
noting where the relations become linear. In the situation
where the easy axes are parallel ��=0�, the effective in-plane
anisotropy field reduces to the following:

FIG. 4. �Color online� Torque curves for strongly coupled MTJ
system with �=20° and �=30°, for ferromagnetic �solid line� and
antiferromagnetic �dashed line� coupling cases. Other parameters as
for Figs. 2 and 3.
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Hp
eq�� = 0� =

aHA + bHB

a 	 b
�21�

and the tilt angle �eq=0, where + and − signs in Eq. �21�
correspond to ferromagnetic and antiferromagnetic cou-
plings, respectively. For orthogonal easy axes ��=90°�, one
obtains

Hp
eq�� = 90� =

aHA − bHB

a 	 b
�22�

and �eq=0. In the case of the rigid layer model36,37 where the
in-plane anisotropy of one layer �layer �A�� is very strong
compared to that of the other layer �layer �B��, one obtains

Hp
eq =

aHA + bHB cos 2�

a 	 b
�23�

and

�eq =
1

2
tan−1�bHB sin 2�

aHA
� . �24�

�eq in this case is close to zero, i.e., the easy axis of the
whole system is along the layer �A� easy axis. Finally for the
particular case where aHA=bHB=Q, then Hp

eq and �eq reduce
to

Hp
eq =

2Q cos �

a 	 b
�25�

and �eq= �
2 + n�

2 , where n is an integer.
Thus, for a strong interlayer magnetic coupling, and for

both ferromagnetic �labeled FC� and antiferromagnetic
�AFC� coupling, the whole ��AF�/�F�/N-M/�F�� magnetic
tunnel junction system behaves as a bilayer ��AF�/�F�� thin
film, i.e., a single ferromagnetic layer with an effective in-
plane anisotropy field whose axis is tilted from the reference
axis �the x axis� by an angle �eq and an effective exchange
anisotropy field with an off-aligned angle �eq. These quanti-
ties are expressed in terms of the individual layers param-
eters. Some remarks can be made about these quantities: �i�
the effective off-aligned angle �eq is the same for �FC� and
�AFC� and is equal to the original � angle of layer �A�, �ii�
the effective tilt angle �eq is equal for �FC� and �AFC� and is
different from �, �iii� for arbitrary tilt angle � the effective
in-plane anisotropy field is given by a nonlinear relationship
as a function of the individual anisotropy fields �HA and HB�,
one obtains a linear relationship only in some particular situ-
ations, �iv� the effective exchange anisotropy field is less
than the original HE field of layer �A� for �FC� while it is
greater than HE for �AFC�, this enables one to increase HE

eq to
any value by the right choice of a and b �recall that a
= tAMA and b= tBMB�. Some of these results confirm those
found in these systems by ferromagnetic resonance27 and
magnetization curves.28

Also for this strong coupling case an interesting relation is
found between the slopes for the FC and the AFC cases at
the crossing point. Note that the crossing point �the intersec-
tion of the torque curve with the � axis� is the same for both
cases �see Fig. 4�; this is because the effective tilt and off-
alignment angles are the same. In fact, the crossing point �0

�

for the strong FC and AFC is found to satisfy the following
relation:

sin 2��0
* − �eq�

sin�� − �0
*�

=
2aHE

	�aHA + bHBcos 2��2 + b2HB
2 sin2 2�

.

�26�

It is easy to see that this general relation �Eq. �26�� reduces
correctly to Eq. �10� for an exchange coupled bilayer thin
film �layer �A� only� and to the fact that the shift is equal to
the tilt angle for layer �B� only. However the slopes s� �F�
and s� �AF� are different at the crossing point. The following
relation is found:

1

s��AF�
−

1

s��F�
=

2b

H�a2 − b2�
. �27�

It is interesting to note that the difference in the inverse
slopes does not depend on the anisotropies �exchange and
in-plane� and on the crossing point. It depends only on the
applied field H, the thickness and magnetization of each
layer.

C. Arbitrary coupling strength

Now for any arbitrary interlayer magnetic coupling, one
can still derive few useful analytical formulas allowing to
infer, from an experimental torque curve, magnetic param-
eters characterizing such a magnetic tunnel junction-like sys-
tem. This will be illustrated for the simple case where �=0
�no tilt angle� and �=0 �aligned case�. In this situation, the
torque curve will cross the � axis at �0=0 �no shift�. Also,
saturation is achieved, e.g., at �=0, �A=�B=0, when the
applied field is greater than the saturation field, this will be
assumed in the subsequent analysis.

Let us first take the case of a coupled trilayer system �thus
no exchange anisotropy HE�. An example of a torque curve
for such a system is shown in Fig. 5 �dashed line�. Let s�J ,0�
be the torque curve slope at �=0, for HE=0 and arbitrary
coupling. By measuring s�J ,0�, it is found that the effective

FIG. 5. �Color online� Torque curves for coupled MTJ system
�solid line� and coupled trilayer system ��F�A/nonmagnetic/�F�B�
�dashed line�. HE=0.25 kOe, �=0°, and �=0°. Other parameters as
for Figs. 2 and 3.
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coupling parameter Jeff �equal to �J1+2J2� for this saturated
system case� can be given by the following relation:

Jeff = ab
H�PH + �a + b�HAHB� − s�J,0��H + HA��H + HB�

s�J,0���a + b�H + P� − �a + b�PH
,

�28�

where P=aHA+bHB. Now, the spin valve system will be
considered; the corresponding torque curve is shown in

Fig. 5 �solid line�. Assuming Jeff to be known from the
trilayer system, Eq. �28� �experimentally this is done by
growing at the same time the trilayer and the MTJ system,
thus coupling can be assumed to be the same for both
samples�. The difference in the curve slopes �see for example
at �=0 in Fig. 5� is then due to the effect of HE. Noting
s�J ,HE� and s�J ,0� the slopes at �=0 for the spin valve and
the coupled trilayer, respectively, then HE can be derived by

HE = �1

a
� 
ab�H + HA��H + HB� + Jeff��a + b�H + P���s�J,0� − s�J,HE��

b�s�J,HE��H + HB� − H�aH + P�� + Jeff�s�J,HE� − �a + b�H�
. �29�

For uncoupled layers �Jeff=0�, Eq. �29� becomes

HE =
�H + HA��H + HB��s�0,0� − s�0,HE��

s�0,HE��H + HB� − aH�H + HA� − bHHB
. �30�

While for very strong coupling, HE will be given by

HE =
�H�a + b� + aHA + bHB��s��,0� − s��,HE��

a�s��,HE� − �a + b�H�
. �31�

For strong applied field H and for any coupling strength, HE
will be simply given by

HE =
s�J,HE� − s�J,0�

a
. �32�

Recall that a= tAMA and the torque curve to be considered
here is the torque per unit area.

Finally, when the coupling is antiferromagnetic, then one
can derive analytical relations giving separate values of the
bilinear J1 and biquadratic J2 coupling parameters from the
measure of torque curves �note that generally a Jeff value is
experimentally derived�. If the applied field H1 is greater
than the saturation field, then at �=0, �A=�B=0, let s1 be
the slope of the corresponding torque curve at �=0. If the
applied field H2 is lower than the critical field �field below
which the two magnetizations are antiparallel under the an-
tiferromagnetic coupling� then at �=0, �A=0 and �B=�
�assuming a�b so that MA will tend to the field direction
while MB will be opposite to it�, let s2 be the slope of the
corresponding torque curve at �=0. Then after some trans-
formations J1 and J2 are given by

J1 =
�f1+� + �f2−�

2
�33�

and

J2 =
�f1+� − �f2−�

4
, �34�

where

f i	 =
ab
PHi

2 + �a 	 b�HiHAHB − si�Hi + HA��Hi 	 HB��
Hi�a 	 b��si − P� + siP

,

�35�

where i=1,2. Here for simplicity HE is taken to be zero,
generalizing to an arbitrary value of HE is straightforward.
Note that generally J1 and J2 cannot be separately measured,
an effective Jeff �equal to J1	2J2� is instead derived. In
some particular situations,20,36,37 methods have been worked
out to derive separate values of J1 and J2. The present
method can be used to derive these parameters, in a straight-
forward and unique manner, by means of the analytical ex-
pressions and measurable quantities from torque curves.

V. CONCLUSION

Torque curves have been investigated for a series of
multilayer systems, a single ferromagnetic layer with tilted
axis anisotropy, an exchange coupled bilayer thin film, and a
magnetic tunnel junction-like system �or spin valve�. The
analytical expressions pertaining to the torque curves allow
to derive, in a straightforward manner, different magnetic
parameters characterizing these systems. Some general rela-
tions involving features from torque curves have been ob-
tained. It was found that for a strong coupling, the MTJ-like
system behaves as an exchange coupled �F�/�AF� bilayer
with effective exchange and anisotropy fields. In general,
these characteristic fields have a nonlinear relationship as a
function of the individual layer anisotropy fields. Moreover
with the right choice of the magnetization and thickness of
the ferromagnetic layers, one may tune the value of the ex-
change bias field of the whole system.
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