
Domain walls in a tetragonal chiral p-wave superconductor

N. A. Logoboy1,2 and E. B. Sonin1

1Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
2Institute of Superconductivity, Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
�Received 2 October 2008; revised manuscript received 9 January 2009; published 10 March 2009�

Domain walls in a tetragonal chiral p-wave superconductors with broken time-reversal symmetry are ana-
lyzed in the framework of the Ginzburg-Landau theory. The energy and the jump of the magnetic induction on
the wall were determined for different types of walls as functions of the parameters of the Ginzburg-Landau
theory and orientation of the domain wall with respect to the crystallographic axes. We discuss possible
implications of the analysis for Sr2RuO4 where no stray magnetic fields from domain walls were detected
experimentally.
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I. INTRODUCTION

There were a number experimental evidences of the bro-
ken time-reversal symmetry �TRS� in the unconventional su-
perconductor Sr2RuO4.1–3 It was suggested that this phenom-
enon was connected with the p-wave Cooper pairing with the
wave function in the momentum space proportional to px
+ ipy �chiral p-wave superconductivity�.4,5 In chiral p-wave
superconductors the spontaneous magnetic flux must be
present near domain walls �DWs� or sample boundaries.
However, Kirtley et al.6 have not detected any stray mag-
netic fields, which the spontaneous magnetic flux should pro-
duce above the sample surface. This put in question the sce-
nario of the chiral p-wave pairing and stimulated theoretical
investigations of the problem. In particular, the relation be-
tween the stray fields and the magnetic flux, which appears
near the DW in the bulk, was derived.7,8 Another challenge
for the theory was to find the spontaneous magnetic flux
itself. It is determined by the product of the London penetra-
tion depth and the jump of the magnetic induction on the
domain wall. Although it is known that the latter is on the
order of the first critical magnetic field Hc1 and was already
analyzed in the past for particular types of the DWs in chiral
superconductors,9–11 the reliable theory of magnetic jump at
the interface boundary in unconventional superconductor, in
particular the dependence of the flux on orientations of the
domain wall, is still lacking.

There are two possible explanations why the experiment
could not detect the stray fields above the sample surface.
The first one is that there is a domain structure with a period
so small that stray fields decay very fast in space at a dis-
tance small compared to the distance of the experimental
probe from the sample surface. There were some experimen-
tal evidences of domain structure in Sr2RuO4,12,13 although
Xia et al.3 did not reveal any domain structure at studying
the Kerr effect. The theory predicts that in superconductors
with broken TRS usual ferromagnetic domains, which de-
pend on the size and the shape of the sample �extrinsic do-
mains�, cannot appear,14 but another type of domains, which
decrease the bulk magnetostatic energy at the expense of
destroying the Meissner state, becomes possible.15,16 The
size of these domains is roughly on the order of the London
penetration depth � and does not depend on either shape or

size of the sample �intrinsic domains; see discussion in Ref.
17�. The analysis of intrinsic domain structure in supercon-
ductors with broken TRS was recently extended on the case
of finite external magnetic fields, and the equilibrium mag-
netization curves in the state with intrinsic domains �crypto-
ferromagnetic state� were found theoretically.18 The intrinsic
domain structure may lead to serious suppression of stray
fields above the sample, although definite quantitative con-
clusions are not yet possible because of the absence of es-
sential information on Sr2RuO4 �magnetic crystal anisotropy,
e.g.�. Therefore, the other possible explanation of the nega-
tive result of Kirtley et al.6 must be also considered: a very
small spontaneous magnetic flux penetrating along DWs in
Sr2RuO4. This problem is investigated in the present work.

The magnetic flux near DWs originates from the intrinsic
orbital moment of Cooper pairs �orbital ferromagnetism�. As
was demonstrated in Ref. 19, in the case of orbital ferromag-
netism, one should not use the Landau-Lifshitz theory20

since in this case one cannot define local spontaneous mag-
netization. Therefore one should rely on magnetization cur-
rents generated by the orbital moment of Cooper pairs,
which cannot be reduced to the curl of any vector moment.
The total magnetization current along the DW leads to the
jump of the magnetic induction on the DW, which eventually
determines the magnetic flux connected with the DW. In the
present work we extend previous theoretical investigations of
the magnetic flux around DWs in tetragonal chiral p-wave
superconductors analyzing conditions for appearance of dif-
ferent types of DW structure depending on the strength of
crystal in-plane anisotropy and DW orientation with respect
to crystallographic axes. The analysis was done using the
Ginzburg-Landau �GL� theory, and the magnetic induction
near DWs depends on the parameters of the GL theory. For
the parameters obtained in the weak-coupling limit the mag-
netic induction near DWs is scaled by the first critical mag-
netic field Hc1 differing from the latter by a numerical factor.
But for other values of the GL parameters the magnetic in-
duction near DWs can be much smaller and even become
negative with respect to the intrinsic magnetic moment of
Cooper pairs. This stresses again that the orbital moment of
the Cooper pair in the chiral p-wave state does not lead to
any definite local magnetization.

The practical outcome of the presented analysis is that
one can explain very weak stray fields from DWs if the GL
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parameters differ from those calculated in the weak-coupling
limit. The final conclusion on the reason for the absence of
detectable stray fields around Sr2RuO4 samples is possible
only after these parameters are found from the experiment or
from the strong-coupling theory.

II. MODEL

The unconventional superconductor Sr2RuO4 belongs to
the tetragonal crystallographic symmetry group D4h. Consid-
ering the p-wave state for this material they usually believe
that strong crystal anisotropy keeps both spin and orbital
momentum of the Cooper pair parallel to the c axis. Then the
p-wave state corresponds to the two-dimensional representa-
tion �5

−= �kxẑ ,kyẑ�, and the order parameter ��xkx+�yky�ẑ is
fully described by a complex two-component vector �
= ��x ,�y�.4,5 Then the GL free-energy density is

F = P1���2 + �1���4 + �2��x
��y − �x�y

��2 + �3��x�2��y�2

+ K1�Dx,y · ��2 + K2��Dx�y�2 + �Dy�x�2�

+ K3��Dx�x���Dy�y� + �Dx�x��Dy�y���

+ K4��Dx�y���Dy�x� + �Dx�y��Dy�x���

+ K5��Dz�x�2 + �Dz�y�2� . �1�

Here Di=�i− i�2e /c��Ai is a covariant derivative and B=�
�A is the magnetic induction. In the case of full axial sym-
metry in the plane �cylindrical Fermi surface� �3=0 and K1
=K2+K3+K4. In the Bardeen-Cooper-Schrieffer �BCS�
theory �weak-coupling limit� K1 /3=K2=K3=K4.21

The complex components of the two-component order pa-
rameter � can be represented in a form

�x = �0 cos 	 exp�i
� ,

�y = �0 sin 	 exp�i�
 + ��� , �2�

where angles �phases� 	, 
, and � are coordinate-dependent
functions in general, and �0= ���. The focus of the present
study is the chiral state with the twofold-degenerate ground
state �=2−1/2�0 exp�i
��1, � i�, which corresponds to 	
= /4 and �= � /2 and is realized if �2�0 and �1��2
−�3 /4�0. The order-parameter amplitude

�0
2 =

2�P1�
4��1 − �2� + �3

�3�

is determined by minimization of the GL free energy. The
chiral state has a nonzero orbital moment l= i���� /�0

2= lzẑ
with the only component

lz = i��x�y
� − �y�x

��/�0
2 = sin 2	 sin � . �4�

Other components of the orbital moment are suppressed by
strong crystal anisotropy. Although they are necessary for
orbital magnons,19 they can be ignored in our analysis of
DWs.

Substituting the general expression for the two-
component order parameter �Eq. �2�� into the free-energy
density F �Eq. �1��, one can derive the expression for the
superconducting current as

j =
e

m
�vF = j�tr� + j�m�, �5�

which consists of two contributions. The transport current
j�tr�=en̂v is determined by the gauge-invariant superfluid ve-
locity

v =
�

2m
� 
 −

e

mc
A , �6�

where n̂ is the superfluid electron-density matrix with the
components

nxx =
8m

�2 �0
2�K1 cos2 	 + K2 sin2 	� ,

nyy =
8m

�2 �0
2�K1 sin2 	 + K2 cos2	� ,

nxy = nyx =
4m

�2 �0
2�K3 + K4�sin 2	 cos � ,

nzz =
8m

�2 �0
2K5. �7�

The second contribution to the current is the magnetization
current with the components

jx
�m� =

2e

�
�0

2�2K2 sin2	�x� + 2�K3 cos2	

+ K4 sin2	�sin ��y	 + K3 sin 2	 cos ��y�� ,

jy
�m� =

2e

�
�0

2�2K1 sin2	�y� + 2�K3 sin2	

+ K4 cos2	�sin ��x	 + K4 sin 2	 cos ��x�� ,

jz
�m� =

4e

�
�0

2K5 sin2	�z� . �8�

In the following we shall neglect the terms �K5 considering
only DWs parallel to the axis z when parameters do not vary
along this axis. We also assume that the London penetration
depth � is much larger than the thickness of the DW, which
is on the order of the coherence length �. This allows us to
ignore Meissner currents studying currents inside the DW.

Inside domains 	= /4 and nxx=nyy = �4m /�2��0
2�K1

+K2�. Then the London penetration depth and the first criti-
cal magnetic field are

� =� �2c2

16e2�0
2�K1 + K2�

, Hc1 =
4e

�c
�0

2�K1 + K2�ln
�

�
.

�9�

The magnetization current cannot be presented as j�m�

= �1 /c�� �M, which is the main assumption of the Landau-
Lifshitz theory. Therefore for chiral superconductors the
Landau-Lifshitz theory is not valid, and the local magnetiza-
tion M cannot be defined.19 Whereas in the Landau-Lifshitz
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theory the jump of the tangential component of the magnetic
induction on the DW is given by the universal relation �B
=8M independently of the DW structure, in chiral super-
conductors �B does depend on the DW type and on the DW
orientation relative to crystallographic axes. This will be
demonstrated in Sec. III.

III. DOMAIN WALLS

The two degenerate ground states correspond to two pos-
sible directions of the orbital moment lz= �1 parallel or an-
tiparallel to the c axis �the axis z�. This leads to the existence
of domains with lz= �1 separated by domain walls. Two
types of DWs are known. The DW of type I is characterized
by a gradual change in the phase �=��r� at constant 	
= /4, i.e., the absolute values of the components ��x�= ��y�
remain constant inside the DW.9 We address this type of the
DW as � wall. In the DW of type II the relative phase
�=− /2 remains fixed, and the transition from lz=−1 to
lz= +1 is realized via variation of the angle 	, so that in the
center of the DW one of the components �x or �y vanishes.
This type of DW was considered by Sigrist et al.10 assuming
that the component of �, which does not vanish, remains
constant. In the present work we assume that inside the DW
the order parameter � rotates in space at fixed order-
parameter modulus ���=�0. This assumption is justified if
�1��2 ,�3. Further we address this type of the DW as 	
wall. However, the difference between the two types of DW
depends on a choice of the coordinate system: rotating the
in-plane coordinate frame xy, in which the components of �
are defined, through the angle  /4 �45°�, the � wall becomes
a 	 wall and vice versa.

A. Variation of relative phase: � wall

Let us consider a DW, which is characterized by continu-
ous variation of the relative phase �=��r� at fixed angle 	
= /4 The transformation of the lz=−1 domain to the
lz= +1 domain is possible via counterclockwise rotation of �
from − /2 to  /2 or clockwise rotation of � from − /2 to
−3 /2. The structure of this DW, its surface energy, and the
jump of magnetic induction depend on its orientation with
respect to chosen crystallographic axes �xy�. Assuming the
arbitrary orientation of the DW plane in the xy plane we
transform the gradient terms in Eq. �1� to the new coordinate
system �x�y�� connected to the DW: the axis x� is normal and
the axis y� is parallel to the DW, i.e.,

�x = cos ��x� − sin ��y�,

�y = sin ��x� + cos ��y�. �10�

The transformation is a counterclockwise rotation of the
original coordinate axes xy around the z axis through an
angle � about the origin. Note that only the gradients were
rotated, with the order parameter � being untouched and
characterized by the components �x,y in the original coordi-
nate system xy. After the transformation the free-energy den-
sity with respect to the energy of the uniform chiral phase is

�F =
�2�0

4

2
�1 + cos 2�� +

K1�0
2

2
��cos �Dx�
 − sin �Dy�
�2

+ �sin ��Dx�
 + �x��� + cos ��Dy�
 + �y����2�

+
K2�0

2

2
��sin �Dx�
 + cos �Dy�
�2 + �cos ��Dx�


+ �x��� − sin ��y��
 + ���2� + K3�0
2 cos ��cos �Dx�


− sin �Dy�
��sin ��Dx�
 + �x��� + cos ��Dy�


+ �y���� + K4�0
2 cos ��sin �Dx�
 + cos ��y�
�

��cos ��Dx�
 + �x���� − sin ��Dy�
 + �y��� . �11�

The relevant components of the superfluid electron-density
matrix are

nx�x� =
4m

�2 �0
2�K1 + K2 + �K3 + K4�sin 2� cos �� ,

nx�y� = ny�x� =
4m

�2 �0
2�K3 + K4�cos 2� cos � . �12�

The magnetization currents are defined by

jx�
�m� =

e

�
�0

2�K1 + K2 − �K1 − K2�cos 2�

+ �K3 + K4�sin 2� cos ���x�� ,

jy�
�m� =

e

�
�0

2��− K3 + K4 + �K3 + K4�cos 2��cos �

+ �K1 − K2�sin 2���x�� . �13�

The current normal to the DW plane must vanish: jx�
=enx�x�vx�+ jx�

�m�=0. This gives the following expression for
the x� component of the velocity:

vx� =
�

2m
Dx�


= −
�

4m
	1 −

�K1 − K2�cos 2�

K1 + K2 + �K3 + K4�sin 2� cos �

�x�� . �14�

After its exclusion the total current jy� parallel to the DW is

jy� =
e

�
�0

2	− �K3 − K4�cos �

+ �K1 − K2�
�K1 + K2�sin 2� + �K3 + K4�cos �

K1 + K2 + �K3 + K4�sin 2� cos �

�x�� .

�15�

Using Eq. �15� and the Maxwell equation one can calculate
the jump of the magnetic induction on the � wall as follows:
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�B���� = − �4/c�� dx� jy�

=
8e

�c
�0

2��K3 − K4� �
K1 − K2

sin 2�

�	

2
−

2 cos22�

�1 − q2�1/2arctan�1 � q

1 � q

 , �16�

where

q =
K3 + K4

K1 + K2
sin 2� . �17�

The upper and the lower signs correspond to � rotations from
− /2 to  /2 or to −3 /2, respectively.

After the exclusion of the transport velocity the free-
energy density becomes

�F =
�2�0

4

2
�1 − cos 2�� + �K1 + K2��0

2f���
�x��

2

8
, �18�

where

f��� = 1 � q sin � − �K1 − K2

K1 + K2
�2 cos2 2�

1 � q sin �
. �19�

Here we used the angle � equal to �=�+ /2 or �=−�
− /2 for � rotations from − /2 to  /2 or to −3 /2, respec-
tively. So across the DW � varies from 0 to .

The structure of the � wall is determined by the Euler-
Lagrange equation obtained by variation of the free energy
with density �18� with respect to �,

f����x�
2 � +

1

2
f������x���2 −

sin 2�

�2 = 0, �20�

where the scale

� =
1

2�0
�K1 + K2

�2
�1/2

�21�

determines the thickness of the DW. The first integration of
Eq. �20� yields

��x���2 =
1 − cos 2�

�2f���
. �22�

After this one can find the surface energy of the DW,

����� = �0
3��2�K1 + K2�

2
�

0



d� sin ��f��� . �23�

Figure 1 shows the plots of the magnetic-induction jump
�B� and the surface energy as functions of the angle � be-
tween the DW and one of the crystallographic axes for the
weak-coupling case when K2=K3=K4=K1 /3. The plots for
the clockwise rotation �� varies within DW from − /2 to
−3 /2, curve 2� are obtained from the counterclockwise ro-
tation �� varies within DW from − /2 to  /2, curve 1� by
reflection �→−�. The angular dependences have two ex-
trema at �= � /4. The spatial distribution of the magneti-
zation currents along the DW for different orientations of the
DW is shown in Fig. 2.

Let us consider some important particular cases. The case
�=0 corresponds to the DW parallel to one from chosen
crystallographic axes. The surface energy and the jump of
magnetic induction in this case are

���0� = 2�0
3�2�2K1K2

K1 + K2
,

�B��0� =
16e

�c
�0

2K2K3 − K1K4

K1 + K2
. �24�

This agrees with the results of Volovik and Gor’kov9 who
assumed that K3=K4. In the case �=0 there is degeneracy

FIG. 1. Shown are the angular dependence �a� of the jump of
reduced magnetic induction �B��3�c /32e�0

2K1 and �b� the re-
duced surface energy ���3 /4�0

3�2�2K1�1/2 of the DW for two con-
figurations when � increases from − /2 to  /2 �curve 1�, or de-
creases from − /2 to −3 /2 �curve 2� with increase in x�.

FIG. 2. �Color online� The coordinate dependence of the re-
duced superconducting current jy��31/2� /23/2e�0

3�K1�2�1/2 at dif-
ferent orientations of the DW ����� /2�.
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between DWs corresponding to two senses of rotation of the
phase �: the surface energies and the field jumps for two
cases coincide.

Another particular case is the angle �= /4, where the
plots in Fig. 1 have extrema. In this case according to Eq.
�16� the jump of magnetic induction is

�B��

4
� =

8e

c
�0

2	K3 − K4 �


2
�K1 − K2�
 �25�

and is different for both configurations. The DW surface en-
ergy can be obtained from Eqs. �19� and �23� as follows:

���

4
� = �0

3��2�K1 + K2�
2

�
0



d� sin ��1 � q sin �

= �0
3�2�2�K1 + K2�	3F2�−

1

4
,
1

4
,1;

1

2
,
3

2
;q2�

�
q

8 2F1�1

4
,
3

4
;2;q2�
 , �26�

where

q =
K3 + K4

K1 + K2
�27�

and pFq�a1 , . . . ,ap ;b1 , . . . ,bq ;z� is the generalized hypergeo-
metric function.22

B. Rotation of order parameter: � wall

Let us consider now the DWs with rotation of the order
parameter � in the configuration space. Inside this domain
wall the phase 	 rotates from − /4 to + /4 �counterclock-
wise rotation� or from − /4 to −3 /4 �clockwise rotation�.
We address this type of the DW as 	 wall. The whole analy-
sis, which was performed above for the � wall, can be re-
peated for the 	 wall. This yields the expressions obtained
from those for the � wall by the following substitution: �
→2	, �→�+ /4, K1−K2�K3+K4, and �2→�2−4�3. In
particular, the final expressions for the magnetic-induction
jump and the DW surface energy are

�B	��� = − �4/c�� dx� jy�

=
8e

c
�0

2��K3 − K4� �
K3 + K4

cos 2�
	

2

− sin2 2�
2

�1 − q2�1/2arctan�1 � q

1 � q

 , �28�

where

q =
K1 − K2

K1 + K2
cos 2� �29�

and

�	��� = �0
3�2�2�K1 + K2��1/2�

0



d� sin ��f��� , �30�

where

f��� = 1 �
K1 − K2

K1 + K2
cos 2� sin � − �K3 + K4

K1 + K2
�2 sin2 2�

1 � q sin �
.

�31�

Here �=2	+ /2 or �=−2	− /2 for 	 rotations from
− /4 to  /4 or to −3 /4, respectively. The DW surface
energy has extrema at �=0 where the magnetic-induction
jump is

�B	�0� =
8e

c
�0

2	K3 − K4 �


2
�K3 + K4�
 . �32�

IV. DISCUSSION

Let us discuss consequences of the obtained analytical
and numerical results. We start from the case of full axial
symmetry in the xy plane when K1=K2+K3+K4 and �3=0.
In this case the � dependencies for the � and the 	 walls are
identical except for the shift of � by  /4. Naturally the
choice of crystallographic axes does not matter in this case,
only their orientation with respect to the DW being impor-
tant. The minimum of the surface energy for the � wall cor-
responds �see Fig. 1�b�� to the angle �= � /4 �45°� be-
tween the DW and the axes for �. However, choosing for �
the coordinate system connected with the DW, the DW be-
comes a 	 wall.

Let us consider now the tetragonal symmetry with �3
�0. Without any loss of generality one may assume that
�3�0. Indeed, if �3�0 with  /4 rotation of the crystal axes
one obtains the fourth-order terms with �2−�3 /4 instead of
�2 and −�3 instead of �3. Thus after this rotation the new �3
is negative. At our choice of crystallographic axes the � wall
has a smaller surface energy with the minimum at �
= � /4. Thus the stable DW is a � wall with respect to the
order-parameter axes, but is a 	 wall, if one uses the order
parameter � defined in the coordinates related to the stable
DW. The stable configuration of the DW corresponds to the
maximum jump of the magnetic induction given by Eq. �25�
with the lower sign before the second term. On the other
hand, the jump is minimal and is given by Eq. �24� if the DW
is parallel to one of the two crystallographic axes. It is inter-
esting to compare these extremal values with the first critical
magnetic field given by Eq. �9�,

�Bmax

Hc1
=

�K1 − K2�
�K1 + K2�ln��/��

,
�Bmin

Hc1
=

4�K1K4 − K2K3�
�K1 + K2�2ln��/��

.

�33�

For the values �=190 nm and �=66 nm �Ref. 6� and as-
suming the weak-coupling relations K1 /3=K2=K3=K4, these
ratios are 1.48 and 0.48, respectively.

Since now there is no freedom for the choice of the axes
for the order parameter �, there is a force which tends to
orient the DW at 45° to the crystallographic axes. This force
may compete with other forces on the DW, e.g., those from
the sample shape. This would result in various configurations
of DW not necessary those dictated by the bulk tetragonal
anisotropy.
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Whereas in the Landau-Lifshitz theory of ferromagnetism
the magnetic-induction jump is given by the universal value
8M, where M is the local spontaneous magnetization, in
our case this jump depends on the structure and the orienta-
tion of the DW. Moreover, if one tried to introduce formally

the effective magnetization via the relation M̃ =�B /8 the
latter has no straightforward connection with the orbital mo-
ment l of the Cooper pair and even can have a negative sign
with respect to the intrinsic magnetic moment of the Cooper
pair.

Returning back to the question why they could not detect
stray fields generated by the magnetic-induction jumps out-
side Sr2RuO4 samples,6 our analysis demonstrates that at the
present stage the theory cannot make definite predictions on
the strength of these fields without reliable information on
the parameters in the GL theory. In principle, one could sug-
gest that the DWs in the experiments were not in the ground
state, or the GL parameters are essentially different from
their values for a cylindrical Fermi surface in the weak-
coupling-limit. But further experimental and theoretical
works are needed to check these suggestions.

V. CONCLUSIONS

We investigated properties of DWs in a tetragonal chiral
p-wave superconductor. Various cases of the DW structure
and orientation with respect to in-plane crystallographic axes
were analyzed. The magnetic-induction jump on the DW
changes from case to case, in contrast to the Landau-Lifshitz
theory of ferromagnetism, where this jump has the universal
value proportional to the local spontaneous magnetization.
This conclusion stresses again that the latter is not defined
for orbital ferromagnetism. The magnetic-induction jump is
responsible for stray magnetic fields, which have not yet de-
tected outside Sr2RuO4 samples.6 A quantitative evaluation
of stray fields can be done with a more detailed information
�from the microscopic theory or from the experiment� of the
parameters of the GL theory.
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