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We study the phase diagram of a symmetric spin-1/2 Heisenberg diamond chain with additional cyclic
four-spin exchange interactions. The presented analysis supplemented by numerical exact-diagonalization re-
sults for finite periodic clusters implies a rich phase diagram containing, apart from standard magnetic and
spin-liquid phases, two different tetramer-dimer phases as well as an exotic fourfold degenerate dimerized
phase. The characteristics of the established spin phases as well as the nature of quantum phase transitions are
discussed as well.
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I. INTRODUCTION

Spin systems with cyclic exchange interactions have been
receiving an increasing amount of attention in the past few
years. These interactions are known to be responsible for the
properties of the triangular magnetic system composed of
3He atoms absorbed on graphite surfaces.1 Recently, it was
demonstrated that a certain amount of four-spin exchange
could explain the neutron-scattering experiments concerning
high-Tc compounds such as La2CuO4,2 La6Ca8Cu24O41,

3 and
La4Sr10Cu24O41.

4 The latter two are spin-ladder compounds
where charge fluctuations such as cyclic hopping processes
modify the Heisenberg spin Hamiltonian by contributing a
four-spin interaction term. In particular, it was found that
these interactions substantially modify the spin triplon gaps
and frustrate the formation of bound triplon states.4 On the
theoretical side, in spite of the numerous numerical studies
predicting rich phase diagrams,5 a number of important ques-
tions, concerning the type of spin orderings and quantum
criticalities realized by the four-spin exchange, remains
unsettled.6

In this paper we analyze the role of the cyclic four-spin
exchange interactions in the symmetric diamond chain
�SDC� which is one of the simplest spin models admitting
multi-spin cyclic exchange interactions. The model is defined
by the Hamiltonian �see Fig. 1�

H = �
n=1

L

hn,n+1, �1�

where

hn,n+1 = J1sn · ��n + �n+1� + J�n · �n+1 + J�s1n · s2n

+ K��s1n · �n��s2n · �n+1� + �s1n · �n+1��s2n · �n�

− �s1n · s2n���n · �n+1�� .

Here s1n, s2n, and �n are spin-1/2 operators defined on the
sites of the nth elementary cell. In our model, the standard
cyclic four-spin exchange interactions7 are slightly general-

ized by including its bilinear terms in the exchange param-
eters J, J1, and J�. In what follows the action and the energy
are measured in the units of � and J1, respectively.

The frustrated diamond chain8 as well as its various modi-
fications, such as the distorted diamond chain9,10 and the so-
called AB2 ferrimagnetic chain with Ising and Heisenberg
spins,11 have already been discussed in the literature in rela-
tion to some quasi-one-dimensional magnetic materials.12

For the following analysis it is important to notice that the
cyclic exchange interaction does not violate the local sym-
metry of the Hamiltonian under the exchange of the pair of
spins �s1n ,s2n� for each diamond in the SDC. Thus, in the
important case of spin-1/2 operators s1n and s2n, the system is
characterized by L local good quantum numbers sn=0,1 �n
=1,2 , . . . ,L� related to the composite spins sn=s1n+s2n : sn

2

=sn�sn+1�. Using this local symmetry and the standard com-
mutation relations for spin operators, the local Hamiltonian
hn,n+1 can be represented in the compact form

hn,n+1 = �n + sn · ��n + �n+1� + Jn�n · �n+1

+
K

2
�sn · �n,sn · �n+1� . �2�

Here �n /J�=sn�sn+1� /2−3 /4 are fixed numbers �−3 /4 or
1/4� for every sector defined as a sequence of the local quan-
tum numbers �s1 ,s2 , . . . ,sL�, Jn=J+K /4−sn�sn+1�K /2, and
�A ,B� is the anticommutator of two operators �A and B�.
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FIG. 1. �Color online� The symmetric diamond chain considered
in the paper. The arrows denote the cyclic four-spin exchange inter-
action controlled by the parameter K.
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In the parameter space where the ground state is charac-
terized by sn=0 �n=1,2 , . . . ,L�, the second and fourth terms
in Eq. �2� vanish and the model is equivalent to the spin-1/2
Heisenberg chain with an exchange parameter J+K /4. On
the other hand, if the ground state belongs to the sector sn
=1 �n=1,2 , . . . ,L�, Eq. �2� defines the generic model of an
alternating mixed-spin chain with the simplest three-spin ex-
change interaction. Finally, if the ground state is in the sector
�1,0 ,1 ,0 , . . .�, the system is reduced to some modification of
the well-known orthogonal dimer chain.13

II. PHASE DIAGRAM IN THE PARAMETER SPACE
(K ,J�)

It is instructive to begin with the phase diagram of a
single diamond composed of the spins s1, s2, �1, and �2. The
diamond eigenstates �see Table I� consist of two singlets
�S1 and S2�, three triplets �T1

�, T2
�, and T3

�; �=0, �1�, and the
quintet Q� ��=0, �1, �2�. In Fig. 2, the phase boundaries
between the single-diamond ground states �S1, S2, T1, and T2�
are depicted by dashed lines. As discussed below, some of
these lines coincide with the exact phase boundaries of the
diamond chain �Eq. �1��.

A. Phases in the sector [0 ,0 , ¯ ,0]

For large enough values of the parameter J�, the off-chain
spins form local dimers s1n ·s2n=−3 /4 so that the ground
state of the model belongs to the sector �0,0 , ¯ ,0�. Thus,
Eq. �2� reduces to the form

hn,n+1 = − �3/4�J� + �J + K/4��n · �n+1. �3�

This is the Hamiltonian of a spin-1/2 Heisenberg chain with
the exchange constant J+K /4. The single-diamond line AB
�defined by J+K /4=0� coincides with the exact boundary
between the fully polarized ferromagnetic phase FM1
�J+K /4�0� and the critical spin-fluid phase SF �J+K /4
�0�.

Besides the well-documented collective modes, these
phases exhibit additional single-particle modes �related to the
off-diagonal spins� describing excited �s1n ,s2n� dimers, sn
=1. Being eigenstates of the Hamiltonian �Eq. �1�� these ex-

citations are completely localized. According to Eq. �2�, an
excited dimer �say at n=L� is described by the Hamiltonian

Hi = C + �J +
K

4
	�

n=1

L−1

�n · �n+1 + hi, �4�

where C=− 3
4J��L−1� and hi reads as

hi =
J�

4
+ �J −

3K

4
	�L · �1 + JisL · ��L + �1�

+
K

2
�sL · �L,sL · �1�,Ji = 1. �5�

Similar models, describing spin-S impurities in spin-1/2 an-

TABLE I. Eigenvalues and eigenstates of a single diamond composed of the spins s1, s2, �1, and �2. The
eigenstates are classified according to the following good quantum numbers of the single-diamond cluster:
the total diamond spin sp, its z component sp

z , and the diagonal spins s and � �s=s1+s2 and �=�1+�2: s2

=s�s+1�, �2=���+1��. The symbols t� ��=0,�� stand for the canonical basic states of the spin-1 operators,
whereas ts denotes the singlet state of two spin-1/2 operators. For brevity, only the sp

z =0 components of the
triplet �T1

�� and quintet �Q�� states are presented.

sp s � Eigenvalue Eigenstate

S1 0 0 0 − 3
4 �J�+J�− 3

16K t�
s t


s

S2 0 1 1 −2+ 1
4 �J�+J�+ 13

16K 1
�3

�t�
+ t


−+ t�
− t


+− t�
0 t


0�
T1

0 1 1 1 −1+ 1
4 �J�+J�− 7

16K 1
�2

�t�
+ t


−− t�
− t


+�
T2

� 1 0 1 − 3
4J�+ J

4 + K
16 t�

s t

�, �=0,�

T3
� 1 1 0

J�

4 − 3
4J+ K

16 t�
� t


s, �=0,�

Q0 2 1 1 1+ 1
4 �J�+J�+ K

16
1
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�t�
+ t
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FIG. 2. �Color online� Phase diagram of the model �Eq. �1�� in
the parameter space �K ,J�� for J=0 as obtained from the numerical
diagonalization of periodic clusters containing up to L=12 unit
cells. The dashed lines denote the boundaries of the single-diamond
phase diagram containing the states S1, S2, T1, and T2 �see Table I�.
The following abbreviations for the phases of Eq. �1� are used:
critical spin-fluid state �SF�, fully-polarized ferromagnetic state
�FM1�, ferrimagnetic state �FM2�, tetramer-dimer states
�TD1,TD2�, dimerized singlet state �DM�, and another ferrimag-
netic state �FM3�.
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tiferromagnetic Heisenberg chains, have been discussed in
the literature.14 In particular, the above model may be con-
sidered as a special class of open chains with symmetric
couplings of the end spins ��1 and �L� to the external spin sL
�sL=1�.

Turning to the region occupied by the SF phase,
renormalization-group arguments predict that symmetric per-
turbations to the open chain are, at most, marginal. Thus, the
marginally relevant perturbation JisL · ��L+�1� �Ji�0� is ex-
pected to renormalize to � in the SF phase. This corresponds
to a fixed point where the end spins �1 and �L are effec-
tively removed from the chain to screen the external spin sL.
In terms of the original model �Eq. �1�� the spins �1, �L, s1L,
and s2L form a decoupled single-diamond state �S2� in the
low-energy sector of the spectrum. Such local excitations are
relevant relatively close to the phase boundary AB, where the
coupling JisL · ��L+�1� dominates the biquadratic term in
Eq. �5�.

For larger values of the parameter K, the biquadratic ex-
change in hi becomes important. Since the energy of the
quintet state Q grows up with K �see Table I�, we concentrate
on the triplet state T1 whose energy decreases with K and
crosses the energy level of S2 at K=4 /5. As discussed in Ref.
14, such a local triplet state does not correspond to a stable
fixed point since the antiferromagnetic interaction of the ef-
fective spin-1 impurity with the rest of the chain is margin-
ally relevant. Thus, one expects that the couplings to the next

two spins in the chain, �L−1 and �2, grow up to �. There
appears another fixed point where the latter two spins also
decouple from the chain in order to screen the spin of the
triplet state T1. Note that in sectors containing more spin-1
dimers, other types of screening are possible as well. For
example, the spins of neighboring T1 diamonds in Fig. 3 may
be screened by forming a singlet state. As before, the number
of decoupled chain spins is four. We suggest that such de-
coupled singlet states, composed of longer S2 or T1 diamond
chains, control the observed instability of the SF phase upon
decreasing the parameter J�. Note that similar complexes of
S1 diamonds cannot produce the instability since the energy
of the resulting product state ��1 ,�2���3 ,�4�¯ ��L−1 ,�L�
exceeds the energy of the critical phase for arbitrary J� ,K
�0.

B. Tetramer-dimer phases

A detailed numerical study of periodic clusters containing
up to L=12 cells close to the lines FA, AC, and CD in Fig. 2
suggests that for smaller values of J� the ground state be-
longs to the sector �1,0 , ¯ ,1 ,0�. In the special case K=0,
our numerical results reproduce the phase diagram of the
frustrated SDC,8 where the so-called tetramer-dimer phase
�denoted as TD1 in Fig. 2� appears in the interval 0.909
�J��2. This doubly degenerate singlet state may be
roughly represented as a product of single-diamond S2 states
on every second diamond, as depicted in Fig. 3. The short-
range correlations shown in Fig. 3 imply that the simple
product state is a good variational wave function over the
entire region occupied by the TD1 phase, excluding a narrow
region near the line AE. The product state is an exact ground
state at �K ,J��= �0,2�. An extrapolation of the exact-
diagonalization �ED� data suggests that the phase boundary
between the TD1 and SF phases lies extremely close to the
AC line separating the single-diamond states S1 and S2. On
the other hand, the phase boundary between the TD1 and
FM1 phases clearly deviates from the single-diamond bound-
ary AF. The deviation from the line AF is related to weak but
finite interactions between neighboring S2 diamonds appear-
ing in the second-order perturbation theory in the parameter
J+K /4.
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FIG. 3. �Color online� Short-range spin-spin correlations vs K in
the tetramer-dimer phases TD1 and TD2 for periodic chains with
L=8 cells �J=0, J�=1.15�. �1,2���n ·s1n�, �1,3���n ·�n+1�,
�3,4���n+1 ·�n+2�, and �2,5��s1n ·s1n+2�.
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FIG. 4. �Color online� Spin-wave spectrum of the �s1 ,s2�
= �1,1 /2� chain with three-spin exchange interactions �Eq. �6�� in
�a� the ferrimagnetic and �b� the canted ground states at 	=0.8 and
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FIG. 5. �Color online� Lowest-energy excited states in a periodic
chain with L=12 diamonds in the sectors with magnetic moments
M0−1 �triangles� and M0+1 �circles�. M0=L�S1−S2�=6 is the mag-
netic moment of the ferrimagnetic ground state. K=1 and J=J�

=0.
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On increasing the cyclic exchange parameter K at fixed
J� one finds another tetramer-dimer type state �TD2�. The
picture of the spin-spin correlations �Fig. 3� suggests that
every second diamond is approximately in the T1 state. Nev-
ertheless, the numerical analysis shows relatively strong an-
tiferromagnetic correlations between neighboring T1 dia-
monds as opposed to the TD1 state where the S2 diamonds
are weakly correlated. Clearly, both tetramer-dimer phases
are gapped and doubly degenerated. According to the general
rules,15 one may expect a discontinuous quantum phase tran-
sition between the quantum gapped phases TD1 and TD2.
Numerically, the transition point is indistinguishable from
the exact single-diamond phase boundary CE �K=4 /5� sepa-
rating the single-diamond states S2 and T1.

C. Phases in the sector [1 ,1 , ¯ ,1]

A numerical inspection of the short-range correlators
s1n ·s2n� in finite periodic chains implies that for moderate
values of the parameter J� the established ground states be-
long to the sector �1,1 , ¯ ,1�. Thus, in the low-energy re-
gion the diamond model �Eqs. �1� and �2�� is equivalent to
the following mixed-spin Heisenberg model ��sn��s1=1 and
��n��s2=1 /2� with three-spin exchange interactions,

H1 = �
n=1

L �sn · ��n + �n+1� − J��n · �n+1

+
K

2
�sn · �n,sn · �n+1�� , �6�

where J�=3K /4−J. To the best of our knowledge, generic
mixed-spin quantum Heisenberg models with multiple-spin
exchange interactions have not been discussed in the litera-
ture although these interactions may play an important role
in some recently synthesized mixed-spin magnetic
materials.16,17 Here we restrict ourselves to a general over-
view of the spin phases in the specific case �s1 ,s2�
= �1,1 /2� and to ferromagnetic exchange interactions be-
tween the �n spins �J��0�. The first two terms in Eq. �6�
define a standard mixed-spin Heisenberg model containing
additional nonfrustrated J� exchange bonds. The Lieb-Mattis
theorem18 predicts a ferrimagnetic ground state for this bi-
partite model which coincides with the classical ferrimag-
netic two-sublattice Néel state �the FM2 phase in Fig. 2�. To
study the role of the competing three-spin interactions, we
use a qualitative spin-wave analysis supplemented by nu-
merical ED calculations for finite periodic chains.

Let us start with a discussion of the semiclassical limit of
model �6�. Since the three-spin interaction contains an addi-
tional overall factor of s1s2, it is convenient to redefine the
coupling constant K and measure the strength of these inter-
actions in terms of 	=s1s2K. The classical Néel configura-
tion defined by sn=s1�0,0 ,1� and �n=s2�0,0 ,−1� survives
up to 	=1. For 	�1, the ferromagnetic arrangement of the
smaller s2 spins remains unchanged whereas the orientation
of the s1 spins deviates from the z axis: sn
=s1�sin 
 cos �n , sin 
 sin �n , cos 
�. Here cos 
=1 /	 and
the azimuthal angle �n takes arbitrary values from the inter-
val 0��n�2 �n=1, . . . ,L�. As a rule, quantum fluctua-

tions favor the planar spin configurations ��n=0,, with n
=1,2 , . . . ,L� so that one may expect a reduction in the de-
generacy to 2L. Such high degeneracy of the ground state is
typical for a number of spin models on corner-sharing lat-
tices. As seen in Fig. 4�b�, in a spin-wave approximation the
degeneracy produces a full line of zero modes �F=0 in the
Brillouin zone. Note that the presence of the gapless antifer-
romagnetic mode �AF�k �k�1� for 	�1 is related to the
finite transverse magnetization of the classical canted state.
The explicit expression for �AF reads as

�AF = 2J�s2�sin� k

2
	��sin2� k

2
	 +

s1

s2
� cos k , �7�

where �= �	2−1� / �2	J��. It is clear that the antiferromag-
netic mode �AF is stabilized by the ferromagnetic couplings
between the �n spins. The above picture of low-lying exci-
tations in the ferrimagnetic phase close to the phase-
transition point is confirmed by the numerical results at K
=1, Fig. 5. The numerical estimate for the phase-transition
point is Kc�1.2.

Additional information about the phase diagram of Eq. �6�
may be obtained from the behavior of the short-range corre-
lations �Fig. 6� and the singlet-triplet excitation gap �Fig. 7�
with the parameter K. For larger K�1.2, the ED results in-
dicate at least two additional phases denoted by DM and
FM3 in Fig. 2: DM is a nonmagnetic gapped singlet state
stabilized approximately in the region 1.5�K�2.3 �see Fig.
7�, and FM3 is a magnetic phase similar to the FM2 phase.
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Since the unit cell consists of three spin-1/2 variables, the
Lieb-Schultz-Mattis theorem19 suggests that the spin gap
must be accompanied with at least doubly-degenerate ground
states.

Further information about the DM phase can be extracted
from the dimerization operator Dn=Sn ·Sn+1−Sn ·Sn−1, where
Sn is the spin operator at site n. The lattice sites n−1 and
n+1 are supposed to be symmetric under the reflection from
the central site n. It is convenient to use the symmetric �an-
tisymmetric� combinations �s ,a�= ��0�� �1�� /�2, where �0� is
the translationally invariant singlet ground state of the finite
periodic chain and �1� is the singlet excited state which is
almost degenerate with �0�. The states �s ,a� are not transla-
tionally invariant and may be expected to produce finite val-
ues of the dimer order-parameter s ,a�Dn�s ,a� in a dimerized
system.20 The caricature of the DM state presented in Fig. 8
is obtained from the extrapolation of the ED results for
s ,a�Dn�s ,a� �L=8, 10, and 12�. A pronounced enhancement
of the dimer order parameter with L is indicated only for two
types of bonds in the dimer model �the thick lines in Fig. 8�.
Clearly, the suggested ground state exhibits a fourfold degen-
eracy.

Finally, the numerical results point toward the existence
of another partially polarized magnetic phase in the narrow

interval 1.2�K�1.5 between the ferrimagnetic �FM2� and
the dimerized �DM� phases �the hatched area in Fig. 2�. Re-
cently, similar exotic magnetic states have been predicted in
a number of one-dimensional spin systems with magnetic
frustrations.21 Typically, discussed spin states exhibit a par-
tially polarized magnetization in the z direction �M �M0
=s1−s2�, a quasi-long-range transverse magnetic order, and a
gapless linear mode related to the destroyed classical canted
state. Unfortunately, the methods used in the present study
do not suggest a clear statement indicating the existence of
such an exotic phase in the discussed system.

III. SUMMARY

In conclusion, we have examined the impact of the cyclic
four-spin exchange interactions on the ground-state phase
diagram of the symmetric spin-1/2 diamond chain. Using the
local symmetries of the model, the spin phases were classi-
fied by the set of good quantum numbers sn=0,1 �n
=1,2 , . . . ,L� related to the composite spins sn=s1n+s2n. The
presented study demonstrates a rich phase diagram in the
parameter space �K ,J��. Apart from the standard magnetic
and paramagnetic phases, the system exhibits two different
tetramer-dimer phases in the sector �1,0 ,1 ,0 , . . . ,1 ,0� as
well as an exotic fourfold-degenerate dimerized ground state
in the sector �1,1 , . . . ,1�.
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