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The critical dynamics of relaxational stochastic models with nonconserved n-component order parameter �
and no coupling to other slow variables �“model A”� is investigated in film geometries for the cases of periodic
and free boundary conditions. The Hamiltonian H governing the stationary equilibrium distribution is taken to
be O�n� symmetric and to involve, in the case of free boundary conditions, the boundary terms �B j

c̊ j�
2 /2

associated with the two confining surface planes B j, j=1,2, at z=0 and z=L. Both enhancement variables c̊j

are presumed to be subcritical or critical, so that no long-range surface order can occur above the bulk critical
temperature Tc,�. A field-theoretic renormalization-group study of the dynamic critical behavior at d=4−� bulk
dimensions is presented, with special attention paid to the cases where the classical theories involve zero
modes at Tc,�. This applies when either both c̊j take the critical value c̊sp associated with the special surface
transition or else periodic boundary conditions are imposed. Owing to the zero modes, the � expansion
becomes ill-defined at Tc,�. Analogously to the static case, the field theory can be reorganized to obtain a
well-defined small-� expansion involving half-integer powers of �, modulated by powers of ln �. This is
achieved through the construction of an effective �d−1�-dimensional action for the zero-mode component of
the order parameter by integrating out its orthogonal component via renormalization-group improved pertur-
bation theory. Explicit results for the scaling functions of temperature-dependent finite-size susceptibilities at
temperatures T�Tc,� and of layer and surface susceptibilities at the bulk critical point are given to orders � and
�3/2, respectively. They show that L dependent shifts of the multicritical special point occur along the tempera-
ture and enhancement axes. For the case of periodic boundary conditions, the consistency of the expansions to
O��3/2� with exact large-n results is shown. We also discuss briefly the effects of weak anisotropy, relating
theories whose Hamiltonian involves a generalized square gradient term Bkl�k� ·�l� to those with a conven-
tional ����2 term.

DOI: 10.1103/PhysRevB.79.104301 PACS number�s�: 05.70.Jk, 68.35.Rh, 64.60.Ht, 11.10.Hi

I. INTRODUCTION

The renormalization-group �RG� approach has played an
important role in the modern theory of critical
phenomena.1–4 For one thing, it provides an appropriate
mathematical framework for the formulation of the theory.
Second, it has led to the development of powerful calcula-
tional tools for quantitatively accurate investigations. Its
most impressive and numerous successes have been achieved
in the study of static bulk critical phenomena. However, ap-
propriate extensions for studies of dynamic bulk critical
phenomena,5,6 boundary critical phenomena,7,8 and finite-
size effects9–22 were developed, which have proven their util-
ity and power. Any one of the features, “dynamics,” “bound-
aries,” and “finite size,” involves fundamental new issues
and adds to the technical complexity of analytic RG studies.
It is therefore not surprising that work on problems involving
combinations of several of these features has remained rather
scarce.

In this paper we shall be concerned with the dynamics of
systems in slabs Rd−1� �0,L� of finite thickness L near their
bulk �L=�� critical point. Both the cases of periodic and free
boundary conditions will be considered. Hence we shall have
to deal with all of the three above-mentioned features.

Despite the availability of some experimental results,
there exist only few previous studies of dynamic critical be-

havior of systems in film geometry �see Ref. 23 and its ref-
erences�. In two earlier papers, Calvo and Ferrell24,25 inves-
tigated the dynamics of binary liquid mixtures confined
between two parallel plates using the mode-mode coupling
approach. Subsequently, the dynamics of bounded one-
component fluids near the liquid-gas critical point �model H
in the terminology in Ref. 5� and that of confined liquid 4He
at the superfluid transition �model E� were analyzed by this
method.26 There exist also a number of papers dealing with
finite-size effects on dynamic critical behavior and dynamic
surface critical behavior.18–20,22,27–43 In other works, finite-
size systems with long-range interactions or quenched disor-
der were investigated.44–46

Recently, Gambassi and Dietrich47 presented a fairly de-
tailed study of the familiar model A �Refs. 5 and 6� in film
geometry within the framework of the classical �zero-loop,
van Hove� approximation, augmented by RG-improved per-
turbation theory. They focused on the situation where the
surface interactions on both confining surfaces are subcriti-
cally enhanced. This corresponds to the case in which ordi-
nary surface transitions7,48 occur in the semi-infinite systems
bounded by either one of the two surface planes. Knowing
that Dirichlet boundary conditions apply under these condi-
tions at both boundary planes on sufficiently large-length
scales, they restricted their analysis by choosing such bound-
ary conditions from the outset.
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In the present paper we shall also be concerned with
model A in film geometry. Our analysis complements and
goes beyond that in Ref. 47 in several ways. First, we shall
not limit ourselves to the classical approximation but present
a RG analysis in d=4−� bulk dimensions, going to one-loop
order in our explicit calculations �and partly beyond to de-
termine contributions of order �3/2�. Second, we shall give up
the restriction to Dirichlet boundary conditions on both con-
fining plates. Aside from periodic boundary conditions, we
shall consider, in the general part of our analysis, the generic
case of symmetry preserving Robin boundary conditions cor-
responding to distinct enhancements of the surface interac-
tions on the two boundary planes. This includes the case of
special-special �sp-sp� boundary conditions for which the
surface interactions on both boundary planes are critically
enhanced.49–51

Periodic and sp-sp boundary conditions share the feature
that Landau theory involves a zero mode at bulk criticality. It
has recently become clear that this causes a breakdown of the
� expansion at Tc,�.50,51 The small-� expansions of the asso-
ciated universal amplitudes of the critical Casimir forces
were found to involve, besides integer powers of �, also frac-
tional powers �k/2 with k�3 �modulo powers of ln ��. This
breakdown of the � expansion is similar to the one reported
in Ref. 52 for the 3−d expansion of bosonic quantum sys-
tems.

The primary aim of this paper is to show that a similar
breakdown of the � expansion is encountered in the study of
dynamic critical behavior of model A in film geometry for
periodic and sp-sp boundary conditions. We shall demon-
strate this explicitly by determining the contributions of or-
der �3/2 of the dynamic finite-size susceptibility �L for both
boundary conditions, the layer susceptibility �zz

�per��L� for pe-
riodic boundary conditions, and their surface analogs
�11

�sp-sp��L� and �1L
�sp-sp��L� for sp-sp boundary conditions at

Tc,�.
The remainder of this paper is organized as follows. In

Sec. II, we first define an appropriate extension of model A to
the film geometry. We then recall the Lagrangian formulation
of the corresponding Langevin equation27,53–55 along with
some necessary background such as the fluctuation-
dissipation theorem and the boundary conditions of the
order-parameter field � and the associated response field
�̃.36,37 In Sec. III, we set up perturbation theory, explain the
renormalization of the theory for d=4−�, give the RG equa-
tions of the multipoint correlation and response functions,
and describe their solutions. Section IV begins with a discus-
sion of the basis of RG-improved perturbation theory. Next,
we show that the � expansion breaks down at Tc,� for peri-
odic and sp-sp boundary conditions and elucidate the origin
of the problem. To obtain well-defined small-� expansions,
we then construct an effective �d−1�-dimensional dynamic
field theory for the zero-mode components of � and �̃. In
Sec. V we present one-loop results for the scaling function
for T�Tc,�. Section VI contains a brief summary and con-
cluding remarks. In addition, we briefly embark on the issue
of universality violations due to weak anisotropy and other
sources brought up recently.56,57 Finally, there are three ap-
pendixes in which technical details are described.

II. MODEL AND BACKGROUND

A. Definition of model A in film geometry

We begin by defining an appropriate extension of model A
for the film geometry. To this end, we consider a film occu-
pying the region V=Rd−1� �0,L� of d-dimensional space
Rd. We wish to study the critical dynamics of such films
involving an n-component order-parameter field ��x , t�
= ����x , t� ,�=1, . . . ,n�. We write position vectors as x
= �y ,z�, where y�Rd−1 and z� �0,L� are the coordinates
alongside and across the film, respectively. We choose peri-
odic boundary conditions along the d−1 principal y direc-
tions. Depending on whether we are concerned with periodic
or free boundary conditions in the z direction, the slab V has
no boundary, �V=0” , or consists of the two
�d−1�-dimensional confining hyperplanes B1 at z=0 and B2
at z=L. In the latter case, we orient the boundary such that
the normal n on �V=B�B1�B2 points in the interior of
V.

We are interested in the dynamics of systems that relax to
a stationary equilibrium state described by the Hamiltonian
�in units of kBT�

H��� = �
V

ddx�1

2
����2 +

�̊

2
�2 +

ů

4!
�4	

+ 	�,f

j=1

2 �
Bj

dd−1y
c̊j

2
�2. �2.1�

Here the contributions localized on the boundary planes B j,
given in the second line of Eq. �2.1�, are only present for free
boundary conditions ��= f� but absent for periodic boundary
conditions ��=per�. The absence of boundary terms linear in
� reflects our assumption that the boundaries do not break
the �→−� of the Hamiltonian. That no quadratic anisotro-
pies have been taken into account in the boundary terms
meets our stronger requirement that the boundaries do not
break the presumed O�n� symmetry. Surface spin anisotro-
pies, which would require separate enhancement variables
c̊j,� for the boundary terms 
��

2 of different components
�,58,59 will not be considered here.

For the sake of simplicity, we shall furthermore assume
that the values of both surface variables c̊j are such that no
long-range surface order can occur at B j above the bulk
critical temperature Tc,�. Recall that in a semi-infinite system
bounded by B j, a transition to a bulk-disordered surface-
ordered phase takes place at a temperature Tc,s�Tc,� when c̊j
drops below the threshold value c̊sp associated with the so-
called special transition �provided the dimension d is suffi-
ciently large that the d−1 dimensional surface can support
long-range order�. Thus, our assumption translates into the
conditions

	c̊j � c̊j − c̊sp� 0, j = 1,2. �2.2�

Their physical meaning is that the surface pair interactions
are subcritically �	c̊j�0� or critically �	c̊j =0� but not super-
critically �	c̊j�0� enhanced.
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We are now ready to define an appropriate extension of
model A to the film geometry considered that is compatible
with our assumptions. Straightforward considerations analo-
gous to those made in Refs. 36 and 37 for semi-infinite sys-
tems lead us to consider the Langevin equations,

�̇��x,t� = − ̊
	H
	��

�x,t� + ���x,t� , �2.3a�

which are meant in the sense of Ito.60 Here ̊ is the bare
Onsager coefficient and � is a Gaussian random force of
mean zero

����x,t�� = 0 �2.3b�

and variance

����x,t�����x�,t��� = 2̊	���	�x − x��	�t − t�� . �2.3c�

B. Lagrangian formulation of the theory

In our subsequent analysis of this model it will be conve-
nient to use its equivalent Lagrangian
formulation.27,36,37,53–55 This involves the action

J ��̃,�� = �
ti

tf

dt��
V

�̃ · �̊��� · �� + �̊ +
ů

3!
�2�� + �̇

− ̊�̃	� + 	�,f̊

j=1

2 �
Bj

c̊ j�̃ · �	 , �2.4�

where �̃ is an auxiliary field, the so-called response field.

The gradient operators �� and �� act as indicated to the left
and right, respectively.36,37,61 Note that we have dropped a
contribution 
��t=0� �where ��t� is the Heaviside function�
produced by the Jacobian det�	�� /	���, choosing a prepoint
discretization in time.

We fix the initial condition for the solutions to Eq. �2.3� in
the infinite past, taking the limits ti→−� and tf →�, and
suppress these integration limits henceforth. Multipoint cor-
relation functions of the fields ���x , t� and �̃�̃�x̃ , t̃� can then
be calculated with the functional weight exp�
−J��̃ ,���D��̃ ,��, where the measure D��̃ ,�� is propor-
tional to �x,�,td��̃� /2�i�d�� and normalized such that

� D��̃,��e−J��̃,�� = 1. �2.5�

The field �̃��x , t� describes how averages �O���� of ob-
servables O��� obtained from the solutions to the Langevin
equation �Eq. �2.3�� upon averaging over noise histories re-
spond to perturbations that change its right-hand side by a

function J̃��x , t�. In the case of model A, the addition of the
time-dependent magnetic-field terms

Hfields = − �
V

ddxh̊�x,t� · ��x,t�

− 	�,f�
B

dd−1yh̊B�x,t� · ��x,t� �2.6�

to Hamiltonian �2.1� would yield such a perturbation with

J̃��x , t� = ̊h��x , t� for x�B and corresponding boundary
terms 
h�

B. To explain the consequences, let us introduce the
generating functional

G�J̃,K̃;J,K� = ln�exp� dt��
V

�J̃ · �̃ + J · ��

+ �
B

�K̃ · �̃ + K · ��	�� , �2.7�

where K̃ and K are source functions localized on the bound-
ary B. They serve to generate the boundary operators �̃B

=�̃�xB , t� and �B=��xB , t� with xB�B by functional dif-
ferentiation. In the case of periodic boundary conditions,

they are not needed, and we write G�J̃ ;J� for the analog of
functional �2.7�.

To specify a boundary point xB, we must say on which
boundary plane B j it is located and give its lateral coordinate
r. Denoting the restriction of �� to B j by ��

Bj, we can write
the boundary operators as ��

Bj�r , t� and �̃�
Bj�r , t�. Whenever

we do not wish to specify on which surface plane these
boundary operators are localized, we continue writing ��

B

and �̃�
B. Analogous conventions will be used for the bound-

ary sources K̃�
Bj and K�

Bj and the boundary magnetic fields

h̊�
Bj.

Functional �2.7� generates the cumulants

��
i=1

Ñ

�̃�̃i�
k=1

M̃

�̃
�̃k

B �
l=1

N

��l �
m=1

M

��m

B �cum

� ̊−Ñ−M̃W�Ñ,M̃;N,M�,

�2.8�

whose Ñ+N+M̃ +M position vectors, time arguments, and
tensorial indices we have suppressed. From the correspon-
dences

̊	

	J̃��x,t�
↔

	

	h̊��x,t�
↔ ̊�̃��x,t� �2.9�

and

̊	

	K̃�
Bj�r,t�

↔
	

	h̊�
Bj�r,t�

↔ ̊�̃�
Bj�r,t� , �2.10�

it is clear that the functions W�Ñ,M̃;N,M� defined in Eq. �2.8�
are the usual connected correlation and response functions.

C. Fluctuation-dissipation theorem and mesoscopic boundary
conditions

Several other remarks are in order here, which concern
the fluctuation-dissipation theorem and the boundary condi-
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tions on the mesoscopic scale where our continuum approxi-
mation applies. First, the fluctuation-dissipation theorem5

̊����x,t��̃���x�,t��� = − ��t − t���t����x,t�����x�,t���cum

�2.11�

holds. Second, the boundary contributions to the classical
equations of motions yield the boundary conditions

�n�̃�x,t� = c̊j�̃�x,t�, x � B j ,

�n��x,t� = c̊j��x,t�, x � B j . �2.12�

These hold beyond the classical approximation inside of av-
erages �up to anomalies at coinciding points�.36–38 On the
level of the classical �zero-loop� approximation, they ensure
that the matrix integral kernel

J�2� � � 2̊ �t + ̊�− � + �̊�

− �t + ̊�− � + �̊� 0
� � �	���

�2.13�

of the quadratic part of J��̃ ,�� is self-adjoint. Third, the
boundary conditions �Eq. �2.12�� imply that the fluctuation-
dissipation theorem �2.11� remains valid when either x or x�
approaches a surface point. In the case of periodic boundary
conditions, we have

�̃�x + Lez,t� = �̃�x,t� ,

��x + Lez,t� = ��x,t� �2.14�

instead of Eq. �2.12�.

III. PERTURBATION THEORY AND RG

A. Free propagators

To set up perturbation theory, we employ dimensional
regularization and focus on the disordered phase. The free
response and correlation propagators, RL and CL, then follow
from the inverse of matrix kernel �2.13�. We have

�J�2��−1 � GL = � 0 RL
†

RL CL
� � �	��� , �3.1�

where RL is the solution to

��t + ̊�− � + �̊��RL�x,t;x�,t�� = 	�x − x��	�t − t�� ,

�3.2�

while CL is proportional to the convolution RL�RL
†,

CL�x,t;x�,t�� = 2̊�RL � RL
†��x,t;x�,t��

= 2̊�
−�

�

dt̃�
V

ddx̃ RL�x,t; x̃, t̃�RL�x̃, t̃;x�,t�� .

�3.3�

The yt-Fourier transforms of these quantities �for which
we use the notational conventions summarized in Appendix
A� can be expressed as

RL�p;z,z�;�� = 

m

fm�z�fm
� �z��

− i� + ̊��̊ + p2 + km
2 �

�3.4�

and

CL�p;z,z�;�� = 

m

2̊fm�z�fm
� �z��

�− i� + ̊��̊ + p2 + km
2 ��2

�3.5�

in terms of a complete set of orthonormal eigenfunctions
fm�z� of the operator −�z

2, where fm
� �z�� is the complex con-

jugate of fm�z��. These functions are properly normalized
solutions to

− �z
2 fm�z� = km

2 fm�z� , �3.6�

subject to the boundary conditions

fm� �0� = c̊1fm�0� ,

− fm� �L� = c̊2fm�L� . �3.7�

For non-negative values of c̊1 and c̊2, the spectrum �km
2 � is

discrete with km
2 �0. The eigenfunctions are phase-shifted

cosine functions fm�z� =Am cos�kmz+�m�, whose phase shift
�m follows from the first of the boundary conditions �Eq.
�3.7��. The eigenvalues are solutions to the transcendental
equation implied by the boundary condition at z=L. For gen-
eral values of c̊j�0, the eigenvalues km

2 depend on both c̊1
and c̊2, as do the normalization factors Am and the phase
shifts �m �via km�.62–64 For the special values �c̊1 , c̊2�
= �� ,��, �0,0�, and �� ,0� corresponding to the combinations
D-D, N-N, and D-N of Dirichlet �D� and Neumann �N�
boundary conditions on the two planes, the eigenvalues km

2

and eigenfunctions fm can be found in Appendix A of Ref. 49
and Appendix A of Ref. 78.

However, the response propagator RL�p ;z ,z� ;�� can also
be determined by solving the analog of Eq. �3.2� in the pz�
representation using familiar methods for Sturm-Liouville
differential equations.65 We give the result of such a calcula-
tion for general non-negative values of c̊1, c̊2, and �̊ in Eq.
�B5� of Appendix B. In the special cases c̊1= c̊2=0 and c̊1
= c̊2=�, the result is equivalent to the representations7,10,47

R
L

�N-N

D-D
�

�p;z1,z2;�� = 

m=−�

�

�R��p,z1 − z2 − m 2L,��

� R��p,z1 + z2 − m 2L,��� �3.8�

of the corresponding Neumann and Dirichlet propagators
RL

�N-N� and RL
�D-D� as a sum of image contributions involving

the bulk propagator �see, e.g., Refs. 7, 10, and 51�,

R��p,z12,�� =
1

2̊�̊�
e−�̊��z12�, �3.9�

where z12 � z1−z2 and

�̊� = �p2 + �̊ − i�/̊ . �3.10�

In the case of periodic boundary conditions, one has

H. W. DIEHL AND H. CHAMATI PHYSICAL REVIEW B 79, 104301 �2009�

104301-4



RL
�per��p;z1,z2;�� = 


m=−�

�

R��p,z12 − mL,�� . �3.11�

The corresponding finite-size correlation propagators CL
�N-N�,

CL
�D-D�, and CL

�per� can be expressed in terms of the free bulk
correlation propagator C��p ,z12,�� in a manner completely
analogous to Eqs. �3.8� and �3.11�.

B. Reparametrizations

As is well known and explained elsewhere,7,10,20,27,36,37

the singularities of R��x12, t12� and C��x12, t12� at coinciding
points �x12, t12� = �0 ,0� produce ultraviolet �uv� singularities
in Feynman integrals of the multipoint cumulant and re-
sponse functions �Eq. �2.8��. For dimensions d�4 and peri-
odic boundary conditions, the uv singularities of these func-
tions can be absorbed via standard “bulk” reparametrizations
of the form

� = Z�
1/2�R, �3.12a�

�̃ = Z
�̃

1/2
�̃R, �3.12b�

̊ = �−2�Z�/Z�̃�1/2 , �3.12c�

	�̊� �̊ − �̊c = �2Z�� , �3.12d�

ůNd = ��Zuu . �3.12e�

Here � is an arbitrary momentum scale and �̊c denotes the
critical value of �̊ of the d-dimensional bulk theory. Follow-
ing Ref. 51, we choose the factor that is absorbed in the
renormalized coupling constant u as

Nd =
2��3 − d/2�

�d − 2��4��d/2 =
1

16�2�1 +
1 − �E + ln�4��

2
� + O��2�	 ,

�3.12f�

where �E=−���1� is Euler’s constant. If we employ dimen-
sional regularization and fix the renormalization factors Zg,
g=� , �̃ ,u ,�, by minimal subtraction of poles in �, this con-
vention ensures that the two-loop results for these functions
given in Eqs. �3.42a�–�3.42c� and �4.54� of Ref. 7 apply.

For free boundary conditions, additional primitive uv sin-
gularities with support on B1 and B2 occur. These can be
absorbed through the additional �“surface”� reparametriza-
tions,

	c̊j � c̊j − c̊sp = �Zccj ,

�B = �Z�Z1�1/2��B�R,

�̃B = �Z�̃Z1�1/2��̃B�R, �3.13�

known from the semi-infinite case, where ��B�R and ��̃B�R
are renormalized boundary operators. Explicit two-loop ex-
pressions for the renormalization factors Z1 and Zc may be
found in Eqs. �3.66a� and �3.66b� of Ref. 7 or in Refs. 66 and
67.

C. RG equations and scaling

Upon introducing the renormalized functions

WR
�Ñ,M̃;N,M� = Z�

−�Ñ+N�/2�Z�Z1�−�M̃+M�/2W�Ñ,M̃;N,M�,

�3.14�

we can exploit the invariance of the bare functions

W�Ñ,M̃;N,M� under changes �→�� in a standard fashion to
obtain the RG equations,

�D� + �Ñ + N�
��
2

+ �M̃ + M�
�� + �1

2
	WR

�Ñ,M̃;N,M� = 0.

�3.15�

Here

D� = ��� + 

g=u,�,,c1,c2

�g�g. �3.16�

The beta and exponent functions �g and �g are given by

�g � ����0g = − �dg + �g�g

= �
− �� + �u�u , g = u

− �2 + ���� , g = �

�2 − �� , g = 

− �1 + �c�cj , g = cj , j = 1,2
� �3.17�

and

�g � ����0g, g = u,�,�,�̃,,1,c1,c2, �3.18�

respectively, where �� �0 means a derivative at fixed param-
eters of the bare theory. Explicit results for �u to order u3 and
for ���u�, ���u�, �1�u�, and �c�u� ��cj

�u� to order u2 may
be looked up in Eqs. �3.75a�, �3.75b�, �3.76a�, and �3.76b� of
Ref. 7, respectively. The function �, which can be written as
�= ���−��̃� /2, is given to order u2 in the first line of Eq.
�III.8� of Ref. 27.

It should be obvious how the above RG equations carry
over to the case of periodic boundary conditions: the RG

equation for WR
�Ñ;N� agrees with Eq. �3.15� if we set M̃ =M

=0, except that the contributions to D� involving �cj
drop out

because these variables do not occur in the theory when pe-
riodic boundary conditions are chosen.

Using characteristics the RG equations �Eq. �3.15�� can be
exploited in a familiar fashion to derive the asymptotic scal-

ing behavior of the functions WR
�Ñ,M̃;N,M�. Let ḡ��� be solu-

tions to the flow equations,

�
dḡ���

d�
= �g�ū���, ḡ����, g = u,�,,c1,c2, �3.19�

satisfying the initial conditions ḡ�1� =g. Then we have

ln � = �
u

ū dv
�u�v�

�3.20�

and
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ḡ��� = Eg�ū���,u��−�dg+�g
��g, g = �,,c1,c2, �3.21�

where Eg�ū ,u� are the trajectory integrals,

Eg�ū,u� = exp�− �
u

ū

dv
�g�v� − �g

�

�u�v� 	 , �3.22�

and the asterisk indicates values �g
� ��g�u�� at the nontrivial

root u�=O��� of �u�u�.
To illustrate the consequences of the RG equations �Eq.

�3.15��, let us consider the multipoint cumulants in the xt

representation. Writing WR
�Ñ,M̃;N,M�

� WR�x , t ;u ,� ,c1 ,c2 ,L , ,��, where x and t represent all po-
sition and time variables, respectively, we note that the di-

mension of this function is Ñ+M̃�dW, with

dW = �Ñ + M̃�
d + 2

2
+ �N + M�

d − 2

2
. �3.23�

Using this in conjunction with the solution to the RG equa-
tion �Eq. �3.15��, one arrives at

WR�x,t;u,�,c1,c2,L,,��

= Ñ+M̃�dW��W

� EW���WR���x,̄�2t; ū, �̄, c̄1, c̄2,��L,1,1� .

�3.24�

Here �W is the scaling dimension of WR. We use the notation
��O� for the scaling dimension of an operator O�x , t�. Then
we have

���� � �d − 2 + ��
� �/2 = �/� ,

���̃� � 2 − �
� + ���� = z + �/� ,

���B� � �d − 2 + ��
� + �1

��/2 = �1
sp/� ,

���̃B� � z + ���B� = z + �1
sp/� , �3.25�

where we have introduced the standard static bulk critical
indices � and �, the dynamic bulk critical exponent z, and
the surface critical exponent �1

sp of the special transition.7 In
terms of these quantities, the scaling dimension reads

�W = Ñ���̃� + N���� + M̃���̃B� + M���B� . �3.26�

Further, the prefactor EW��� denotes the trajectory integral

EW��� = exp�
u

ū��� �W�v� − �W
�

�u�v�
dv� �3.27�

with

�W�u� =
Ñ + N

2
�� +

M̃ + M

2
��� + �1� − �Ñ + M̃��.

�3.28�

It is easily checked that Eq. �3.24� yields scaling forms in
accordance with the phenomenological theory of finite-size

scaling.14,15 Assuming that the initial coupling constant u is
nonzero, we replace the running coupling constant ū and the
scale-dependent amplitude EW��� by their respective long-
scale limits ū�0� =u� and EW

� =EW�0� and substitute the run-

ning variables �̄, ̄, and c̄j by their limiting forms,

ḡ��� �
�→0

Eg
��u��−�dg+�g

��g = �E�
��u��−1/��

E
��u��z

Ec
��u��−�/�cj ,

� �3.29�

where Eg
��u� � Eg�u� ,u� are nonuniversal amplitudes, and we

have introduced the surface crossover exponent �=��1
+�c

��.7 If we now fix the scale parameter � � �� for given �
�0 by �̄���� =sgn���, then

�−1��
−1 �
�→�0

�−1�E�
�����−� �3.30�

agrees with the second-moment bulk correlation length

��
� � ��

�0��T/Tc,� − 1�−� �3.31�

up to a nonuniversal scale factor. We thus obtain the scaling
forms

WR�x,t;u,�,c1,c2,L,,��

� Ñ+M̃�dW ����
��−�WEW

� ���x/��
�,t;c1,c2,L/��

�� ,

�3.32�

in which t represents the set of all scaled time variables,

t = E
��2t����

��−z, �3.33�

while c1 and c2 denote the scaled surface variables,

c j = Ec
�cj����

���. �3.34�

The scaling functions �� are given by the restrictions of
WR�¯ ; ū , �̄ ,¯� to the hyperplanes with ū=u� and �̄=�1.
Analogous results apply for periodic boundary conditions,
except that the surface scaling variables c1 and c2 are miss-
ing.

IV. RG-IMPROVED PERTURBATION THEORY

A. Background

There exist known important cases of critical phenomena,
in which the infrared �IR� singularities one is concerned with
originate from the divergence of a single length, such as the
bulk correlation length ��. The most familiar example is
static critical behavior that occurs at a usual bulk critical
point when it is approached from the disordered phase. The
crux of RG-improved perturbation theory is to exploit the
RG to relate the behavior of systems with large �� to that of
systems with �� of order unity and then determine properties
of the latter by means of appropriate perturbation theory
techniques. Provided no other sources of IR singularities ex-
ist, the resulting perturbation expansions will not be plagued
by IR problems even though sophisticated resummation
methods may well be required to obtain reliable results.17

In order to determine the behavior of properties at the
critical point, information about the behavior of the static
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bulk analogs of the above scaling functions �� in the limit
x /��→0 is required. In the simple case considered so far,
this can be inferred from the requirement that a temperature
independent nonzero limit results for the property consid-
ered. Furthermore, the form of corrections to the leading
asymptotic behavior of the pair correlation function for
�x� /�� 1 can be determined via the short-distance expan-
sion �see, e.g., Refs. 68 and 69, and their references�.

However, even in the case of static bulk critical behavior,
additional sources of IR singularities may exist. For ex-
ample, in systems exhibiting spontaneous breakdown of con-
tinuous symmetries, IR singularities associated with Gold-
stone modes appear on the coexistence curve.70 Other
examples are provided by crossover phenomena such as the
crossover away from a bicritical point. Here the crossover
from one type of critical behavior to another leads to singu-
larities in the corresponding crossover scaling functions.69,71

To ensure that these IR singularities are properly taken into
account in RG-improved perturbation theory is a nontrivial
task. For some cases, specially designed RG schemes exist
that allow one to correctly build in the asymptotic behavior
at the stable fixed point to which the crossover occurs.68,72

Within the framework of dimensionality expansions, this
usually works when the additional IR singularities are prop-
erly handled by simple theories such as the random phase
approximation70,72 or are accessible to an �=d�−d expansion
about the same upper critical dimension d�.69,71 Much more
challenging are problems involving two distinct kinds of non-
trivial critical behavior with different upper critical dimen-
sions.

Unfortunately, the study of critical behavior in films of
finite thickness belongs to the latter class of hard problems.
The reason is that a full treatment would involve a proper
analysis of dimensional crossover. Suppose the film under-
goes for finite L and given bulk dimension d a sharp phase
transition at a temperature Tc,L. If all interactions are ferro-
magnetic, this temperature must satisfy Tc,L�T� by
Griffiths-Kelly-Sherman inequalities.73,74 On lowering the
temperature from an initial temperature T�Tc,�, one will
therefore first observe d-dimensional critical behavior as
L ,��→� with L /��!1, which will cross over to
�d−1�-dimensional critical behavior as the length �� on
which correlations along the film decay becomes much larger
than L.14 Since d- and �d−1�-dimensional critical behaviors
involve different upper critical dimensions �d�=4 and d�=5,
respectively�, one cannot handle both of them by the same
dimensionality expansion. In those cases where no sharp
phase transition is possible for finite L, a rounded transition
will occur at Tc,L. Even then, the � expansion must not be
expected to correctly capture the behavior for T � Tc,L. Be-
cause of these and technical difficulties, previous investiga-
tions of static finite-size effects in films based on the �
expansion49–51,75–78 have focused on the case T�Tc,�, even
though RG-improved mean-field results for T�Tc exist for
�d=3�-dimensional systems with bulk critical and tricritical
points.79–84

For simplicity, we shall restrict ourselves here also to the
case T�Tc,�. We begin with a discussion of the breakdown
of the � expansion at Tc,� for periodic and sp-sp boundary
conditions. Since the latter is the only case of free boundary

conditions explicitly considered henceforth, we shall no
longer keep track of the enhancement variables, fixing c1 and
c2 at zero whenever we deal with this boundary condition.

B. Breakdown of � expansion at Tc,� and construction of
effective action

We shall use dimensional regularization. In a perturbative
approach, the critical values �̊c and c̊sp then vanish.7,66,67 In
any case, the response and correlation propagators for sp-sp
boundary conditions satisfy Neumann boundary conditions
on both planes ��=N-N� at zero-loop order.

The eigenvalues km
2 of −�z

2 for periodic ��=per� and N-N
boundary conditions are given by km

�per� =2�m /L with m�Z
and km

�N−N� =�m /L with m=0,1 , . . . ,�, respectively.49 In
both cases, one has the eigenvalue k0

2=0. As can be seen
from the mode decompositions �3.4� and �3.5�, the associated
k0=0 modes give IR singular contributions to the free propa-
gators RL and CL at the bulk critical temperature ��̊=0� when
�= p=0. This is an artifact of the zero-loop approximation,
which predicts that a sharp phase transition occurs for finite
L precisely at Tc,�, yielding no shift Tc,L−Tc,�. For bulk and
semi-infinite systems the contributions from these zero
modes are negligible. However, for films of finite thickness
L, we must be more careful.

It is known from Refs. 50 and 51 that beyond zero-loop
order, the k=0 component of the order parameter becomes
critical at the shifted values 	�̊=−	�̊L

�per� and −	�̊L
�sp-sp� given

by

	�̊L
�per� = 22−�	�̊L

�sp-sp� = ů
n + 2

6

��1 − �/2���2 − ��
2�2−�/2L2−� , �4.1�

where ��s� denotes Riemann’s zeta function. In order to ob-
tain a well-defined RG-improved perturbation theory at Tc,�,
we generalize the approach in Refs. 50 and 51 to dynamics.
Writing

��y,z,t� = L−1/2��y,t� + ��y,z,t� ,

�̃�y,z,t� = L−1/2�̃�y,t� + �̃�y,z,t� , �4.2�

with

�
0

L

��y,z,t�dz = �
0

L

�̃�y,z,t�dz = 0 , �4.3�

we split the fields ��x , t� and �̃�x , t� into their zero-mode
components ��y , t� and �̃�y , t� and their k�0 orthogonal

complements ��x , t� and �̃�x , t�. Upon integrating out the
latter fields, we define an effective action Jeff��̃ ,�� for the
zero-mode components by

Jeff��̃,�� � − ln Tr�̃,� e−J��̃+L−1/2�̃,�+L−1/2��

= Jeff
�0���̃,�� − ln�e−Jint��̃,�̃,�,����̃,�, �4.4�

where

�·��̃,� = � ·e−J��̃,��D��̃,�� . �4.5�

Here
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Jeff
�0���̃,�� = J�L−1/2�̃,L−1/2��

= � dt� dd−1y�̃ · �̊��̊ − �y
2

+
ů

6L
"2�� + �̇ − ̊�̃	� �4.6�

is the zero-loop contribution to Jeff��̃ ,��. The interaction
part Jint is given by

Jint��̃,�̃,�,�� =
̊ů

6L
� dt�

V

�#2��̃ · �� + 2��̃ · ���� · ��

+ "2��̃ · �� + 2��̃ · ���� · ��

+ L−1/2��̃ · ��#2 + L−1/2��̃ · ��#2� . �4.7�

Computing Jeff in a loop expansion and writing

Jeff��̃,�� = Jeff
�0���̃,�� + Jeff

�1���̃,�� + ¯ , �4.8�

one easily derives the one-loop contribution

Jeff
�1���̃,�� =

1

2
Tr ln�1 +

̊ů

L
GL,#

��� · B	 �4.9�

�cf. Ref. 20�, where GL,#
��� denotes the free propagator in the

k�0 subspace for the respective boundary conditions �
=per and sp-sp. Let P0 � �k0��k0� be the projector onto this
k=0 space and Q0=1− P0. Then we may write

GL,# = Q0GLQ0 = � 0 RL,#�y2,t2;y1,t1�
RL,#�y1,t1;y2,t2� CL,#�y1,t1;y2,t2�

�
� �	��� , �4.10�

where RL,# and CL,# are given by the analogs of Eqs. �3.4�
and �3.5� one obtains by restricting their summations over m
to values m�0.

The operator B is block diagonal in yt space. Introducing
the familiar symmetric tensor

S���	 =
1

3
�	��	�	 + 	��	�	 + 	�		��� , �4.11�

we have

B = 	�y1 − y2�	�t1 − t2�

� �� 0
1

2
S���	"�"	

1

2
S���	"�"	 S���	"̃�"	 ��

"̃="̃�y1,t1�

"="�y1,t1�

.

�4.12�

Graphs �i� and �ii� depicted in Fig. 1 are the contributions
implied by Jeff

�1� that involve two and four fields, respectively.
Unlike graph �i�, which is local in y and t, graphs �ii�–�iv�
depend on the separations in y and t between their two ver-
tices �marked as black dots� and thus are nonlocal. Similar
nonlocal contributions involving 6,8 , . . . fields are contained
in Jeff

�1���̃ ,��. At one-loop order no modification of the On-

sager coefficient ̊ appears. However, the two-loop graph
�iv� produces a nonlocal modification of it.

Let us use the notations

��̃1,. . .,�k

�k̃;k� �ỹ1, t̃1; . . . ;yk,tk� =  	k̃+kJeff

	"̃�̃1
�y�̃1

, t̃1� ¯ 	"�k
�yk,tk�

 
"̃="=0

�4.13�

for the effective vertices of Jeff and write �st
�k��y1 , t1 ; . . .yk , tk�

for the analogously defined static effective k-point vertex
functions �which were denoted by ��k� in Ref. 51�. By anal-
ogy with the bulk case, the vertex functions ��1;1��. . . ;�� and
��1;3��. . . ; ��i�� must satisfy the relations

��1;1��. . . ;� = 0� = ̊�st
�2��¯� �4.14�

and

��1;3��. . . ;��i = 0�� = ̊�st
�4��¯� , �4.15�

where the ellipses stand for the positions yi or momenta pi.

The contribution of graph �i� to ��1;1��. . . ;�� / ̊ is indepen-
dent of � and hence agrees with that of its static analog

to the static two-point vertex function �st
�2�. It gives an

L-dependent shift of the temperature variable, changing it to

ϕ̃ ϕ
(i)

ϕ̃

ϕ

ϕ

ϕ
(ii)

ϕ̃

ϕ

ϕ̃

ϕ
(iii)

ϕ̃ ϕ̃

(iv)

FIG. 1. �Color online� Graphs contributing to minus the effec-
tive action �4.8�. Lines with and without an arrow represent the
response and correlation propagators RL and CL, respectively. Red
dotted lines indicate k=0 components; blue broken lines indicate
k�0 components. For further explanations, see main text.
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�̊L
�����̊� = �̊ +

n + 2

6
ůI1

����L; �̊� , �4.16�

where the integrals

I1
����L; �̊� = 


m�0
�

p
�

0

L dz

L

�fm
����z��2

p2 + km
2 + �̊

�4.17�

for the two boundary conditions in question, namely �=per
and sp-sp are given by

I1
�per��L; �̊� =

Ad−1

L
�̊�d−3�/2 − Ad�̊

�d−2�/2 +
2Qd,2��̊L2�
�̊Ld

�4.18�

and

I1
�sp-sp��L; �̊� = I1

�per��2L; �̊� , �4.19�

respectively. Here we started to use the notational conven-
tions summarized in Appendix A for momentum integrals
such as �p. Further,

Ad =
2Nd

4 − d
= − �4��−d/2��1 − d/2� , �4.20�

while Qd,2�r� is a special one of the functions defined by85,86

Qd,$�r� �
r

2� 

k�2�Z

− �
−�

� dk

2�	�
p

�p2 + k2�$/2−1

p2 + k2 + r
.

�4.21�

Using definition �4.16�, the result implied by Eqs. �3.20�–
�3.24� of Ref. 51 becomes

��1;1��p,��/̊ = p2 − i�/̊ + �̊L
�����̊� + O�ů2� . �4.22�

For a discussion of the properties of the functions Qd,$ the
reader is referred to Appendix D of Ref. 51, where also plots
of Q4,2�r� and Q6,2�r� are displayed �see Fig. 9 of Ref. 51�. It
is known from previous works49,51 that the above results
yield the shifts �Eq. �4.1�� for �̊=0. This is easily verified
utilizing the fact that

lim
r→0

Qd,2�r�/r = ��d−5�/2���3 − d�/2���3 − d�/4

= �−d/2��d/2 − 1���d − 2�/4 �4.23�

�when d�1,3 ,5� according to Eq. �B35� of Ref. 87 and Eq.
�C9� or �A15� of Ref. 51.

It is equally easy to verify that the contribution of graph
�ii� to ��1;3� is in conformity with Eq. �4.15�. Upon express-
ing RL�t� in terms of �tCL via the fluctuation-dissipation re-
lation �2.11�, one arrives at the desired result

�0
�dtRL�t�CL�t� = �2̊�−1�CL�t=0��2.

Let us also note that the RG equations �Eq. �3.15�� for the

functions WR
�Ñ;N� imply analogous ones for the renormalized

vertex functions �R
�k̃;k�. In the case of periodic boundary con-

ditions, these vertex functions are evidently multiplicatively

renormalizable. One has �R
�k̃;k� =Z

�̃

k̃/2
Z�

k/2��k̃;k�, which leads to
the RG equations

�D� − k̃
��̃

2
− k
��
2

	�R
�k̃;k� = 0. �4.24�

For �=sp-sp things are somewhat more subtle. It is
known that ��1,3� has uv singularities corresponding to coun-
terterms located on B that are proportional to �̃ ·�n� and
� ·�n�̃. Therefore, it is not multiplicatively renormalizable
and does not satisfy a homogeneous RG equation.7,10,66,67

However, when integrated with smooth background fields
satisfying the boundary conditions �Eq. �2.12�� with c̊1= c̊2
=0, the boundary singularities of the mentioned form give no
contribution. The construction of Jeff��̃ ,�� involves integra-
tions with such functions �namely, ## propagators�. Hence,
the RG equations �Eq. �4.24�� carry over to the case of sp-sp
boundary conditions.

They can be exploited in a standard fashion to obtain the

scaling forms of the vertex functions ��k̃,k���pi ,�i�� for both
types of boundary conditions �=per and �=sp-sp. One ob-
tains

�R
�k̃;k���pi,�i�;�,L� � �d�−2�����−d�−��

�

�X�
�����pi��;�i/%c�;L/���

�4.25�

with

d� = 2 − k̃ + k −
d − 1

2
�k̃ + k − 2� ,

��
� = �k̃ + k��/2 + �k̃ − 1��z − 2�/2, �4.26�

and the characteristic bulk frequency

%c = �����−z. �4.27�

V. SCALING FUNCTIONS OF FINITE-SIZE
SUSCEPTIBILITIES

We are now ready to turn to the computation of scaling
functions by means of the small-� expansion. We first con-
sider the scaling function of the dynamical response function

̊�� · �̃� at the bulk critical point.

A. Dynamical finite-size response function

Noting that the O�n� symmetry is unbroken when
T�Tc,�, we set �=�=1 in the response and vertex functions
W��

�1;1� and ���
�1;1� to obtain

̊

n
�� · �̃� =

1

L
�

0

L

dz�
0

L

dz�W11
�1;1�. �5.1�

The p� transform of this quantity gives us the finite-size
susceptibility

�L�p,�� = �
0

L dz1

L
�

0

L

dz2� dd−1y12� dt12

�
	��1�x1,t1��
	h1�x2,t2�

ei��t12−p·y12�. �5.2�
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The perturbation series of its inverse to order o�ů2� can be
written as

��L
����p,���−1 =

− i�

̊
+ p2 + �̊L

��� +
n + 2

6

ů

L
G�

�d−1��0��̊L
����

+ o�ů2� , �5.3�

where

G�
�d−1��0��̊� = − Ad−1�̊

�d−3�/2 �5.4�

is the static bulk propagator in d−1 dimensions,

G�
�d−1��y��̊� = �

p
�p2 + �̊�−1eip·y

=
��̊/y2��d−3�/4

�2���d−1�/2 K�d−3�/2�y��̊� , �5.5�

taken at zero separation y.
From the RG equations �Eq. �3.15�� one concludes that

the renormalized function �L,R
��� has the asymptotic scaling

form

�L,R
��� �p,�;�� � �−�L2−� �����pL,�/�L,L/��� , �5.6�

where we have introduced the characteristic finite-size fre-
quency

�L = ��L�−z. �5.7�

Using the above result �5.3�, one can verify that this scaling
form complies with the small-� expansion. At the order of
our present calculation, the renormalization factors Z�, Z,
and Zu can all be substituted by unity, but we need7

Z� = 1 +
n + 2

3�
u + O�u2� �5.8�

to first order in u. The pole term 
�̊u /� of �̊L gets canceled
when �̊ and ů are expressed in terms of renormalized quan-
tities and the contribution from the counterterm 
Z�Z�−1 is
added. The associated renormalized shifts

�L
��� = �−2Z�

−1�̊L
��� �5.9�

are uv finite; we obtain

�L
�per� = �L/2

�sp-sp� + O�u2�

= � + �
n + 2

6

u

��/2
� ��/2 − 1

�/2
+

Ad−1

�L�1/2Nd
+

2Qd,2��2�L2�
��2L2��d/2Nd

	
+ O�u2� . �5.10�

Combining the above results then gives

��L,R
��� �p,���−1 =

− i��2


+ p2 + rL

��� + O�u2� , �5.11�

where

rL
��� = �2�L

���1 −
n + 2

6

uA3−�

�LN4−�
��L

����−�1+��/2� + O�u2�

�5.12�

are the inverse static finite-size susceptibilities.
Note that by keeping the O�u� terms of �L

��� in the contri-
butions 
u��L

�����1−��/2, we have included contributions of or-
der u2 in these terms. While these results for rL

��� differ from
those in Ref. 51 through precisely such terms, one easily
checks that they reduce to Eqs. �4.31� and �4.32� of this
reference when expanded to first order in u.

Our rationale for keeping the O�u� contribution to the
shift in the one-loop term associated with the zero mode
should be clear. It prevents the propagator G�

�d−1� that it in-
volves from becoming massless at bulk criticality when L
��. To compute the scaling functions ����, we must com-
pute �L

��� at the IR stable root u�=3� / �n+8� +O��2� of the
beta function �u, where we can exploit the facts that both z

−2 and � are of order �2. When ��0, the shifted tempera-
ture variable �̊L

��� is of zeroth order in u. If we insert it into
the contribution 
u��L

������−1�/2, the O��� term of �L
��� �u=u� will

therefore produce an O��2� contribution. However, at criti-
cality �=0, �̊L

��� is linear in u and hence of order u�=O���
when evaluated at u�. Accordingly, a contribution of order
�3/2 results from this source.

Proceeding as indicated above, one arrives at the results

������p,w,L��−1 = p2 − iw

+ X�
����L�1 − 2��

n + 2

n + 8
�X�

����L��−1/2�
�5.13�

with

X�
�per��L� = 4X�

�sp-sp��L/2� = L2 + �
n + 2

n + 8

16�2Q4,2�L2� + 2�L3

L2 .

�5.14�

The latter functions have the asymptotic behaviors

X�
����L� �

L→�
L2�1 + O�L−1�� �5.15�

and

X�
����L� �

L→0

2�2

3a�
2

n + 2

n + 8
� , �5.16�

where a� is given by

a� = 1 for � = per

2 for � = sp-sp.
� �5.17�

Setting p=w=0 in Eq. �5.13� gives us the scaling func-
tions of the static finite-size susceptibilities. One easily veri-
fies that our results for L2 /�����0,0 ,L� are in conformity
with O��� expressions �4.46� and �4.47� of Ref. 51.

The limiting behavior �Eq. �5.16�� implies that the scaling
functions �Eq. �5.13�� become
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������p,w,0��−1 = p2 − iw +
2�2

3a�
2

n + 2

n + 8

��� − �6a��n + 2

n + 8
�1/2

�3/2	 + o��3/2� �5.18�

at L=0, which explicitly shows the announced O��3/2� con-
tributions. Before we embark on a discussion of this result,
let us note that the scaling functions of the correlation func-
tion,

CL
����p,�� = �

0

L dz1

nL
�

0

L

dz2� dd−1y12� dt12

� ���x1,t1� · ��x2,t2��cumei��t12−p·y12�,

�5.19�

need no separate calculations since the fluctuation-
dissipation relation �2.11� in conjunction with Eq. �5.6�
yields

CL
����p,�� � �−�L2−� 2

w
Im ��wp��p,w� . �5.20�

Had we computed the expansions �Eq. �5.18�� merely to
linear order in �, one might be tempted to think that even the
direct evaluation of these truncated series at d=3 would give
acceptable estimates. The O��3/2� terms reveal that there is
no reason for such optimism: their signs differ from those of
the contributions linear in �. Furthermore, their coefficients
are quite large. Thus, evaluating the series expansion �5.18�
to order �3/2 at �=1 yields �unphysical� negative values even
for n=1, albeit the results remain positive when � is suffi-
ciently small. This shows that more sophisticated extrapola-
tion techniques are needed to obtain reliable estimates for
these quantities at d=3.

An important check of the results for periodic boundary
conditions can be made by comparing them with the exact
large-n results obtained from the solution of the mean spheri-
cal model with short-range interactions.16,86,87 As we will
show now, the large-n limit of the small-� expansion �5.18�
for �=per can be recovered by solving the self-consistent
equation that the finite-size susceptibility obeys in the limit
n→� for d=4−� in an iterative fashion.

There are two reasons why a similar comparison with
large-n results cannot be made here in the case of sp-sp
boundary conditions. First, translation invariance perpen-
dicular to the boundary planes is broken for these boundary
conditions, just as it generally is for free boundary condi-
tions. The large-n limit therefore corresponds to a modified
spherical lattice model involving separate constraints88,89 for
the averages of 
i�layer z Si

2 in each layer z, where Si is a spin
variable on site i. Second, when d=3, the thermal fluctua-
tions should prevent the occurrence of film and surface
phases with long-range order at temperatures T�0 in the
continuous symmetry case n�1 and hence for n→�. Hence
sp-sp boundary conditions cannot be realized when d=3 and
n=�.

B. Comparison with exact spherical-model results for periodic
boundary conditions

An important check of our results for periodic boundary
conditions is their comparison with exact spherical-model
results. The static finite-size susceptibility of the spherical
model on a d-dimensional slab with periodic boundary con-
ditions can be written as

�L
�SM� = L2/Xd

SM�L/��� , �5.21�

where the scaling function Xd
SM�L� is a solution �see, e.g.,

Eqs. �5.2� and �4.66� of Refs. 51 and 87, respectively�,

2Qd,2�Xd
SM�/Xd

SM = Ad ��Xd
SM��d−2�/2 − Ld−2� . �5.22�

For d=3, the solution can be obtained in closed form;87,90

it reads

X3
SM�L� = 4 arccsch2�2e−L/2� = 4 ln2�1

2
�eL/2 + �4 + eL�	 .

�5.23�

Its critical value, which corresponds to the amplitude
1 /��per��0,0 ,0�, is86

X3
SM�0� = 4 ln2 g � 0.926 259, g = �1 + �5�/2,

�5.24�

where g is the golden mean.
To determine the amplitude Xd

SM�0� in d=4−� dimen-
sions, we substitute the series expansion of the function
Qd,2�r� given in Eq. �C.9� of Ref. 51 to obtain the represen-
tation

2Q4−�,2�r�
r

= A4−�r
1−�/2 − A3−�r

�1−��/2 + f��r� �5.25�

with

f��r� = 

j=0

�

b�
�j�rj , �5.26�

where

b�
�j� =

�− 1� j ��j + �� − 1�/2�
j ! 22j+1�2j+��+1�/2 ��2j + � − 1� . �5.27�

The coefficients A4−� and b�
�1� have simple poles at �=0

whose residues differ by the factor �−2�, so that the pole term
of A4−�r

1−�/2 cancels that of b�
�1�r. The remaining coefficients,

A3−� and b�
�j� with j�1, are regular at �=0. On the other

hand, A3−� and b�
�0� have simple poles at �=1 whose residues

are equal.
These results imply that X4−��L� −L2 must vanish linearly

as �→0, so that the right-hand side of Eq. �5.22� approaches
a nonzero limit. The O��� term of X4−��L� −L2 was computed
in Ref. 51 �see its Eq. �5.3��. To determine the O��3/2� con-
tribution to X4−��0�, we set L=0 and solve Eq. �5.22� with
the ansatz X4−��0� =C1�+C3/2�

3/2+o��3/2�. This gives
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X4−�
SM �0� =

2�2

3
�� − �6�3/2� + o��3/2� . �5.28�

Obviously, the result agrees with expansion �5.18� of
���per��p ,w ,0��−1 for n=�.

C. Dynamical finite-size surface response function

In Sec. V B we were concerned with the dynamic finite-
size susceptibilities �5.2�. These are integral quantities. As an
alternative, we here wish to consider the local susceptibilities

�11
�sp-sp� = ̊��B1�y , t� ·�̃B1�ỹ , t̃�� /n and �1L

�sp-sp� = ̊��B1�y , t�
·�̃B2�ỹ , t̃�� /n describing the linear responses of the order-
parameter density at one boundary plane to a magnetic field
acting on the order-parameter density in the same and the
complementary boundary planes, respectively. In the case of
periodic boundary conditions, both quantities are the same—
and by translational invariance along the z direction—
identical with the layer susceptibility �zz

= ̊���y ,z , t� ·�̃�ỹ ,z , t̃�� /n for any layer z. We start with an
investigation of the latter. For the sake of simplicity, we do
not consider deviations from the bulk critical temperature
here, setting �=0.

1. Layer susceptibility for periodic boundary conditions

Our analysis of the finite-size susceptibility �L suggests
that we should work with a dressed "" propagator that ac-
counts for the O�ů� shift �̊L

�per� given in Eq. �4.1�. Noting that
the k0=0-mode contribution to CL�p=0 ; z=0; t=0� van-
ishes when �̊=0, one sees that a single two-loop graph suf-
fices to capture all contributions to order �3/2 in the renor-
malized quantity �zz,R. One obtains

χzz(p, ω; L)/̊λ =
coth(̊κωL/2)

2̊λ̊κω

+
z z

+
z z

+ O(̊u2) ,

�5.29�

where �̊� now denotes quantity �3.11� with �̊ set to zero.
Here full black lines with and without arrows represent the
free response and correlation propagators RL and CL with �̊
=0, respectively. The dashed blue line indicates CL,#

�per� with
�̊=0. The dotted red line is the k=0 part of CL

�per� with �̊
=	�̊L

�per�. Note that we do not include the shift 	�L
�per� in the

k=0 contributions to the external legs of the two graphs.
Their inclusion would produce terms of order ů2 and hence
lead to corrections of order �2.

In Appendix C the graphs in Eq. �5.29� are computed.
From the results given in Eqs. �C2� and �C3�, the RG-
improved perturbation expansion of the renormalized dy-
namic layer susceptibility �zz,R=�zz /Z� follows in a straight-
forward fashion. Evaluating it at the fixed-point value, one
sees that it is in conformity with the scaling form predicted
by the RG equations �Eq. �3.15��, namely,

�zz,R
�per��p,�;L,� = 0� � ��L1−� �zz

�per��pL,�/�L� ,

�5.30�

where the scaling function has the small-� expansion,

�zz
�per��p,w� =

coth�&/2�
2&

−
�2

12

n + 2

n + 8

& + sinh &

&3 sinh2�&/2�
�� − �6

n + 2

n + 8
�3/2	

+ o��3/2� �5.31�

with

& = �p2 − iw . �5.32�

The susceptibility �zz,R must reduce to an L-independent
bulk quantity as L→�. Therefore, the scaling function
should have the limiting behavior

�zz
�per��p,w� �

p→�
p�−1'�wp−z� . �5.33�

Equation �5.33� shows that this is indeed the case, giving

'�wp−z� =
1

2�1 − iwp−z
+ O��2� , �5.34�

which is the correct bulk result.
As long as L is finite, there is no reason for �zz,R to di-

verge at the bulk critical temperature. Hence, we expect its
inverse 1 /�zz,R�p ,0 ;L ,0� to approach a nonzero limit. From
Eq. �5.31� we can read off the small-� expansion of
1 /�zz

�per��p ,w� and compute its limit

lim
p→0

1

�zz
�per��p,0�

=
2�2

3

n + 2

n + 8
�� − �6

n + 2

n + 8
�3/2	 + o��3/2� .

�5.35�

The result agrees at this order with expansion �5.18� of the
inverse static susceptibility ���per��0,0 ,0��−1. Thus the in-
verse static zero-momentum layer susceptibility
1 /�zz,R�0,0 ;L ,0� is indeed nonzero. Of course, the previ-
ously discussed difficulties to obtain reliable d=3 estimates
from this expansion to the order �3/2 apply here as well.

2. Surface susceptibilities for sp-sp boundary conditions

The graphs of the surface susceptibilities �11
�sp-sp� and

�1L
�sp-sp� corresponding to the ones displayed in Eq. �5.29� are

computed in Appendix C. The results are gathered in Eqs.
�C25�–�C27�. Using them one can verify in a straightforward
manner that the renormalized susceptibilities �11,R

�sp-sp�

=�11
�sp-sp� /Z�Z1 and �1L,R

�sp-sp� =�1L
�sp-sp� /Z�Z1 are uv finite to the

appropriate order in u. One obtains
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�11,R
�sp-sp� =

coth���L�
��

−
n + 2

6
u coth���L�

��
�1 − 2�E

− 2 ln��L�� + S���L� + R���L� +
�2

3
�1

−
4

L
� n + 2

2�2L2u�1/2	I1,1���L� + O���� �5.36�

and

�1L,R
�sp-sp� =

csch���L�
��

−
n + 2

6
u csch���L�

��
�1 − 2�E

− 2 ln��L�� + 2S1,2
�0� ���L� + R2���L�

+
�2

3
�1 −

4

L
� n + 2

2�2L2u�1/2	I1,2���L� + O���� ,

�5.37�

where ��=�p2− i��2 /, while S�&�, R�&�, I1,1�&�, S1,2
�0� �&�,

R2�&�, and I1,2�&� denote the functions specified by Eqs.
�C22�, �C23�, �C8�, �C20�, �C24�, and �C9�, respectively. The
functions R�&� and R2�&� are single integrals, which can be
computed by numerical integration.

According to the RG equations �3.15� these susceptibili-
ties should have the asymptotic scaling behavior,

�
11,R
1L,R

�sp-sp��p,�;L,� = 0� � �−��
sp

L1−��
sp

X
11,R
1L,R

�pL,�/�L� ,

�5.38�

where ��
sp is a standard surface correlation exponent associ-

ated with the special transition whose � expansion ��
sp=

−� �n+2� / �n+8� +O��2� is known7,66,67 to order �2. Evaluat-
ing the above results �5.36� and �5.37� at u� shows their
consistency with these scaling forms and yields the small-�
expansions,

X11�p,w� =
coth &

&
−

n + 2

n + 8

�

2
�1 − 2�E�

coth &

&
+ S�&� + R�&�

+
�2

3
�1 − 2�6�

n + 2

n + 8
�1/2	I1,1�&� + o��3/2��

�5.39�

and

X1L�p,w� =
csch &

&
−

n + 2

n + 8

�

2
�1 − 2�E�

csch &

&
+ 2S1,2

�0� �&�

+ R2�&� +
�2

3
�1 − 2�6�

n + 2

n + 8
�1/2	I1,2�&�

+ o��3/2�� , �5.40�

where & is again given by Eq. �5.32�.
In the limit p→�, the function X11 must behave as

X11�p,w� �
p→�

p��
sp−1'11�wp−z� , �5.41�

where '11 must agree with the scaling function of �11,R
�sp-sp� of

the semi-infinite �L=�� theory. This is indeed the case. The

limit limp→� p1−��
sp
'11�p ,w� can be computed in a straight-

forward fashion, giving

'11�v� =
1

�1 − iv
1 +

�

2

n + 2

n + 8
�1 − ln�4 − 4iv��� + O��2� .

�5.42�

An independent calculation for the semi-infinite theory
yields precisely the same result.

Since �1L,R
�sp-sp� vanishes as L→�, the analog of the scaling

function '11 for �1L,R
�sp-sp� must vanish. Checking the limit

limp→� p1−��
sp
'1L�p ,w� explicitly, we do in fact find that it is

zero.
Just as the layer susceptibility �zz,R, the surface suscepti-

bilities �11,R
�sp-sp� and �1L,R

�sp-sp� should not become critical at the
bulk critical point and hence have finite p→0 limits at �
=�. To check this, we set �=0 in Eqs. �5.39� and �5.40�,
determine the series expansions of �X11�p ,0��−1 and
�X1L�p ,0��−1 to O��3/2�, and then take the limits p→0. The
results are

�X11,R�0,0��−1 = �X1L,R�0,0��−1 + o��3/2�

= �
�2

6

n + 2

n + 8
�1 − 2�6�

n + 2

n + 8
�1/2	 + o��3/2� .

�5.43�

They indicate that an L-dependent shift of the multicritical
special point occurs also along the c direction, not only along
the temperature direction. Note, however, that a special point
at which a bulk-disordered phase with long-range surface
order meets with a bulk-disordered surface-ordered phase
and a bulk-ordered surface-ordered phase exists for d=3 di-
mensional semi-infinite spin systems only when n=1. The
analog of this multicritical point for finite L is the one where
the transition temperature of the surface transition coincides
with the transition temperature Tc,L of the film.

VI. CONCLUSIONS

In this paper, we have studied model A in film geometry.
We focused on the cases of boundary conditions for which
the classical �Landau–van Hove� theory involves zero
modes: periodic boundary conditions and free boundary con-
ditions with critically enhanced surface interactions.

Major motivations were to determine the consequences of
the zero mode and to reformulate RG-improved perturbation
theory such that a well-defined small-� expansion results at
the bulk critical temperature. Our reformulation of RG-
improved perturbation theory builds on the strategy pursued
in Refs. 50 and 51 to investigate static properties such as the
finite-size free energy and the Casimir force. In these papers
it was shown that the conventional � expansion breaks down
and contributions involving half-integer powers �k/2 with k
�3 modulo powers of ln � appear in the expansion of the
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critical Casimir amplitudes and other quantities. Here, we
confirmed this breakdown and explicitly determined the
small-� expansions of various dynamic finite-size, layer, and
surface susceptibilities at Tc,� to order �3/2. We were also
able to cast the � expansion of the temperature-dependent
scaling functions of the finite-size susceptibilities �L,R

��� for
both boundary conditions �=per and �=sp-sp in a form that
reproduces their expansions to order �3/2 as T→Tc,�.

Despite these successes, the theory suffers from severe
limitations and is still in an unsatisfactory state. First of all,
our results �5.35� and �5.43� for the inverse layer and surface
susceptibilities at Tc,� suggest that reliable estimates for d
=3 can hardly be obtained on the basis of such small-� ex-
pansion to order �3/2 alone. Just as in the case of the Casimir
amplitudes and the scaling function of the residual free en-
ergy at small values of L /��,51 the deviations of the simplest
extrapolations obtained by setting �=1 in the series truncated
at the respective orders � and �3/2 appear to oscillate in sign.
It is conceivable that the situation is particularly bad in those
cases where the classical theory involves zero modes. These
zero modes provide a separate source of IR singularities, a
problem one also encounters in thermal field theory.91 It has
been suggested to handle IR problems of this kind by a re-
summation of “foam” diagrams. In the case of the
n-component bulk �4 theory at finite temperature,92 this pro-
cedure yields results for the pressure in conformity with the
exact large-n result. Whether and to what extent RG-
improved perturbation theory might be improved by combin-
ing it with resummations of this kind remains to be seen.

Finally, let us emphasize that there is little reason to be-
lieve that the theory is in a much better state in those cases
where the classical theory does not involve zero modes, not-
withstanding the additional difficulties such modes cause.
For free boundary conditions, one will generically encounter
a zero mode in the classical theory at an L-dependent tem-
perature Tc,L

�0� �Tc,�. This indicates that in Landau theory the
film becomes critical at this temperature and undergoes a
transition to an ordered low-temperature phase. The ordered
phase and hence the transition to it may not survive the in-
clusion of thermal fluctuations when L��. This happens in
the continuous symmetry case n�1 when d�3, where it
should be recalled that the d=3 case with n=2 is special in
that the film has a low-temperature phase with quasi-long-
range order. However, even in those cases where the film
does have a transition to an ordered low-temperature phase
for finite L �as it does when d=3 and n=1�, one encounters
two important challenges that are beyond the scope of the
presently available analytical RG approaches but any satis-
factory full theory of dimensional crossover must be able to
cope with: �i� to determine the location of the singularity of
the residual free energy’s scaling function corresponding to
the transition temperature Tc,L with acceptable accuracy and
�ii� to yield the correct IR singularities at this transition in
conformity with the expected �d−1�-dimensional critical be-
havior of the film. The difficulty is that even the shift cannot
normally be computed by perturbation theory but requires
RG techniques to deal with the IR singularities.93 The RG
scheme employed here and in the work of Krech and
Dietrich49 may be appropriate to go on scales of the order of
�� as long as ��(L. However, it is insufficient to integrate

out degrees of freedom between L and the film’s correlation
length �L in an adequate fashion when �L�L and to correctly
yield the IR singularities at the critical temperature Tc,L even
when the boundary conditions do not involve zero modes at
Tc,�.

We close with some comments on the universality of our
results and finite-size scaling results in general. Chen and
Dohm56,57 recently launched a discussion of the universality
of finite-size scaling results and the validity of two-scale
�and multiscale� factor universality. Let us consider their
concerns in some detail. A first issue raised in Ref. 56 is that
the use of a sharp large-momentum cutoff modifies the L
dependence of the singular part of the finite-size free-energy
density of systems of linear size L in a qualitative manner.
This effect is unphysical and entirely due to the use of a
sharp cutoff; that a sharp cutoff can produce unphysical ef-
fects has been known since the early days of Wilson’s RG.2

For systems of the kind considered by them—systems that
are finite in all directions—the issue was discussed and clari-
fied in Refs. 94 and 96. It needs no further discussion.

A second point made in Ref. 56 is that long-range inter-
actions which are irrelevant in the RG sense produce alge-
braically decaying contributions to the singular part of the
finite-size free-energy density. Such interactions were previ-
ously considered by Dantchev and co-workers,94,95 who in-
troduced the term “subleading long-range interaction” for
them. Away from criticality, these contributions compete
with the exponentially decaying ones one has for systems
with purely short-range interactions and become dominant in
the appropriate region of temperature and large L. While
such contributions �which are expected to be small on an
absolute scale� still have to be clearly verified by experi-
ments, they certainly are real.

Chen and Dohm56 interpreted their presence as signaling
the breakdown of finite-size scaling. However, what is bro-
ken is just the simple version of finite-size scaling that in-
volves a single length besides L, namely, the correlation
length. Subleading long-range interactions give rise to at
least one further length—the one associated with the corre-
sponding irrelevant scaling field.97 This must not be set to
zero in order to retain the long-range tail in the regime where
it dominates the exponentially decaying short-range contri-
bution to the finite-size free-energy density. It may well be
set to zero in the critical regime L /�� 1 because the sub-
leading long-range interaction contributes there only a cor-
rection to the leading L dependence. Thus, subleading long-
range interactions are intermediate between dangerous
irrelevant and conventional irrelevant perturbations: they
share with the former the property that they must not gener-
ally be set to zero. Unlike those �which would affect the
leading critical behavior of some quantities�, but similar to
the latter, they give only corrections to the leading critical
behavior.

Note that the mechanism just described for subleading
long-range interactions is neither specific to finite-size criti-
cal behavior nor new. A familiar analog known from the
study of critical adsorption of fluids was discussed more than
25 years ago by de Gennes.98 Substrates �“walls”� typically
exert one-body forces on the fluid that have besides short-
range components algebraically decaying van der Waals
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tails. In a semi-infinite geometry bounded by a wall at z=0
and restricted to z�0, the latter contribute effective wall-
fluid interactions of the form �dd−1y�0

�dz hwf�z���y ,z� to the
Hamiltonian, where hwf�z� behaves as Awf z−) as z→� �cf.
Ref. 99 and Sec. 3.11 of Ref. 7�. The long-range part is
irrelevant in the RG sense provided the exponent ) is larger
than the magnetic RG eigenexponent yh= �d+2−�� /�, which
is the case for nonretarded and retarded van der Waals inter-
actions in d=3 dimensions �for which )=3 and )=4, respec-
tively�. It produces a long-range tail !z−) to the deviation
	m�z� =m�z� −m��� of the order-parameter density m�z�
= ���y ,z�� from its bulk value m���. By setting the length
!gwf

)−yh associated with the irrelevant scaling field gwf ! Awf
to zero, one would loose this algebraically decaying contri-
bution. On the other hand, the leading temperature singular-
ity !���−��−�� of the excess order parameter �0

�dz	m�z� would
remain the same since gwf yields merely corrections to scal-
ing for this quantity. The analogy with how subleading long-
range interactions affect finite-size properties is obvious. Of
course, the amplitude of the irrelevant scaling field gwf is
nonuniversal. Following the logic in Refs. 56 and 57, one
would have to call this a violation of scaling in semi-infinite
systems, though it again just means that single-length scaling
reaches its limits, failing to capture the asymptotic behavior
of certain quantities.

To what extent would the inclusion of subleading long-
range interactions alter the results of our analysis of dynamic
finite-size critical behavior given above? While a detailed
quantitative analysis of their effects is beyond the scope of
this paper, clear predictions can be made on general grounds
and the basis of what is known from statics. Power laws
describing asymptotic dependences in L or � at T=Tc,� will
be modified by corrections to scaling involving the associ-
ated irrelevant scaling field.97 For a subleading long-range
pair interaction decaying !x−�d+$� �with $�2−��, the asso-
ciated correction-to-scaling exponent is �$=$−2+� �see,
e.g., Ref. 87 and its references�. Thus these corrections
should be down by factors L−�$ �or ��

−�$� in comparison to
the respective leading power laws. Correspondingly, scaling
forms such as the one for the finite-size susceptibility
�L,R

��� �p ,� ;�� given in Eq. �5.6� should obtain a correction

L2−�−�$�$

����pL ,� /�L ,L /��� at linear order in the irrel-
evant long-range scaling field.97 Furthermore, there exist
quantities whose behaviors get qualitatively modified by sub-
leading long-range interactions. This is typically the case �in
certain regimes of L and �� for quantities that decay expo-
nentially in the absence of long-range interactions. Obvious
examples are zero-frequency response functions in position
space at temperatures ��0; these decay algebraically in the
limit of large distances xij = �xi−x j�→� between two points
when the pair interactions have a subleading long-range tail.

Of course, a proper investigation of the effects of sublead-
ing long-range interactions should also allow for irrelevant
surface-related scaling fields �such as pair interactions local-
ized on the boundary that decay algebraically as a function
of the separation yi−y j along the boundary planes and pair
interactions in the interior of the sample that decay as a
power of the distance from the boundary planes�. This is
beyond the scope of our present work.

We conclude by turning to a third source of universality
violations, discussed extensively in Ref. 57: the effects of

weak anisotropy. To keep things as simple as possible, it will
be convenient to discuss the issue first in the context of static
bulk critical behavior. The characteristic property of systems
exhibiting weakly anisotropic bulk critical behavior is that
the correlation lengths describing the decay of correlations
along arbitrary directions diverge !���−� with one and the
same critical exponent �, but the shape of the correlation
region is ellipsoidal rather than spherical. This means that the
square gradient term of Hamiltonian �2.1� in general takes
the form

1

2
�

V

ddxBkl��k�� · �l� �6.1�

in Cartesian coordinates, where �k�=�� /�xk are partial de-
rivatives with respect to these Cartesian coordinates xk ,k
=1, . . . ,d, and Einstein’s summation convention is used. The
matrix B � �Bkl� is symmetric and positive definite. Hence its
inverse exists and defines a metric tensor Bkl. Accordingly
the modified square gradient term �6.1� can be viewed as the
scalar product of the gradient operator with itself in this met-
ric.

An evident consequence of choice �6.1� of the modified
square gradient term is that a corresponding replacement

�� · �� → ��kB
kl�� l �6.2�

must be made for the second-order derivative operator in
dynamic action �2.4�. In cases where the underlying micro-
scopic system whose critical behavior one is concerned with
has cubic or orthorhombic lattice symmetry, this matrix B is
proportional to the unity matrix 1 or at least diagonal, but for
monoclinic and triclinic lattices it is generally nondiagonal.
It can be transformed to 1 by combining an orthogonal trans-
formation O with O−1 ·B ·O=diag�b1 , . . . ,bd� � b to principal
axes with a rescaling of coordinates. Let us make the coor-
dinate transformation,

":x = �xk� � x� = �x�k = "k�x1, . . . ,xd�� = b−1/2 · O−1 · x ,

�6.3�

and introduce the transformed quantities,

���x�,t� = B1/4��x,t� ,

�̃��x�,t� = B1/4�̃�x,t� ,

�̊� = �̊ ,

ů� = B−1/2ů ,

h̊��x�,t� = B1/4h̊�x,t� ,

̊� = ̊ ,

V� = "�V� , �6.4�

where B � det B.
Consider the analogs of Hamiltonian �2.1� and dynamic

action �2.4� with the modified square gradient terms �Eqs.
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�6.1� and �6.2�, respectively�. Using the definitions �6.4�, we
can express their contributions involving the volume inte-
grals �V ddx in terms of transformed �“primed”� quantities.
One easily verifies that the resulting expressions are identical
with the original ones given in Eqs. �2.1� and �2.4� up to the
replacement of unprimed by primed quantities. In particular,
the primed square gradient term takes the standard form,

1

2
�

V�="�V�
ddx�


k=1

d
���

�x�k ·
���

�x�k . �6.5�

All those transformations given in Eq. �6.4� that refer to
static bulk quantities and the mapping of the finite-size re-
gion V are consistent with those in Ref. 57 �whose matrix A
corresponds to our B�. The remaining ones are required for
dynamics. To cope with free boundaries, we should also de-
termine which boundary contributions to the transformed
Hamiltonian and dynamic action result from the boundary
integrals �Bj

dd−1y¯ of Eqs. �2.1� and �2.4�, respectively.
Before we do this, let us briefly discuss what it means for
bulk critical behavior that the Hamiltonian describing the
asymptotic critical behavior of weakly anisotropic systems
can be mapped onto a primed one with coefficient matrix
B�=1.

There is no question that this mapping to primed variables
involves nonuniversal parameters. It is also clear that for
nondiagonal Bkl, part of the nonuniversality resides in the
directions of the principal axes, as emphasized by Dohm.57

Does this mean that fundamental concepts of the modern
theory of critical phenomena such as the notion of universal-
ity classes for static bulk critical behavior must be ques-
tioned, crucially modified, or even given up? We see no rea-
sons for such a conclusion. In our view, the very existence of
the above mapping to simple minimal models such as the
conventional �4 theory is a clear signature of universality
because it ensures that the critical properties of weakly an-
isotropic system can be expressed in terms of the universal
properties of the latter. �Inasmuch as the explicit results in
Ref. 57 are concerned, we are not aware of discrepancies;
yet, our view of the situation may not fully be shared by its
author.�

The nonuniversal geometric dependences contained in the
metric should come as no surprise. An essential element of
the modern theory of critical phenomena is a mapping of
microscopic models onto conceptually simple continuum
models such as the �4 theory whose critical fixed points
describe the respective universality classes of static bulk
critical behavior. Such mappings always involve nonuniver-
sal parameters. Two familiar examples of such parameters
are the location of the critical point and the slope of the
coexistence curve; their nonuniversality shows up in the de-
pendence of the two relevant scaling fields g� and gh on T
−Tc,� and the deviation of the magnetic field or chemical
potential � from their critical values Hc,�=0 or �c,�,1 where
it should be recalled that in the case of fluids, both the ther-
mal and magnetic scaling fields are nontrivial linear combi-
nations of T−Tc,� and �−�c,� up to nonlinear contributions.

The nonuniversal geometric dependences contained in the
metric are of an analogous kind. Absorbing them through the

choice of properly defined transformed quantities is similar
to the adsorption of other nonuniversal properties such as the
location of the critical point and the slope of coexistence
curve via appropriately chosen scaling fields. Of course, in
any comparison of predictions of the theory with experimen-
tal results or Monte Carlo simulations for systems with weak
anisotropy, the nonuniversal geometry associated with the
metric must be taken into account since it enters the way
lattice observables depend on the order parameter.

In most studies of critical behavior either standard square
gradient terms with B=1 are chosen from the outset or else it
is tacitly assumed that the above transformation to primed
variables has been made. This is done, in particular, when
two-scale factor is defined and discussed. In Ref. 57 it is
emphasized that two-scale-factor universality is broken un-
less B=1. Formally, this is correct since nonuniversal param-
eters that cannot be absorbed in the nonuniversal amplitudes
of the two relevant scaling fields g� and gh are involved.
However, we believe it is natural and more reasonable to
define two-scale-factor universality only after the transfor-
mation to primed variables has been made. How the two-
scale-factor universality of the corresponding conventional
��4 theory manifests itself in the original one with non-
Euclidean metric follows from the relation between these
two theories �as is worked out in detail for the case of static
critical behavior in Ref. 57�.

These considerations generalize in a straightforward fash-
ion to the case of dynamic bulk critical behavior described
by model A with B�1. To analyze the corresponding
asymptotic dynamic critical behavior, a dynamic scaling field
�associated with the Onsager coefficient � must be consid-
ered in addition to g� and gh. Hence a third nonuniversal
scale factor must be fixed in the corresponding transformed
theory with Euclidean metric.

A first obvious, though important, new feature one en-
counters when extending these considerations to finite-size
systems is that the integration region V and its boundary �V
transform under the map ". �Note that momenta would trans-
form with the inverse map "−1, so integration regions in
momentum space and hence momentum cutoffs would trans-
form as well.� For general matrices B this is a shear trans-
formation; cubes of finite linear dimension get transformed
into parallelepipeds. Therefore, finite-size systems of a given
�say, cubical� shape that involve the generalized square gra-
dient terms �6.1� and �6.2� should not be compared to their
primed analogs of the same but of a different �noncubical�
shape.

According to the phenomenological theory of finite-size
scaling, the finite-size critical behavior of a given micro-
scopic system does not only depend on those properties that
determine the corresponding bulk universality class but also
on gross finite-size properties such as shape and boundary
conditions. Hence, each universality class for static bulk
critical behavior generally splits up into several universality
classes for finite-size critical behavior. This is analogous to
the splitting up of static bulk universality classes into several
distinct universality classes for dynamic bulk critical
behavior5 and into those for static boundary critical
behavior.7,8 The upshot is that two finite-size systems with
the same volume region V �and hence shape� whose large-
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length scale descriptions involve generalized and standard
square gradient terms, respectively, may represent distinct
finite-size universality classes even when the same kinds of
boundary conditions �e.g., periodic boundary conditions� are
chosen for both of them on the level of lattice models.

Square gradient terms with nondiagonal B give rise to
important modifications of the finite-size critical behavior of
systems that are finite in all directions. This is discussed in
detail for the case of static critical phenomena in Ref. 57. In
the case of our slab geometry, the image V� of the slab of
infinite lateral extension and thickness L under " is again a
slab whose thickness L� generally differs from L. However,
we must also clarify how the boundary conditions are af-
fected by generalized gradient terms and what happens to
them under the mapping to the primed system. Considering a
Hamiltonian and dynamic action that agree with those speci-
fied by Eqs. �2.1� and �2.4� except for the replacements of

����2 /2 and �� ·�� by generalized gradient term �6.1� and
operator �6.2�, respectively, one finds that the boundary con-
ditions now become

nT · B · ��̃�x,t� = c̊j�̃�x,t�, x � B j ,

nT · B · ���x,t� = c̊j��x,t�, x � B j , �6.6�

where nT is the row vector transposed to the column vector
n.

Upon introducing the vector f= f f̂=B ·n, one recognizes
the derivatives on the left-hand sides of these equations as
directional derivatives �f�= f�f̂�. Recall that in our case n
=�ez on B1,2. For general B, the vector f is not parallel to
n. The meaning of these boundary conditions can be under-
stood as follows. Suppose we extrapolate the fields � and �̃
from a point xBj

on boundary plane B j along the direction

−f̂ in a linear fashion. Then these extrapolations vanish when

the coordinate differences �x−xBj
� · f̂ take the values �f / c̊j

for j=1 and 2, respectively. Thus, the modified square gra-
dient term in general changes both the direction of the ex-
trapolation and the associated extrapolation length. Further,
the vector f is normal to the surface B in the metric �Bkl�. To
see this, let us represent vectors v and w in the canonical
basis �e j� of Rd as f= f je j and denote the scalar product in the
metric �Bkl� as B�v ,w� =Bklvkwl. The dual basis �f�k��, which
satisfies B�f�k� ,el� =	l

k, is given by f�k� =Bklel. For points on
B1,2, the vector f is nothing but �f�d� and hence orthogonal
to the tangent vectors ek�d in the metric �Bkl�. In fact, the
directional derivative �f on the left-hand sides of Eq. �6.6�
corresponds to a normal derivative in this metric. Transform-
ing to primed variables gives the Robin boundary conditions
�n���= c̊j��� for the fields �� and �̃� with c̊j�= c̊j / f , in con-
formity with our above results.

Since the enhancement variables c̊j and c̊j� of the systems
with generalized and standard square gradients are propor-
tional to each other, the fixed points of the transformed sys-
tem with cj�=0,�� map onto the respective fixed points of
the unprimed system; the effects of the generalized square
gradient terms implied by weak anisotropy normally may be

expected to be of a purely geometrical kind. They should be
particularly important and interesting when B is nondiago-
nal.

One class of systems deserving detailed studies consists
of binary alloys. This is because their description generally
involves, besides the order parameter, further, so-called sec-
ondary densities �nonordering densities�. Studies of the static
boundary critical behavior of body-centered-cubic binary al-
loys have revealed that careful investigations of the coupling
of the order parameter to these secondary densities and the
symmetry reduction caused by the presence of boundary
planes may be necessary to determine which surface univer-
sality class applies. In fact, depending on the orientation of
the surface plane relative to the crystal axes, distinct surface
universality classes may be realized.101,102 Analogous studies
have yet to be performed for binary alloys with less symmet-
ric �e.g., monoclinic and triclinic� crystal structures, which
would yield nondiagonal metrical coefficients Bkl.

We close with a brief discussion of an elementary ex-
ample of a slab exhibiting weakly anisotropic critical behav-
ior. Consider a nearest-neighbor �NN� lattice O�n� spin
model that is restricted to the layers z=0,1 , . . . ,L of the
simple cubic lattice Zd. To introduce weak anisotropy, we
assume that all NN bonds perpendicular to the bottom and
top layers z=0 and z=L have strength J�, while those along
the top, bottom, and remaining layers have different
strengths J�,1, J�,2, and J�, respectively. Mapping this micro-
scopic model onto a continuum model gives squared gradient
terms with B=diag�by , . . . ,by ,bz�, where bz /by =J� /J�.
Hence the ratio of the corresponding bulk correlation lengths
��,� and ��,� �defined via second moments of the respective
displacements parallel and perpendicular to the layers z
=const� satisfies ��,� /��,�= �by /bz�−1/2. The rescaling z�
= �bz /by�−1/2z maps the large-scale continuum field theory of
this film on a primed system with B
1 and film thickness
L�= �bz /by�−1/2L. Writing the L-dependent part of the finite-
size free energy per cross-sectional area Ld−1 and kBT at the
bulk critical point as �ai

��� /Ld−1, we can introduce a Casimir
amplitude �ai

��� for the weakly anisotropic system, where �
indicates which �scale-invariant� boundary conditions hold
on sufficiently large scales. This could be anyone of those
considered in Ref. 49, namely, periodic, antiperiodic �AP�,
Dirichlet-Dirichlet, Dirichlet-special, and special-special, as
well as ++, −−, and +− boundary conditions. Upon express-
ing �ai

��� /Ld−1 in terms of L�, we see that �ai
��� is related to the

Casimir amplitude ���� of the transformed �isotropic� system
via

�ai
��� = �J�/J��−�d−1�/2����. �6.7�

This relation was obtained for the special case of AP
boundary conditions in a recent paper by Dantchev and
Grüneberg103 who determined �ai

�AP� in the large-n limit by
the exact solution of a mean spherical model. Our reasoning
shows that it holds more generally and follows from simple
considerations.
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APPENDIX A: REPRESENTATIONS AND CONVENTIONS

We define Fourier transforms with respect to time and the
position vector’s component y along the film by

��x,t� � ��y,z,t� = �
�

��y,z,��e−i�t = �
p

��p,z,t�eip·y

= �
�,p

��p,z,��ei�p·y−�t�, �A1�

where we employ the short-hand notations

�
�

= �
−�

� d�

2�
, �

p
= �

Rd−1

dd−1p

�2��d−1 . �A2�

Note that we do not introduce separate symbols for a func-
tion such as ��x , t� and its Fourier transforms ��p ,z , t�,
��p ,z ,��, and ��p ,z ,��, which quantity is meant should be
clear from the arguments of these quantities.

When defining Fourier transforms of multipoint response
and cumulant functions that are invariant under translations
yi→yi+y0 parallel to the boundary planes and time transla-
tions ti→ ti+ t0, we mean by the respective Fourier trans-

forms the coefficients of the momentum and frequency con-
serving factors �2��d−1	�
ipi� and 2�	�
i�i�, respectively.
For example, the Fourier transforms R�x ;x� ;�� and
R�p ;z ,z� ;�� of the free response propagator R�x , t ;x� , t��
satisfy the relations

R�x,t;x�,t�� = �
�

R�x;x�;��e−i��t−t��

= �
�,p

R�p;z,z�;��e−i��t−t��eip·�y−y��. �A3�

APPENDIX B: FREE RESPONSE PROPAGATOR

To determine the free response propagator RL�p ;z ,z� ;��
for general non-negative values of c̊1, c̊2, and �̊, we must
solve the differential equation

�− i� + ̊��̊ + p2 − �z
2��RL�p;z,z�;�� = 	�z − z�� �B1�

with the boundary conditions �3.7�. Two linearly independent
solutions of this Sturm-Liouville differential equation are
e��̊�z, where �̊� was defined in Eq. �3.10�. From them we
can construct the two linear combinations

U1�z� = �̊� cosh��̊�z� + c̊1 sinh��̊�z� �B2�

and

U2�z� = �̊� cosh��̊��L − z�� + c̊2 sinh��̊��L − z�� , �B3�

which fulfill the boundary conditions on the boundary planes

z=0 and z=L, respectively. Green’s function ̊RL�p ;z ,z� ;��
is given by −U1�z��U2�z�� /W12, where z�=min�z ,z�� and
z�=max�z ,z��.65 The normalization constant W12 is fixed by

the jump condition ̊��zRL�z=z�−0
z=z�+0=−1. This yields the

Wronskian

W12 =  U1�z�� U2�z��
U1��z�� U2��z��

 , �B4�

which in our case is independent of z�. A straightforward
calculation then gives

̊RL�p;z,z�;��c̊1, c̊2� = ��z� − z�
�c̊1 sinh��̊� z� + �̊� cosh��̊� z���c̊2 sinh��̊� �L − z��� + �̊� cosh��̊� �L − z����

�̊�
2 �c̊1 + c̊2�cosh��̊� L� + �̊���̊�

2 + c̊1c̊2�sinh��̊� L�
+ �z ↔ z�� ,

�B5�

where we have explicitly indicated the enhancement vari-
ables c̊j on the left-hand side for clarity. In the special case
c̊1= c̊2=0, this simplifies to

̊RL�p;z,z�;��0,0� = ��z� − z�
cosh��̊�z�cosh��̊��L − z���

�̊� sinh��̊�L�

+ �z ↔ z�� . �B6�

The free response propagator for periodic boundary con-
ditions can be determined in a straightforward fashion by
performing the summation in Eq. �3.11� using Eq. �3.10�.
This gives

̊RL
�per��p;z − z�;�� =

1

2��

cosh����L/2 − �z − z����
sinh���L/2�

.

�B7�
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APPENDIX C: CALCULATION OF FEYNMAN GRAPHS

1. Layer susceptibility for periodic boundary
conditions

The first one-loop graph of �zz shown in Eq. �5.29� in-

volves the static propagator GL,#
�per��x � �̊� = ̊RL,#

�per��x ,�=0 � �̊� at
zero separation x=0. To compute it at �̊=0, we add and
subtract the zero-mode contribution. Since this vanishes �in
dimensional regularization� when �̊=0, we may simply re-
place GL,#

�per��x � 0� by GL
�per��x � 0�. It is then convenient to use

the latter’s representation �3.11� in terms of image contribu-
tions, with G�

�d��x � 0� =2−2�−d/2��d /2−1�x2−d. The term with
m=0 vanishes since G�

�d��0 � 0� =0 in dimensional regulariza-
tion. The summation of the remaining terms is straightfor-
ward, giving

GL
�per��x = 0��̊ = 0� =

��d/2 − 1�
2�d/2Ld−2 ��d − 2� . �C1�

Since the k=0 component of this quantity vanishes when �̊
=0, we can directly use this result to compute the one-loop
graph with the dashed blue line of Eq. �5.29�. Upon perform-
ing the required z integration of the external legs
RL

�per��p ,z ,� � 0�2, one obtains

λ̊
z z

= −n + 2

3

ů

2

Γ(d/2 − 1) ζ(d− 2)

2πd/2 Ld−5

× κ̊ωL + sinh(Lκ̊ω)

8̊κ3
ωL3 sinh2(̊κωL/2)

.

�C2�

The remaining graph of Eq. �5.29� involves the dotted red
line, which is L−1G�

�d−1��y=0 �	�̊L
�per�� in position space. Hence

we have

λ̊
z z

=
n + 2

3

ů

2
Ad−1 L2[δτ̊

(per)
L ](d−3)/2

× κ̊ωL + sinh(̊κωL)

8̊κ3
ωL3 sinh2(̊κωL/2)

,

�C3�

where 	�̊L
�per� is the O�ů� shift given in Eq. �4.1�.

2. Surface susceptibilities for sp-sp boundary conditions

The analogs of graph �C2� for �11
�sp-sp� and �1L

�sp-sp� involve

the static propagator GL,#
�N-N��x ,x� � 0� = ̊RL,#

�N-N��x ,x� ,�=0 � 0�
at equal positions x=x�. Since its zero-mode contribution
vanishes at �̊=0, it agrees with GL

�N-N��x ,x � 0�. We use its
representation �3.8� and take into account that the m=0 con-
tribution of the first sum vanishes at �̊=0. The remaining
terms can be summed in a straightforward fashion to obtain

GL
�N-N��x,x�0� =

��d/2 − 1�
2d�d/2Ld−2 �2��d − 2� + ��d − 2,z/L�

+ ��d − 2,1 − z/L�� . �C4�

Note that the two generalized Hurwitz zeta functions104

��2−� ,s� and ��2−� ,1−s� behave as s�−2 and �1−s��−2 at
small values of their arguments s=z /L and 1−s, respectively.
They contain the uv singular contributions −�−1	��s� and
−�−1	��1−s�.

To show this more clearly and to determine the Laurent
expansion of the graph in question to order �0, we proceed as
follows. We transform to the variable s. The z-independent
part of Eq. �C4� leads to contributions of the graphs that can
be expressed in term of the integrals

Ij,k��̊�L� = �
0

1

dsf j�s;�̊�L�fk�s;�̊�L�, j,k = 1,2,

�C5�

with

f1�s;&� =
cosh��1 − s�&�
& sinh &

�C6�

and

f2�s;&� = f1�1 − s;&� , �C7�

where Lf j�z /L ; �̊�L� / ̊=RL
�N-N��p ;z , �j−1�L ;� � 0� represents

an external leg attached to B j.
The required integrations are elementary, giving

I1,1�&� = I2,2�&� =
sinh�2&� + 2&

4&3 sinh2 &
�C8�

and

I1,2�&� = I2,1�&� =
1 + & coth &

2&3 sinh &
. �C9�

The contribution produced by the term 
��2−� ,s� in Eq.
�C4� involves the integrals

Jj,k��;&� = �
0

1

ds��2 − �,s�f j�s;&�fk�s;&� �C10�

with �j ,k� = �1,1� and �1,2�. The analogous contribution im-
plied by the term 
��2−� ,1−s� can also be expressed in
terms of these integrals, as can be seen by making a change
of variables 1−s→s and using Eq. �C7�. To compute the
Laurent expansion of these integrals, we substitute

��2 − �,s� = s�−2 + ��2 − �,s + 1� �C11�

and decompose each one of them into a sum of the respective
two integrals

Sj,k��;&� = �
0

�

dss�−2f j�s;&� fk�s;&���1 − s� �C12�

and
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Rj,k��;&� = �
0

1

ds��2 − �,s + 1� f j�s;&� fk�s;&� . �C13�

The latter integrals are regular at �=0 and hence can be
expanded as Rj,k�� ;&� =Rj,k�0;&� +O���. The integrals
Sj,k�� ;&� may be viewed as the results of applying the distri-
bution denoted s+

�−2 in Ref. 100 to the test functions h�s�
= f j�s ;&�fk�s ;&���1−s�. The Laurent expansion of this distri-
bution is well known.100 It reads

s+
�−2 =

− 1

�
	��s� + s+

−2 + O��� , �C14�

where the generalized function s+
−2 is defined by �cf. the Ap-

pendix of Ref. 7�

�
−�

�

dss+
−2h�s� = �

0

1

dss−2�h�s� − h�0� − sh��0��

+ �
1

�

dss−2�h�s� − h�0�� . �C15�

Utilizing these results, one arrives at

Sj,k��;&� = Sj,k
�−1��&��−1 + Sj,k

�0��&� + O��� �C16�

with

Sj,k
�−1��&� = f j��0;&� fk�0;&� + f j�0;&� fk��0;&� =

−
1

&�2 coth�&� , j = k = 1,

csch�&� , j � k ,

0, j = k = 2,
� �C17�

and

Sj,k
�0��&� = �

0

1 ds

s2 �f j�s;&�fk�s;&� − f j�0;&�fk�0;&�

− s�f j��0;&�fk�0;&� + f j�0;&�fk��0;&���

− f j�0;&�fk�0;&� , �C18�

where the prime on f j��s ;&� means a derivative with respect
to s. The latter integrals can be performed in a straightfor-
ward fashion using MATHEMATICA.105 This yields

S11
�0��&� = ��E − Chi�2&� + ln�2&� − 1�

2 coth &

&

+
& cosh�2&�Shi�2&� − 1

&2 sinh2 &
, �C19�

S12
�0��&� =

�E − Chi�2&� + ln�2&� − 1

& sinh &
+
& Shi�2&� − 1

&2 sinh�&� tanh &
,

�C20�

and

S22
�0��&� =

& Shi�2&� − cosh2 &

&2 sinh2 &
, �C21�

where Chi and Shi are the hyperbolic cosine and sine inte-
grals, respectively.

It is useful to introduce the combinations

S�&� = S1,1
�0� �&� + S2,2

�0� �&� =
2 coth���
�

��E − 1 − Chi�2��

+ ln�2�� + coth���Shi�2��� −
1 + 2 csch2 &

&2 ,

�C22�

R�&� = R1,1�0;&� + R2,2�0;&� =
csch2 &

2&2 �
0

1

ds#�1��s + 1��2

+ cosh�2s&� + cosh�2�1 − s�&�� , �C23�

and the function

R2�&� � 2R1,2�0;&� =
2 csch2 &

&2 �
0

1

ds�#�1��s + 1�

� cosh�s&�cosh��1 − s�&�� . �C24�

Then our results for the graphs involving the dashed blue
line can be written as

λ̊
B1 B1

= −n + 2

3

ů̊λ

2

Γ(1 − ǫ/2) L1+ǫ

(4π)2−ǫ/2

�
− 2 coth(̊κωL)

κ̊ωL ǫ

+
π2

3
I1,1(̊κωL) + S (̊κωL) + R(̊κωL) + O(ǫ)

�

�C25�
and

B1 B2

= −n + 2

3

ůλ̊

2

Γ(1 − ǫ/2) L1+ǫ

(4π)2−ǫ/2

�
− 2 csch(̊κωL)

κ̊ωL ǫ

+
π2

3
I1,2(̊κωL) + 2S

(0)
1,2 (̊κωL) + R2(̊κωL) + O(ǫ)

�
.

�C26�

The remaining graphs, involving the zero-mode propaga-
tor at the shifted bare temperature 	�̊L

�sp-sp�, are given by

λ̊
B1 Bj

=
n + 2

3

ů

2

Ad−1

L
[δτ̊

(sp-sp)
L ](d−3)/2 I1,j (̊κωL) .

�C27�

While the latter graph is uv finite, the previous two contain
pole terms. Recalling the O�u� result7,66,67 Z1=1+u�n
+2� /3�+O�u2�, one sees that they cancel with the contribu-
tion
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(Z−1
1 Z−1

φ − 1)λµ−4

B1 Bj

.

.

In our calculation of the zero-momentum limits of the
inverse �=0 susceptibilities �11,R

−1 and �1L,R
−1 , the asymptotic

behaviors of the functions S, R, R2, and S12
�0� as &→0 are

needed. Using the known limiting forms Chi�&� =�E+ln &
+O�&2� and Shi�&� =&+O�&3�, one finds that

S�&� = 2S12
�0��&� + O�&−2� = − 2&−4 + O�&−2� �C28�

for small &. To determine the asymptotic forms of the func-
tions R�&� and R2�&�, we expand the integrands in the inte-
grals of Eqs. �C23� and �C24� in powers of &. Performing the
s integral for the lowest-order term and expanding the pref-
actors lead to

R�&� = R2�&� + O�&−2� = 2&−4 + O�&−2� . �C29�
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