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Following on from our previous work [M. J. Bhaseen et al., Phys. Rev. Lett. 98, 166801 (2007)] we
examine the finite temperature magnetothermoelectric response in the vicinity of a quantum critical point
(QCP). We begin with general scaling considerations relevant to an arbitrary QCP, either with or without
Lorentz invariance, and in arbitrary dimension. In view of the broad connections to high-temperature super-
conductivity and cold atomic gases, we focus on the quantum critical fluctuations of the relativistic Landau-
Ginzburg theory. This paradigmatic model arises in many contexts and describes the (particle-hole symmetric)
superfluid-Mott insulator quantum phase transition in the Bose-Hubbard model. The application of a magnetic
field opens up a wide range of physical observables, and we present a detailed overview of the charge and
thermal transport and thermodynamic response. We combine several different approaches including the epsilon
expansion and associated quantum Boltzmann equation, entropy drift, and arguments based on Lorentz invari-
ance. The results differ markedly from the zero-field case, and we include an extended discussion of the finite
thermal conductivity which emerges in the presence of a magnetic field. We derive an integral equation that
governs its response and explore the crossover upon changing the magnetic field. This equation may be
interpreted as a projection equation in the low-field limit, and clearly highlights the important role of collision
invariants (or zero modes) in the hydrodynamic regime. Using an epsilon expansion around three dimensions,
our analytic and numerical results interpolate between our previously published value and the exact limit of

two-dimensional relativistic magnetohydrodynamics.
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I. INTRODUCTION

Quantum phase transitions (QPTS) in strongly correlated
systems play an important role in modern condensed-matter
physics. In problems ranging from high-temperature super-
conductivity to cold atomic gases, dramatic changes in the
ground state and physical response may often accompany
relatively small changes in the doping, the interaction
strength, or other system parameters.'> With the discovery of
high-temperature superconductivity in the cuprates,’ quan-
tum phase transitions between Mott insulators (MIs) and su-
perfluids (SFs) or superconductors have been at the forefront
of this intense scrutiny. More recently, remarkable advances
in cold atomic gases have allowed the observation of such
transitions in systems of bosonic atoms.* An important
stimulus for these studies is that the SF-MI transition sepa-
rates two of the most fascinating phases of highly correlated
matter. The superfluid reveals the importance of phase coher-
ence on the macroscopic scale, and the Mott insulator the
importance of strong interactions. The transition between the
two clearly involves an interplay between strong interactions
and strong quantum fluctuations. Such strongly correlated
regimes are notoriously difficult to analyze theoretically, and
shedding light on this enigmatic transition remains challeng-
ing.

In this work, we focus on the magnetothermoelectric re-
sponse in the vicinity of such quantum critical points
(QCPs). Our motivation for this, and our previous work,’
arose in connection with high-temperature superconductivity,
where experiments indicate strong superconducting fluctua-
tions in a broad range of temperatures above T,.° These sig-
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natures appear in both thermodynamics and transport mea-
surements performed in magnetic fields, and include
enhanced diamagnetism’ and a strong Nernst signal.® The
Nernst response is the transverse electric field induced by a
thermal gradient in a magnetic field, and therefore hinges on
the interplay of several different probes. Although a tremen-
dous amount of theoretical progress has been made in vari-
ous regions of the phase diagram,’~!> much less was known
about the complete magnetothermoelectric response in the
vicinity of such QCPs.' In view of the enhanced fluctuations
and the prospect of universal results, we advocated examin-
ing this problem at a simple, but rather generic SF-MI tran-
sition in the XY universality class’>—see Fig. 1. Somewhat
more ambitiously, we set out with a view to describe the full
complement of magnetothermoelectric response coefficients.

Our strategy® is to focus on the particle-hole symmetric
transitions in the ubiquitous Bose-Hubbard model. This
model has a distinguished history and provides a paradig-
matic example of a SF-MI quantum phase transition.!”>3
While it arose primarily in connection with bosonic models
of strongly correlated electron systems, where the bosons are
to be thought of as Cooper pairs, it has since been cleanly
realized in ground-breaking experiments in cold atomic Bose
gases.* Although not directly linked to a fermionic high-
temperature superconductor (with a d-wave order parameter
and nodal quasiparticles) the simplicity of the Bose-Hubbard
model is appealing. Among its many virtues, it admits a de-
scription as a quantum Landau-Ginzburg theory (or Abelian
Higgs model) and so it naturally embraces U(1) phase fluc-
tuations. Such fluctuations have long been argued to play an
important role in high-temperature superconductors.?*?3
More recently, the finite temperature classical fluctuations of
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FIG. 1. Superfluid-Mott insulator quantum phase transition in
2+1 dimensions, as tuned by a control parameter g, such as film
thickness or doping. The diagram shows the finite temperature 2D
Kosterlitz-Thouless transition, and the crossover between the Mott
insulator and the normal state. We examine the universal finite tem-
perature magnetothermoelectric response in the vicinity of the
(particle-hole symmetric) 2+1 XY QPT, as shown by the vertical
arrow.

the Kosterlitz-Thouless?® transition have been argued to in-
fluence their diamagnetic response.'*!3 In this work we focus
on the vicinity of the QCP and study the impact of quantum
critical fluctuations on the fundamental transport coefficients
and other physical response functions—see Fig. 1. In con-
trast to other approaches, which tackle related problems from
the superfluid side, and thus in terms of vortices, it is quite
natural to examine the critical region in terms of particle-
hole excitations of the Mott insulator. Although dual vortex
formulations are possible, we do not pursue this complemen-
tary approach here.

From a condensed-matter perspective, our primary inter-
ests are in the charge and thermal transport, and the thermo-
dynamic response in the vicinity of the QCP. This critical
point is of course well studied and there is vast literature on
its zero-field properties which we do not attempt to review.
In order to place our work in context,” we simply recollect
the most recent precursors pertaining to single field transport
measurements in the absence of a magnetic field. It was rec-
ognized in early works that the electrical conductivity is a
finite universal multiple of e?/h."7-2227 Interactions at the
fixed point are essential in order to render this finite, as op-
posed to a more conventional, noninteracting single carrier
Drude peak. More specifically, this may be traced to colli-
sions between counterpropagating particles and holes, and in
general requires a finite frequency and finite temperature hy-
drodynamic treatment of the problem.?’?! In contrast, it was
well understood that the thermal conductivity diverges at the
clean interacting fixed point;>>?82% in the presence of a ther-
mal gradient, particle and hole excitations move in the same
direction, and the collision mechanism is unable to render
this quantity finite. In the absence of a magnetic field, a finite
thermal response therefore requires the introduction of impu-
rities or other forms of energy relaxation.??
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As we noted in our previous work,> this circumstance is
changed markedly in the presence of a magnetic field. Al-
though the dc Hall conductivity vanishes on symmetry
grounds at the particle-hole symmetric point, the application
of a magnetic field opens up the possibility of nonvanishing
thermoelectric response coefficients, even in the absence of
impurities or other forms of scattering. For this reason, we
confined ourselves to the clean case, in order to better expose
the main universal results. This is not a serious limitation,
since results in the presence of impurities may be obtained
from the finite frequency behavior of the clean system, pro-
vided it is not driven to a new nontrivial fixed point. The
general problem one is interested in, is thus to apply various
combinations of E, B, and VT, possibly at finite frequency,
and to measure the associated response coefficients. In view
of the conceptual importance of the Bose-Hubbard model
and the XY universality class, we present a variety of ap-
proaches to the general magnetothermoelectric response.

The layout of this paper is as follows. In Sec. II we begin
with a general discussion of scaling close to a QCP. This
overview is relevant to both bosonic and fermionic systems
in arbitrary dimension, and thus helps to correlate the more
detailed, model specific results we shall present. In Sec. III
we recall the field theory approach to the superfluid-insulator
transition in the Bose-Hubbard model and the simplifications
at the particle-hole symmetric point. In Sec. IV we describe
the Boltzmann approach to quantum critical transport.?%?! In
Secs. V=VII, we present a brief overview of the properties in
electric fields, magnetic fields, and temperature gradients
taken separately. In Sec. VIII we examine the behavior in
combined crossed electric and magnetic fields and discuss
two distinct regimes of behavior. We approach this problem
in several different ways, including entropy transport, Lor-
entz invariance, and a linear-response analysis of the quan-
tum Boltzmann equation (QBE). In Sec. IX we examine the
behavior in the presence of a temperature gradient and a
magnetic field, and once again discuss two regimes. We
verify that the Onsager relations are satisfied and obtain a
nonvanishing thermal conductivity. We conclude in Sec. XI
and provide several technical appendixes.

While this longer paper was under construction, elegant
extensions of this work appeared which also include the ef-
fects of impurities and particle-hole symmetry breaking at
relativistic QCPs.* These reveal important links between the
transport coefficients and develop connections to the high-
energy community.’! Applications to other gapless systems
such as graphene have also been investigated.?>34

II. SCALING FORMS

As usual, the approach to a continuous phase transition is
accompanied by a divergent correlation length, &, and a di-
vergent correlation time, & .~ &, where z is the so-called dy-
namical exponent. Close to the transition, dependence on the
microscopic details drops out and nontrivial scaling relations
between physical observables and the system parameters
may be obtained. In the case of a quantum phase transition,
where the microscopic energy scale is tuned to zero, the only
relevant energy scale in the problem is the temperature 7. In
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this case, the divergent correlation time is given by

&~ UT, (1)

where we set, i=kz=1, for simplicity; see for example the
review? for more details. This diverging time scale is accom-
panied by a divergent correlation length

E~ (&) ~T, (2)

where a nontrivial dynamical exponent, z, reflects the poten-
tial for disparity in the temporal and static correlations.
Throughout this work will be interested in the magnetic,
electrical, and thermal response in the vicinity of a QCP.
Here, we examine the general consequences which follow
from simple, yet powerful, scaling ideas. As exemplified by
measurements on quantum Hall systems, such considerations
are able to correlate a wide variety of different physical
probes, yet are crucially independent of the microscopic ap-
proach employed.”

The space-time dimensions of the electric and heat cur-
rents contribute to the overall temperature dependence:

[J,] ~ Time™'Length™@!) ~ l+(@-1/z 3)

[J,] ~ Time Length™@") ~ 72+d-1/z, 4)

In general, we are also interested in the dependence of these
currents on the measuring frequency and the external fields,
and it is temperature against which these are compared. Hav-
ing pinned the overall dimensions, these external fields will
enter via dimensionless ratios involving the temperature.’

Using the defining relations, E=A, and B=V XA,
[E] ~ Length ' Time™!' ~ 7'+1%, (5)

[B] ~ Length ~ 777, (6)

where [A]=Length™!. In this way we arrive at the following
scaling forms, valid in arbitrary dimension and for generic
dynamical exponent:

— l+(d-1)/ i et
Je(T7E?B7VT’ w) T " ZFE( T1+1/z’ T2/z’ T1+1/Z’ T

(7)

[E[ [B] V7] 9)
i1z iz pl+liz? o )2

[E[ [B| |VT] w)

J(T.E.B,VT,w) ~ T2+<d—1>/th<

(8)

where F, and Fj, are universality class dependent scaling
functions. One may readily incorporate additional perturba-
tions in a similar fashion. As we discuss in Sec. VII, similar
considerations also apply to thermodynamic quantities ob-
tained from the scaling form for the free energy. We empha-
size that our only assumption in deriving these scaling forms
is proximity to a QCP. In particular, they are independent of
the statistics of the underlying carriers, and are equally valid
for both bosonic and fermionic systems. These expressions
are invaluable as they enable one to confirm, and sometimes
infer, the field and temperature dependence of the transport
coefficients. Perhaps more importantly, they also allow one
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to correlate a large number of distinct scenarios and probes,
without lengthy or sophisticated computations. For example,
as we will discuss in Sec. V, in the absence of an applied
magnetic field, or temperature gradient, linear response in £
immediately yields

J(T,E,0) ~ T“°F(w/T)E = o(w,T)E. 9)

The general dependence of the ac conductivity on frequency
and temperature is therefore easily read off.?%?! Of course, in
order to pin the precise functional dependence on these vari-
ables, explicit calculations of the scaling functions are nec-
essary, and we turn our attention to this problem below. Most
crucially, at low frequencies, w<<T, collisions at the fixed
point necessitate a hydrodynamic, or quantum Boltzmann
treatment of the critical regime.?>?! For simplicity, we con-
sider the z=1 relativistic field theory approach to the
(particle-hole symmetric) SF-MI transition in the Bose-
Hubbard model, but our interests and overall approach are
clearly broader.

III. FIELD THEORY

The Bose-Hubbard model has received considerable at-
tention in recent years!’23 and describes bosons hopping on
a lattice with amplitude ¢, and interacting via a short-range
repulsive interaction U:

H=—-12 (b[bj+blb) - p> n;+ %’2 n(n;—1). (10)
Cij) i i

The Bose creation and annihilation operators satisfy the
usual commutation relations, [b,«,b}]:b‘,-j, where n;=bb; is
the number of bosons at site i and w is the chemical poten-
tial. In the context of a Josephson array or superconductor,
the bosons represent Cooper pairs of charge OQ=2e, tunneling
between superconducting regions. In general, one may also
include the effects of disorder and long-range interactions
into such a model, but here we shall concentrate on the sim-
plest case (10). The phase diagram of the Bose-Hubbard
model is well established and exhibits both superfluid and
Mott insulating regions,'” the latter occurring for strong
enough repulsive interactions—see Fig. 2. As a function of
the chemical potential, u, this model exhibits a series of
Mott insulating “lobes” where the density of bosons is
pinned to successive integers. At a given point within the
Mott lobes, the energy cost for producing particle (or hole)
excitations is measured by the vertical displacement to the
upper (or lower) phase boundary. At the tips of these lobes,
the energy cost to producing particle-hole excitations van-
ishes, and the model is particle-hole symmetric. In addition,
the density remains constant as one enters the superfluid
phase along a trajectory of constant chemical potential, pass-
ing through this apex. In the vicinity of these points, the
SF-MI transition is described by the relativistic action of an
interacting complex scalar field ®,!”

g (11)

S= f de|ﬁM<D|2—m2|(I)|2—?|(I>

where D=d+1, and d is the number of spatial dimensions of
the original Bose-Hubbard model (10), and the mass param-
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FIG. 2. Mean-field phase diagram of the Bose-Hubbard model.
At the tips of the Mott insulating lobes (indicated by dots) the
system is particle-hole symmetric and described by the relativistic
quantum Landau-Ginzburg theory.

eter, m, is set by the temperature. This is nothing but a rela-
tivistic quantum Landau-Ginzburg action for the supercon-
ducting order parameter, ®, and its associated fluctuations. It
therefore represents a useful starting point to unravel the
more general problem of phase fluctuations at SF-MI transi-
tions. Away from these particle-hole symmetric points, the
density changes as one enters the superfluid phase and the
action picks up an additional term, linear in the time deriva-
tive. Correspondingly, the dynamical exponent changes from
z=1 to z=2; see, for example, Ref. 1. Here, we will focus on
the case with z=1, since it will allow us to employ the pow-
erful machinery of relativistic quantum field theory. More
general results, for arbitrary z, may be obtained by appealing
to the general scaling arguments outlined in Sec. II.

IV. QUANTUM BOLTZMANN EQUATION

A convenient and physically intuitive way to think about
this problem, at leading order in the epsilon expansion, is by
means of the quantum Boltzmann approach to quantum criti-
cal transport.’%?! In this framework we may regard model
(11) as a gas of particle-hole excitations of the Mott insula-
tor. The QBE emerges at lowest order in the epsilon expan-
sion and describes the impact of weak scattering (as con-
trolled by epsilon) on these quasiparticles at the Gaussian
fixed point. It takes the form of a nonlinear integrodifferen-
tial equation for the momentum space distribution functions,
f+(k,1), of such particle and hole excitations

L s oy ) LE=Lif) (2)

where vy, =dey/dk and skz\s’kzc +m?c*. For simplicity we
consider a spatially homogeneous system in uniform external
fields. The collision term represents scattering between these
excitations, and most crucially, incorporates the nonlinear in-
teraction of the Landau-Ginzburg field theory (11) and the
associated critical fluctuations,20-2!
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3 ul n
2u0 H &k (f‘” Fo )( -
€k

L 2mP2e, 2

XOk+k —k,—ky)d(e+e,—g,-¢5),  (13)

where scattering out of state k is given by
F=2f (R)f=(k)[1 + fo ()1 +f+(k3)]
+fe(R)f= (k[T + fo(k) [T + f(k3)],

and we have suppressed the explicit time dependence of the
distribution functions. Scattering in to state k follows by in-
terchanging f+ and 1+f.. The structure of the collision term
(13) is readily seen by using Fermi’s golden rule, and repre-
sents the leading term in the € expansion of the associated
Keldysh field theory.?! The factors of 1+ f remind us that we
are dealing with a system of bosons in this example. As in
standard treatments of |®|* theory, it is convenient to access
the nontrivial fixed point by means of an epsilon expansion
around the upper critical dimension.’> At the Wilson-Fisher
fixed point, where the renormalized mass vanishes, the bare
couplings must be tuned to the values?

47°T%e 247 e
15 5

m2=

N Uy = N (14)
where our spatial dimensionality is given by d=3—¢; since
we are primarily interested in two spatial dimensions, we
shall set e=1, at the end of any calculation. The collision
term (13) is therefore proportional to €>. As we shall see, the
leading order epsilon expansion is illuminating both from a
quantitative numerical perspective and also in its ability to
expose the external field and temperature dependence of
physical quantities. This semiclassical approach is formally
justified within the epsilon expansion where, at the tempera-
tures of interest, the mean free path is much longer than the
thermal de Broglie wavelength and the mean interparticle
spacing. Further information on the relativistic QBE,* and
applications to the quark gluon plasma, may also be found in
the literature.?’

In this Boltzmann representation, the U(1) electric current
of the field theory (11) takes the form

Je_Q (27Th)de|—JC+( at) _f—( ’t)]’ ( )

and the heat current is given (in linear response) by

_fL‘k . . 6
Jn= (zﬂ_h)d"ksk[ﬂ( D+ fo(k )] (16)

Here, we use k to label the momentum and not wave vector;
the dimensions of the currents are [J,]=Cm~ Vs~ and
[J,]=Jm~@Ds7! In this representation, the field theory con-
servation laws are related by appropriate momentum space
integrals (or moments) of the QBE.

The strategy is thus the same as in any application of the
Boltzmann equation. We should solve the appropriate QBE
for the nonequilibrium distribution function(s), and then
compute the associated transport currents. We may then ex-
tract the fundamental transport coefficients defined via

094502-4



MAGNETOTHERMOELECTRIC RESPONSE NEAR QUANTUM...

Jg (o «a E
(J}f)_(& E)(—VT)’ (17)

where @=Ta is required by the Onsager relations,’4 and
we denote the response to a temperature gradient by an
overbar*! in order to distinguish it from the thermal conduc-
tivity defined in the absence of a particle current.*> Knowl-
edge of the transport coefficients is particularly useful since
they allow one to correlate a wide variety of different mea-
surements. For example, the Nernst coefficient, v, is the
transverse electric field generated under open circuit condi-
tions by a temperature gradient and a magnetic field. Impos-
ing J¥=0 on Eq. (17) one may relate this open circuit mea-
surement to the more primitive transport coefficients by”

1B
B(-VT), B

_ l Ay Oxx — Oy Oy

V=

5 . (18)
Ot 0%y
At the particle-hole symmetric point we have chosen to focus
on, the Hall coefficient o, vanishes and this may be reduced
to

l a,,
=——. 19
g Bo,, (19)

Such an approximate reduction may also occur in situations
where o,,~0. We see that the transverse thermoelectric re-
sponse, a,,, is central to a discussion of the Nernst response.
We shall examine this quantity in detail from several differ-
ent perspectives beginning in Sec. VIII. We shall also discuss
the behavior of the other transport coefficients including the
thermal conductivity K, (B).

V. ELECTRIC-FIELD RESPONSE

Before embarking on a detailed discussion of the general
magnetothermoelectric response, it is instructive to recall the
main known results pertaining to single field measure-
ments.! 71820 Ag we discussed in Sec. II, in the absence of
any applied temperature gradients or magnetic fields, one
expects the linear-response electric current to behave as

E|

1+(d=1)/z 2
J(T,E,w) ~ T'*-D T‘+”ZE(T>' (20)

The corresponding conductivity therefore reads

o(T,w) ~ WH)/ZE(;). (21)
For z=1, this is borne out by the direct Boltzmann calcula-
tions of Damle and Sachdev.?’ Indeed, the nontrivial scaling
(21) as a function of w/T was an important catalyst for their
Boltzmann treatment; in general the limits w—0 and 7—0
do not commute and 2(0) # 2 (). As such the dc response at
finite temperature differs from that obtained at zero tempera-
ture. The universal scaling function, %(w/T), may be com-
puted numerically in the low frequency hydrodynamic re-
gime by means of the QBE (12), and at zero frequency one
obtains?%?!
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0.1650
3(0)=———. 22
(0) 2 (22)
In d=2, where e=1, the dc conductivity is a universal mul-
tiple of e?/h:

2 2
o(0)= 2(0)@ = 1.0374i. (23)
h h
This result is clearly appealing and is remarkably close to
both the self-dual value,**** 4¢2/h, and to a number of early
experiments on thin films.”® More generally, the order of
limits is also relevant to the electric field itself. A discussion
of the noncommutativity of £, w, T, and the associated non-
linear response, may be found in Refs. 22 and 23.

It is worth noting that result (22) is singular in the small
parameter €. This is a direct reflection of the proximity to the
Gaussian fixed point, and that collisions must overcome the
conventional Drude response for a single noninteracting car-
rier. This is possible in this two carrier system because elec-
tric current relaxation does not violate momentum
conservation.”’’ A steady state with a finite conductivity is
therefore established. As we shall see, the specific leading
order dependence on € is intimately tied to the physical
quantity under consideration. For example, in Sec. VIII we
shall demonstrate that the leading order contribution to «,, is
regular in the epsilon expansion. To leading order, one may
therefore drop the O(€) collision term in the QBE and con-
sider bosons of mass O(ye€) moving under the action of the
applied fields. This is in stark contrast to the case considered
by Damle and Sachdev,?® where the collision term was cru-
cial in order to render the electrical conductivity finite and
proportional to 1/ €. Nonetheless, as we shall discuss below,
the collision term is central to a better understanding of the
thermal conductivity in the drift regime. Here the leading
order contribution begins at O(€?) and is inversely related to
the electrical conductivity. For uniformity of presentation we
shall include the collision term throughout, and simplify
when it is appropriate.

VI. TEMPERATURE GRADIENT RESPONSE

In view of the finite dc electrical conductivity discussed
above, it is tempting to think that the system might also
support a finite thermal conductivity, in the spirit of a con-
ventional Wiedemann-Franz relation. A little reflection re-
veals that this is not the case, however, and that the thermal
conductivity in fact diverges in the clean system.?® A simple
way to see this is to note that under the action of the thermal
gradient, particles and holes move in the same direction. As
such, relaxation of the corresponding heat current requires
energy relaxation, which is not contained in either the origi-
nal model (11) or the Boltzmann description (12). (This is in
contrast to the electrical conductivity, where particles and
holes move in opposite directions, with no net momentum.
Collisions are highly effective in limiting the electrical cur-
rent without violating the conservation laws.?’) It follows
that the divergence of the thermal conductivity is intimately
tied to the conservation of the energy momentum tensor,?® in
much the same way as happens in low-dimensional inte-
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grable systems.* As we shall discuss below, this conserva-
tion argument no longer applies in the presence of a mag-
netic field.> By minimally coupling the field theory (11) to a
magnetic field, the conservation law is modified. As such, in
the presence of a magnetic field, a nonvanishing thermoelec-
tric tensor and thermal conductivity may be supported, even
in the clean homogeneous system.’ Impurities and other scat-
tering mechanisms such as umklapp processes may of course
render these quantities finite also, but in the first instance, it
is clearly essential to understand the universal results pertain-
ing to the clean homogeneous system. Before embarking on
a general discussion of the interplay between a magnetic
field and other probes and response functions, let us examine
the response to a magnetic field alone.

VII. MAGNETIC-FIELD RESPONSE

In view of the interest in fluctuation diamagnetism!! it

is instructive to investigate the response to a magnetic field
alone. Recalling our scaling arguments from Sec. II, in the
vicinity of a QCP, the only relevant energy scale against
which to compare the magnetic field is the temperature. In
the absence of electrical and thermal gradients, we therefore
expect the free-energy density to scale as’

F(T,B) ~ T'*‘”%(%). (24)
Here we have used the fact that the correlation length, &,
diverges with the correlation time, &,~1/7, according to &
~(£,)"7, and so the prefactor is an energy density. In addi-
tion, we have used the fact that [B]~ 1/L>~ T%%, as follows
from our discussion in Sec. II. In weak magnetic fields, B
< T%, we may expand this in powers of B:

F(T,B) ~ T+¢-9p2, (25)

Here we assume that symmetry under reversal of the mag-
netic field ensures that only even powers of B appear in the
weak field expansion of the scaling function f;. It follows
that the linear-response magnetization scales as’

m=- 2L s, (26)
JdB

This is consistent with a finite temperature, diagrammatic
Kubo calculation of the magnetic susceptibility of a charged
scalar field, with m ~ T and z=1. On the other hand, in strong
magnetic fields, B> T?7, it is natural to expand this in a
power series in temperature, and recast the scaling relation
(24) in the form

352) . (27)

f(T,B) — B(d+z)/2fl<
In strong fields, or low temperatures, B> T%%, we thus expect
F(T,B) ~ B2, (28)

In the relativistic problem, this yields the strong field behav-
ior, F~B*2, in d=2, and F~ B2, in d=3. Broadly speaking,
this nontrivial field dependence is a reflection of the relativ-
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istic Landau level spectrum, where £~ \B. This is suggested
on dimensional grounds by Eq. (24) for z=1, and is borne
out in a direct computation of the partition function of a free
massive relativistic charged scalar field.*>*” These consider-
ations are also compatible with elegant and highly nontrivial
results obtained in the early days of quantum electrodynam-
ics on vacuum polarization and pair production;*3- see, for
example, Ref. 51 for a recent review of Heisenberg-Euler
effective Lagrangians in both spinor and scalar quantum
electrodynamics.>? These detailed studies require ultraviolet
regularization and yield an additional logarithm at strong
magnetic fields, so that F~B?In(1/B) in d=3. Although
this is not captured by the simple scaling arguments, it is
intimately connected to the vacuum screening properties of
the field theory via the renormalization group beta function.

In this section we have discussed the distinct field regimes
of the static magnetic response. In the subsequent discussion,
we shall see how such regime divisions also emerge in the
transport properties. In many respects this is rather natural,
since the dynamics and statics are intimately related at
QCPs.2

VIII. CROSSED ELECTRIC AND MAGNETIC FIELDS

In order to understand the quantum critical transport in
combined E and B fields, it is instructive to recall the motion
of a single relativistic particle in crossed electric and mag-
netic fields.>® This will provide significant orientation for the
more general interacting field theory.’ The most important
feature is that the motion of a single charged particle is quali-
tatively different depending on whether, E<cyB, or E
>coB, where ¢ is the speed of light. This is most easily
understood from the vantage point of a moving frame of
reference.> In the former case, there always exists a moving
frame where the electric field vanishes, and the particle ex-
periences a pure magnetic field. Conversely, in the latter
case, there always exists a frame where the magnetic field
vanishes, and the particle experiences a pure electric field.
Boosting back to the laboratory frame, we mix in the
complementary field component, but the qualitative character
of the motion is more “electric-field-like” or “magnetic-field-
like,” as dictated by the inequalities—see Fig. 3. We shall
discuss this in more detail below, but before doing so, we
note that our problem is a little more subtle due to the ap-
pearance of an effective speed of light, c, in the effective field
theory (11), and the associated QBE (12). What matters for
our purposes, at least in the first instance, are the solutions to
the QBE (12) for a given fixed ratio of E and B. It may be
seen that these solutions are kinematically distinct for E
<c¢B and E>c¢B, as follows directly from the left-hand side
of the differential equation, without recourse to Lorentz in-
variance arguments. As such the effective Lorentz structure
plays a key role in determining the solutions of the relativ-
istic QBE (12), and we shall henceforth use this effective
speed of light in our subsequent discussions. It is interesting
to note that such Lorentz transformation arguments also find
applications in other effective relativistic systems, as was
recently discussed by Lukose et al’* in the context of
graphene.
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®B E ®B
-Ql +Ql

-1QI

E FIG. 3. Motion of a single
relativistic charged particle in
crossed electric and magnetic
fields. (a) In the regime |E|<c|B|
the particle executes cyclotron or-
bits and has a well defined trans-
verse drift velocity vp. (b) In the
regime |E|>c|B| the particle is
Vs continually accelerated by the
electric field.

+Ql

Under a Lorentz transformation with a velocity v, the
electric and magnetic fields transform according to°>

E’:y(E+v><B)—iV(V—'2E), (29)
y+1 ¢

peyfn 5E) LB
c y+1 ¢

where y=1/1-v?/c? and we work in SI units. It is readily

seen that for crossed E and B fields, with |E|<c|B|, there
exists a frame moving at the drift velocity
EXB 31)
Vp=—""7 >,
vBP

where the electric field E’ vanishes. In this moving frame,
the particle is subject to a pure magnetic field of reduced
strength, B’ =B/ y;. Taking our magnetic field to point along
the z axis, the particle executes cyclotron orbits in the mov-
ing frame with x'(¢')=r cos(w’t’) and y'(t')= F r sin(w't’);
here r is the radius of the orbit, @’ is the cyclotron frequency,
and the signs indicate the sense of rotation for positive and
negative charges, respectively. With the electric field along
the x axis, the drift velocity points along the negative y axis.
Boosting back to the laboratory frame using the inverse Lor-
entz transformations one finds the parametric equations of
motion:

x(t)=rcos(w't’), y({)=AFrsin(w't")—vpt'],

1=yt = vprsin(w't’)/c?]. (32)

In the nonrelativistic limit ¢ — o, these reduce to the para-
metric equations of a trochoid: x*(¢)+[y(t)+vpt]*=r>—see
Fig. 3. In view of the cyclotron motion of equal numbers of
particles and holes, it follows that the dc conductivity
0.(B)=0 in this regime, at least at the single particle level.
On the other hand we see that the thermoelectric tensor, Ay
may be finite due to the finiteness of the drift velocity. We
shall see that these expectations are borne out, even in the
presence of interactions at the fixed point, and that this single
particle description captures the relevant physics.’ It also un-
derpins the divergence of the Nernst coefficient (19) in the
clean, particle-hole symmetric case.’

Returning to our single particle problem, for crossed E
and B fields with |E|>c|B|, there exists a frame moving at
velocity

EXB
Vg = CZ<W>, (33)

where the magnetic field B’ vanishes. In this moving frame,
the charged particle is subject to a pure electric field of re-
duced strength, E'=E/y;. In the absence of scattering, the
energy ¢’ and the components of momentum p’ parallel to E
continue to increase indefinitely. In the laboratory frame

e=yg(e" +vp.p'), (34)
P = ve(p| +vpe'/c?), (35)
p.=p., (36)

where the labels parallel and perpendicular are with respect
to the boost velocity, vg. In these notations p; is constant
(since it is transverse to the electric field) while p’ and &’
=\c’p'?+m*c* increase with time. It follows from Egs.
(34)—(36) that the energy and both components of the mo-
mentum increase indefinitely in the laboratory frame. That is
to say, if we apply an electric field |E|>c¢|B|, both particles
and holes acquire an identical and ever increasing compo-
nent of the momentum at right angles to the electric field.”
This cannot be relaxed by the collision term. Since &,v;
=c’k we expect that a,, is infinite in this regime. On the
other hand, compatibility with the results of Damle and
Sachdeyv, for B=0, suggests the possibility of a finite value of
... Once again, the underlying divergence of the Nernst
coefficient (19) is apparent.

From the preceding discussion, we see how the ratio E/B
may influence transport measurements. As we shall discuss
in Sec. IX, there are analogous regimes in a thermal gradient,
for VI'<B, and VT = B, at least within the framework of the
collisionless Boltzmann equation with a linearized driving
term. Although we no longer have Lorentz invariance argu-
ments, the distinction once again shows up in the single par-
ticle kinematics of the associated QBE, since the thermal
gradient acts like a momentum-dependent electric field. In
the remainder of this section, we shall take the electric-field
regimes in turn, and examine the magnetothermoelectric
transport coefficients from a variety of different perspectives.
We will focus primarily on the drift regime, |E|<c|B|, since
it is both the simplest to analyze, and also pertains to con-
ventional linear-response measurements at fixed magnetic
field.
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A. Drift regime: |E|<c|B|

In this section we are interested in the thermoelectric re-
sponse in the drift regime. It turns out that there are several
complementary ways to address this problem, and we exam-
ine these below. Our strategy is to first develop an under-
standing of the QBE (12) as written, and to defer discussion
of the epsilon expansion itself until later. This combination
of different perspectives is particularly useful in establishing
the Onsager relations between the transport coefficients.38-40
It also helps demonstrate the equivalence between the field
theory and quantum Boltzmann approaches. We begin in
Sec. VIIT A 1 with a computation of the thermoelectric ten-
sor, a,, based on the entropy drift of a charged scalar field.
In Sec. VIII A 2 we turn our attention to the more general
problem of the Lorentz invariant solutions of the QBE. In
Sec. VIII A 3 we use this explicit distribution to determine
the heat current response to an electric field and verify the
answer obtained by entropy drift. In Sec. VIII A 4 we dem-
onstrate how this result also follows from a more familiar
linearization of the QBE. Such a linearization approach will
be particularly useful in the presence of thermal gradients,
where Lorentz field transformation arguments are not avail-
able. In Sec. VIII A 5 we finally turn to the epsilon expan-
sion itself and evaluate our general expression for a,, nu-
merically. We compare the results to our scaling analysis of
Sec. II. We provide a very brief discussion of the nondrift
regime in Sec. VIII B.

1. Entropy flow

As follows from the defining relation (17), the thermo-
electric tensor, «, quantifies the electric current which flows
in response to a temperature gradient. Provided the Onsager
relations are satisfied, this may also be obtained (up to a
factor of temperature) from the heat current which flows in
response to a temperature gradient. The latter route is easier
to begin with and we consider the complementary approach
in Sec. IX. In view of the well-defined drift velocity it is
natural to compute the transverse thermoelectric response,

a,,, as a transport of entropy with the characteristic flow

EXB

BE (37)

Vp=

To lowest order in the epsilon expansion, it is sufficient to
compute the entropy density of a free massive charged scalar
field, where the mass parameter is given by Eq. (14). That is
to say, the mass incorporates the leading Hartree contribution
of the self-interactions.’” A free boson is essentially a har-
monic oscillator and the partition function of the latter is
readily seen to be

[

7= 2 e—ﬁ(n+l/2)ﬁw — lBﬁ )
n=0 2 sinh(Tw>

Taking the logarithm and integrating over all momenta, the
analogous expression for a massive neutral scalar field fol-
lows immediately:>°

(38)
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InZ=-V

dk [,Bhwk

_ o~ Bhoy
Q)i 2 +In(1-¢ )|, (39)

where fiw,= g, =Vk’c*>+m*c*. Dropping the first (divergent
zero point) contribution, the free-energy density reads

d
F=kgT ) ———In(1 - e7P%%). (40)
The corresponding entropy density is given by
aF dk B e

S=-

[ln(l — e Per) —

a1 ="k Gy B |

(41)

Performing an integration by parts on the logarithmic term
one obtains

J(zﬂ_ﬁ)dfo(sk)vk (gk), (42)

where fy=(ef?—1)7! is the Bose distribution function, and
we have used the identity V- (gk)=vy-k+de,. Since par-
ticles and holes acquire the same drift velocity, the corre-
sponding heat current density for our charged scalar field
theory is given by J,=2TSvy. In particular, if we apply an
electric field E, in the positive x direction and a magnetic
field B,=B in the positive z direction, the drift velocity
points in the negative y direction:

__orsEr, (43)
BZ

Assuming the validity of the Onsager relations, which we
demonstrate are satisfied in Sec. IX, we thus obtain

28 (44)
ayx = - B .
Equivalently, using the Onsager symmetry relation®® a, (B)
= ayx(_B)’

dk
_5 dBTf Qo Vi (k). (45)

A useful alternative form of this result, which better exposes
the relation to heat currents, is obtained by performing an-
other integration by parts:

2 d'k
=— k-(-V 46
axy dBT (Zﬂ'ﬁ)dgk ( ka) ( )
Using the identity
k| df,
Vifo= : (47)
ﬂsk

we may also write this in scalar form as

28 2 [ d% kZ(_a_fo)
(27Tﬁ)d aSk

a

48
v~ B T 4BT (48)

Note that the result for «,, is positive in sign; an electric field
in the y direction and a magnetic field in z direction yield
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E X B drift, and thus a transport of heat, in the positive x
direction. In the next sections we shall see how result (48)
emerges from the QBE (12), even in the presence of interac-
tions. Developing the Boltzmann approach is particularly
useful since it will allow an intuitive and systematic calcula-
tion of all the transport coefficients in this regime. Before
closing the section let us note that the entropy density per
species of carrier has a particularly simple form in the mass-
less limit. With m=0 one obtains

S=Cylkghi?), (49)

where N\y=nhc/kgT is a thermal wavelength for massless par-
ticles, and

1 d% Pei
= (50)

d:; (Zﬂ)d(e/;_l)z,

where k= ck/ kgT are dimensionless variables. In particular,
Cy=277/45~=0.439, and C,=3((3)/2m~0.574. We shall
employ the first of these results within the epsilon expansion
in Sec. VIIT A 5.

2. Lorentz invariance and the QBE

The first step in developing the Boltzmann approach is to
solve the QBE for the nonequilibrium distribution functions,
f+(k,1). In the absence of any electric and magnetic fields, it
is readily verified that the QBE (12) is satisfied by the static
Bose distribution function

1
Fo.0) = foley) = (51)
P

U
even in the presence of the collision term. This is easily seen
by noting that 1+fy(ey)=eP?kfy(gy). It follows that Fo"
equals F4 provided e(k)+e(k;)=¢e(k,)+e(ks). The energy
conserving delta function present in Eq. (13) is therefore
enough to ensure that the collision term vanishes and that the
full QBE is satisfied.

Let us now examine the nonequilibrium situation in the
presence of crossed electric and magnetic fields. As dis-
cussed in Sec. VIII, in the regime |[E|<c|B|, we may move
to a frame with velocity

EXB
VD:W’ (52)

where the electric field vanishes. Since a pure magnetic field
does not affect the energy of a charged particle, it follows
that an equilibrium distribution fy(e,) must satisfy the
Boltzmann equation in this boosted frame. [Indeed, it is
readily verified by direct substitution that f.(k)=f(gy) is a
solution of the original QBE (12) when E=0 and B #0,
since dfy/ K=V, df,/ dey.] Since

81’(: Yolex—vp - k), (53)

2)—1/2

where yp=(1- V%/ c , we conclude that
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sk—vD-k) (54)

f+(K) = foley) =fo(=22
V1 =vp/c
is a solution of the full QBE (12). Again, it may be verified
by direct substitution that Eq. (54) is in fact a solution of Eq.
(12) in the presence of our crossed E and B fields. Explicitly,
the left-hand side of the Boltzmann equation is readily seen
to give zero using the fact that B Xvp=E:

f +

(E+vg XB)- [Z—k= (E+vg XB)- (Vk_VD)yDafo(sk)

078](
v (E-B X vp)=0. (55)

Likewise, in the collision term we see that Fo'* equals F'7
provided that &’(k)+e&'(k;)=¢'(ky)+&’(k;). Since &'(k)
=7yp(ex—vp-k), this is ensured by the combined action of
the energy and momentum conserving delta functions ap-
pearing in Eq. (13). In this way we have established the
nonequilibrium solution (54) of the QBE valid in the drift
regime |E|<c|B|. This is analogous to Kohn’s theorem®’ for
nonrelativistic electron systems.’® In Sec. VIII A 3 we shall
use this distribution to compute the transport coefficients.

3. Transverse heat current in response to an
electric field

The equality of the particle and hole distribution functions
(54) reflects the fact that drift velocity (52) is independent of
the charge of the carrier. It follows immediately from defini-
tion (15) that both the longitudinal and the transverse com-
ponents of the electrical conductivity vanish in this limit.
Note that there is no conflict with the existing results of
Damle and Sachdev,?’?! since our present results are derived
in the drift regime |E|<c|B|. As such we cannot simply set
B=0 and recover the results obtained in the absence of B.
Moreover, the vanishing of the conductivities are consistent
with the single particle picture presented in Fig. 3. In con-
trast, it is clear from definition (16) that a nonvanishing heat
current may be supported in crossed E and B fields. Substi-
tuting the drift solution (54) into Eq. (16) yields

i zf d'k » (sk—vD : k) (56)
=2| ———c¢ —.
" Qahy®™ O\ 1 - vh/c?

Taylor expanding the distribution function in powers of vp
gives

d
ﬂczk{fo(s.a +

Beg
Q) K-V O(Vé)] ’

Jh=2 Be—
(ePx—1)
(57)

where the first term vanishes upon integration. In the pres-
ence of an electric field E, and a magnetic field B,=B, the
drift velocity vj, is in the negative y direction. As such, to
linear order in the electric field,

J}' = — zf dk CZ 2 BeBSk %
h (Zﬂ'fl)d y (eﬁek _ 1)2 BZ .

It follows from the defining relation (17) that

(58)
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2( d% ., BePr 1
&, =——- K? —. 59
=T a) @any© T (Px—1)2B. (59)

Equivalently, using the Onsager relations®
and a,,(B)=a,,(-B),

22 [ d% k2< afo)
an =" | K| -
Y d4BT) (27h)! dey

ayx(B) = TCEW(B)

(60)

This coincides with our previous result (48) obtained by en-
tropy drift arguments. This supports the validity of our
simple result that at the strongly fluctuating SF-MI transition
a,,=2S/B, Where S is the total entropy density pertaining to
each carrier type.’

4. Linear response

In order to go beyond our existing results, especially with
a view to thermal gradients in Sec. IX, it is useful to perform
a systematic linear analysis of the QBE. In the presence of
electric and magnetic fields the Boltzmann equation reads
f+

£+Q(E+vk><B)

ot _I+[f+7f] (61)

To linear order in the electric field we may parametrize the
departure from equilibrium

f+(K) = foley) = Ok - Egdk) + k - (E X B)yr, (k), (62)

where for simplicity we focus on static solutions. Here, (k)
represents the longitudinal shift due to the applied electric
field and (k) represents the transverse shift due to the
combined electric and magnetic field. Substituting this ex-
pansion into Eq. (61) and retaining only terms up O(E),

o[ B[ 22) = 00k x mto + BB 1

k
=L.[+ 0k Ey]+L.[k - (E X B)y,], (63)

where the terms on the right-hand side correspond to the
distinct linearizations of the collision term arising from the
longitudinal and transverse shifts of the distribution
function—see Appendix A. These are straightforward, but
rather tedious to derive, and involve momentum space inte-
grals over the remaining products of Bose distribution func-
tions. As noted by Damle and Sachdev,?%?! these integrals
may be evaluated in terms of polylogarithm functions. Since
the explicit form of these linearizations was not included in
any of the original publications,>?*?! we provide them in
Appendix A. Although the details of the collision term are
certainly important for a quantitative numerical implementa-
tion of the epsilon expansion, the physical results are prima-
rily determined by the robust symmetry properties of these
linearizations. In the case at hand, to lowest order in the
epsilon expansion the collision terms may be neglected in
accordance with our previous findings and we obtain

! ( afo). (64)

o= 7

(k)=

The vanishing of the longitudinal shift is consistent with the
vanishing of the dc electrical conductivity, o, (B), in the drift

PHYSICAL REVIEW B 79, 094502 (2009)

regime. The heat current is readily found from expansion
(62),

d'k
Jh=2f mskvkk'(EXB)‘/fl(k)- (65)
As such, to lowest order in the epsilon expansion,
dk &fo)
=2¢? f k(k- (— — . 66
3i=2¢ | ok v - 2 (66)

It is readily seen that this is consistent with our original
transport coefficient (48). Indeed, our lowest order linear re-
sponse solution (64) yields

3f0) 67)

f+(K)=folex) - k- VD((gsk .

This coincides with the linearization of our exact boost dis-
tribution (54).

5. Numerical evaluation of a,

Having presented compelling evidence for the general
form of the thermoelectric tensor, let us finally obtain the
explicit numerical result within the epsilon expansion. Per-
forming the angular integrals yields

2¢%S, f BePex
= dkk————, 68
= 4T mh)! (P~ 1)2 (68)

where S;=27%?/T(d/2) is the surface area of a unit hyper-

sphere in d dimensions. Introducing rescaled variables k
=ck/kyT and Ai=mc*/kyT we find

k3<kBT) 28, f“’dmﬂ e
%y = hc dm?), (1-

P42

e—\v‘”122+rﬁ2)2
(69)

Within the epsilon expansion, d=3—¢, and the mass param-
eter entering Eq. (69) is proportional to v e as indicated in Eq.
(14). To leading order we may thus evaluate the dimension-
less numerical prefactor in three dimensions so as to obtain

| kg kpT\ f ek
a"y_B(ﬁc> [6712 —k)z]' (70)

The term in square brackets is just our massless entropy pre-
factor, C3=277/45, and we thus find

47 ky ( kpT \*~€
axy=——3(i> (71)
45 B\ hc
In particular, in d=2, one obtains
T2>
= —, 72
axy aO( B ( )

where a=0.88k3(%ic)™2. It is readily seen that both answers
(71) and (72) are consistent with the general scaling argu-
ments presented in Sec. II. Noting the inverse magnetic-field
dependence inherited from the drift velocity (31), it follows
from Eq. (8) that the heat current scales as
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E T2/Z ]‘(1/2

 RH+d-1)/z -z -

Iy~ T2 R T( 5 JE=aE.  (73)
in response to applied electric and magnetic fields. Our re-
sults are therefore consistent with the scaling behavior

Yd/z
o

xy ?, (74)

when specialized to the Lorentz invariant case with z=
This completes our initial survey of the drift regime in
crossed electric and magnetic fields.

B. Collision dominated regime: |E|>¢|B|

Having discussed the drift regime in considerable detail,
let us very briefly comment on our expectations when E
>cB. As we discussed in Sec. VIII, a single particle is con-
tinually accelerated by the electric field. Since the collisions
in the QBE (12) conserve energy and momentum, there is no
way to relax a transverse heat current, and so we expect ay,
to diverge at the clean fixed point in the absence of impuri-
ties. On the other hand, the regime E>c¢B is continuously
connected to that studied by Damle and Sachdev,?®?! with
E+#0 and B=0. We thus expect the possibility of a finite
electrical conductivity, o,(B). It would be interesting to
check these expectations by including impurity scattering in
the framework of the QBE, although we do not pursue this
here.

IX. TEMPERATURE GRADIENT AND MAGNETIC FIELD

Having discussed the heat current which flows in response
to an electric field, we now turn our attention to the comple-
mentary problem of the electric current which flows in re-
sponse to a temperature gradient. This is important in order
to verify the Onsager reciprocity relations,®" which we
have used at several points to recast &,,=7a,,. Although we
no longer have the luxury of Lorentz invariance arguments,
we will again argue in favor of two distinct regimes of be-
havior. We will begin in Sec. IX A with a discussion of the
drift regime. In Sec. IX A 1 we will recover our previous
results for a,,, by taking an appropriate moment of the QBE
in a thermal gradient. In Sec. IX A 2 we will further rederive
this from a linearization of the collision term. Both of these
approaches indicate the presence of a finite thermal conduc-
tivity, k. (B), and we will examine this in more detail in Sec.
IX A3.

A. Drift regime: VI'<B

1. Transverse electrical current in response
to a temperature gradient

Although we have obtained a,, by several different routes
in crossed electric and magnetic fields, it is prudent to con-
sider the computation in a thermal gradient. The celebrated
Onsager relations®®%Y tell us that we ought to be able to
compute a,, by looking at the transverse electrical current
which flows in response to a temperature gradient. Although

this Onsager relation is expected to be true, it ought to be

PHYSICAL REVIEW B 79, 094502 (2009)

verified by direct calculation. An additional motivation to
examine this complementary approach is that it will also
pave the way to an analysis of the thermal conductivity,
K(B). Let us therefore drop the electric field from the Boltz-
mann Eq. (12) and introduce a temperature gradient. This is
easily achieved by allowing the temperature variable to be a
function of position.”® The generic form of the Boltzmann
equation with E=0 reads

of « of
—Q + V. ——

at ax (73)

(Vk X B) L _1+[f+’f ]

In the absence of any material inhomogeneity we may as-
sume that any spatial variation is due to the imposed tem-

perature gradient:
of + of +
9 =vxf(i).
ox aT

Within linear response in V7, we may replace f+ by f in the
spatial gradient term. In this way we may write

(?f+

(76)

[fif]-

(77)

_?&sk) O(v X B) -

A characteristic feature of the (single particle) drift regime is
that there is no net energy gain during each revolution; the
energy gained as a particle is accelerated under the electric
field is lost on the reverse journey.”® This suggests that we
ought to look at the time variation of the total energy current
within Boltzmann theory. We may do so directly from Eq.
(77) by multiplying both sides by &,v, and integrating over
all momenta. For relativistic particles this is aided by the fact
that &,v,=c’k is proportional to the momentum:

07JE afy
f (Zﬂ'ﬁ)dk(k U)< o"8k>

d% I+
+ Oc? —= =
+ Qc f o )dk(vk X B) - K =0,

(78)

where we define U=(~VT)/T, and J are the energy cur-
rents pertaining to particles and holes. In writing this equa-
tion we have used the fact that the integral involving the
collision term vanishes; the momentum is an example of a
so-called summational invariant.* These quantities play an
important role in the hydrodynamic limit. Integrating the
third term by parts one obtains

[t

. 2
ot (2mh)?

(98](

dk
sz (27Tﬁ)d(Vk X B)f+=0,

where we have used the fact that the terms involving deriva-
tives of v, vanish. Adding the particle and hole solutions
yields

— k(k- U)(

(79)
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(9J A J
(27Th)"

where Jp and J, are the total heat and electrical currents
defined by Egs. (15) and (16). If we impose the time inde-
pendence of J; we obtain

d
Je><B=2c2J (Zdwhk)dk(k-U)@—fo). (81)
&k

In particular, if we apply a temperature gradient U, in the y
direction and a magnetic field B,=B in the z direction, one
obtains a transverse electrical current

d
(zdﬂﬁk)dk3< %)UY' (82)

U)( fo)—cheXB=0,

(80)

- B =2¢?

From the defining relation (17) we thus obtain

27 ([ d% ( afo>
= Pl-—=].
For dBTf Qut)d \" g, (83)

This is in agreement with our drift answer (48) and our
complementary calculation (60) based on Lorentz invariance
arguments in crossed E and B fields. By taking appropriate
moments of the Boltzmann equation®' we have obtained the
thermoelectric tensor without recourse to an explicit solu-
tion. Moreover, we have recovered the correct Onsager sym-

metry relation. In addition, the vanishing of J g indicates that
the thermal conductivity is finite in this regime. We shall
examine this further in Sec. IX A 3. Before doing this we
first need to perform a linear-response analysis in V7.

2. Explicit construction of linear response in VT

In the presence of a temperature gradient and a magnetic
field

e | oy U( 3t
at

deg

f+ - I+U+7f ]

(84)

) (v X B) -

where U= (-VT)/T. To linear order in the temperature gra-
dient we parametrize

f=(k)=foler) + k- Ulk) = Ok - (U X B)r (k). (85)

Note that (k) and (k) are distinct from those defined
previously in Eq. (62). Substituting Eq. (85) into Eq. (84)
and retaining only those terms of O(U),

Q°UBJ?
Ex

c2k-[ (f(’) 8(U><B)w(k) W, (k)

&
=L.[k- U]+ L [+=0k-(UXB)y ], (86)
where L and L’ are the distinct linearizations of the collision

term discussed in Appendix A. To lowest order in the epsilon
expansion we may drop the collision terms to obtain
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( of 0). (87)

The electrical current obtained from Eq. (85) yields

l,[f(k) = 03 de (k)

Q2|B|2
J —2sz d—dkvk-(UXB)w (k) (88)
[ (27Tﬁ)d k 1 .

Substituting Eq. (87) into Eq. (88) we find

d’k UXB a_fo>
(2ﬂ_h)dkk.< B )<_ prod R

J,=2¢2

This has a structure that is close to that of Eq. (66), and once
again this yields our previous expression for a,,. However,
in addition we will be able to go beyond this result and
examine the thermal conductivity, k,(B).

3. Thermal conductivity

Thus far, we have used the QBE in a thermal gradient and
a magnetic field to verify our previous result for «,,, and the
Onsager relation. As we have seen, this is encoded in the
lowest order O(&°) solution given in Eq. (87). However, self-
consistency of this nontrivial result for i, (k), in turn, in-
duces a nontrivial longitudinal shift (and a finite thermal
conductivity) at the higher order of O(€®). As indicated by
Eq. (86), the O(€’) solution for ¢, (k) yields a nontrivial
(k) at O(€):

+ OV, (UXB)ilk) =L.[£Qk - (UXB)y, (k)].
(90)

The right-hand side of this equation is structurally similar to
the linearization encountered by Damle and Sachdev®® in the
context of (zero magnetic field) electrical transport. The only
crucial difference is that the electric field has been replaced
by UXB, where we recall that U=(-VT)/T. Using their
notation, Eq. (90) may be written as

Fv,-Clk)= k- C{— £<%>fw dk,[ | (k)F,(k,k;)
0

+¢L(k1)F2(k’k1)]}, (91)

where we denote the combination Q(U X B)=C—see Eq.
(A9). Here, F(k,k;) and F,(k,k,) are nontrivial kernels
which we provide in Egs. (A16)-(A18) of Appendix A. In
writing Eq. (91) we have also restored a factor of ¢/# which
stems from requirement that the collision terms have dimen-
sions of s~!; the kernels are dimensionless and the prefactor
combines with the measure of integration. That is to say,

k) = 8(%>I dky[ ¢, (K)F (k. ky) + ¢ (k) F(k, k)]
0

(92)

In view of the explicit € dependence of Eq. (92) we should
evaluate g, and ¢, (k) in the massless limit. As follows from
Eq. (87),
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FIG. 4. Longitudinal scaling function, G(k), required for com-
putation of the thermal conductivity in the drift regime. This figure

was obtained by truncating the upper limit of integration at k,
=100.

ke — ¢k
2R T o k=i
O°B (ek—1)2 kgT

(k) — (93)

It is readily seen from Appendix A that the nontrivial kernels
Fy and F), are in fact functions of the dimensionless variables
k and k;; note that we worked in units where Z=c=1 there.
Following Damle and Sachdev,”’ we denote

Fy(k,k;) = q)l(];’lgl)a Fy(k,ky) = (I)Z(];’]gl)- (94)
The longitudinal displacement may thus be written as
8( kT )2 -
ky=—\——] G(k), 95
k) = 0Bc (k) (95)

where we introduce a universal scaling function of the di-
mensionless variable k,

N kek _ R A
G(k) = kf dkl[ - @, (k,k,) + <1>2(k,k1)1—] .
0 (ek-1)2 (k1-1)%
(96)
We plot an appropriate moment of this distribution in Fig. 4.

The heat current may be obtained from Eq. (95) by combin-
ing Eq. (85) with the usual relation (16),

d'k
Jn= 2f (2—7Tﬁ)d6kvk(k -U) (k). (97)

It follows from definition (17) that the corresponding thermal
conductivity is given by
_ 2 d%
K="
*dr) @wh)!

K2 y(k). (98)

Performing the angular integrals gives
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2 ©
_2 S f Ak (k) (99)

=T @ty ),

where S,=27%?/T(d/2) is the surface area of a unit hyper-
sphere in d dimensions. Substituting result (95) into Eq. (99)
and rescaling the momentum integral yields

Ky = 8k3c<&)2(%>d+3(d(222)d>f0 A G (k).
(100)
Equivalently
R = g€ (kgo) AT, (101)
where
lp= \/z, )\TEE (102)
OB kgT

are the magnetic length and a suitable thermal wavelength,
respectively. The numerical coefficient is given by

2S, fm — —
= dkk' G (k). 103
8= demi), (k) (103)
From Eq. (101) we see that k has dimensions Jk~'m~@2)g~1,

This is consistent with the defining relation (17). In addition,
it is readily seen that our expressions for the thermal conduc-
tivity are in agreement with the scaling form (8) with dy-
namical exponent z=1. To lowest order in the epsilon expan-
sion, integral (103) should be performed in d=3:

1 s
=— | dkk*G(k). 104
8=32 fo (k) (104)
This equation mirrors Eq. (3.33) of Damle and Sachdev.?

The extra factor of momentum arises because we are consid-
ering heat transport as opposed to electrical transport. In Fig.

4 we plot the universal scaling function kK*G(k). We find by
numerical integration that

g=~5.55. (105)
In particular, in d=2, we find
75
Ky EO(E)» (106)

where &)= gk$/(4e*h3c*). That is to say, in stark contrast to
the case where B=0, the thermal conductivity does not di-
verge, but is finite.> Moreover, the dependence on e is in-
versely related to that of the universal dc electrical conduc-

tivity
N, [ 46*
90= e\n)

where NV, =~ 1.037. When specialized to two dimensions our
result® (101) may be cast in the equivalent form™

SAT
Ky = A & >
Bz(TQ

(107)

(108)
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where Sch=ZC3kB)\}2 is the entropy density of a charged sca-
lar field calculated within the epsilon expansion, and the
transformed dimensionless prefactor is given by

gN,
8mC;

A= (109)

With g=~5.55, N,~1.037, and C;=27>/45 one obtains A
~1.19.

X. HYDRODYNAMIC LIMIT AND INTERPOLATION

The arguments presented above are manifestly iterative in
the epsilon expansion and implicitly assume that €><B. It
was subsequently pointed out in Ref. 30 using relativistic
hydrodynamic arguments directly in d=2 that Eq. (108)
holds as an exact relation in two dimensions with A=1, or
gvup = 4.66. Moreover, it was shown that all the physical
response functions are governed by combinations of thermo-
dynamic variables and the single parameter o,. In order to
make contact with the hydrodynamic results of Ref. 30 we
must study the ultra-low-field limit B < €. Even though €’ is
a small parameter, we must consider both the frequency and
the field scales much smaller than this in order to enter the
hydrodynamic regime. This is in conformity with the original
zero-field treatment of Damle and Sachdev?® where the hy-
drodynamic crossover occurs at w~ O(€’). The magnetic
field provides an additional cyclotron frequency and in the
hydrodynamic limit this is assumed to be less than the scat-
tering rate. As we shall discuss, the thermal conductivity in
fact interpolates between these two closely separated limits
(A=1.19 and A=1) as the ratio B/ € is varied. This mirrors
recent findings in strictly two-dimensional graphene where
(aside from the important aspects of spatial dimensionality
and carrier statistics) the fine structure constant, a, plays a
similar role to €.3* In the subsequent discussion we derive the
exact form of the hydrodynamic result analytically, using the
QBE and the epsilon expansion around d=3. We will also
discuss the interpolation as the magnetic field is varied.

Returning to our original Eq. (86), we wish to solve this
coupled problem for the longitudinal and transverse distribu-
tion functions in more generality. It is convenient to decom-
pose this relation into two distinct equations which are, re-
spectively, even and odd under reversal of the magnetic field:

Vier U[akﬁ + QZBzwk)] =L [k-Uyk)], (110)
and

FOV- (UXB)(k)=L.[+ Ok - (UXB)y, (k)].
(111)

Direct elimination will yield equations governing the longi-
tudinal and transverse response. In order to expose this more
clearly, we use expressions (A9) and (A26) for the distinct
longitudinal and transverse linearizations of the collision
term:

PHYSICAL REVIEW B 79, 094502 (2009)
ﬁ 2p2
Vk'U Sk +QB¢(k)
=k- U{— 8(%)] dky[F1(k,ky) y(k)
0

+ Fé(k,kl)w(kl)]}, (112)

. c{- ez<5> f " k[ Fy k), (0
il

+ Fz(k,/ﬂ)lh(kl)]} )

and

Fv, - Cilk) =

(113)

where C=Q(U X B), and we have restored the factors of A
and c in the collision terms. The factors of k-U and k- C are
readily cancelled leaving coupled integral equations for the
distribution functions. For pedagogical purposes it is conve-
nient to discretize these equations and write them in the sim-
pler matrix form

ﬁfo 62 ,
mE T OB, i = (ﬁ )skMk,kllﬂkl,
Ep c

2
l//k—< >8kMkk bk, (114)

where we adopt the useful shorthand

Mk,kllh,kIEJ diy[Fy (k. k) i, (k) + Fy(k. k), (p)]
0

M, Ef diy[F (k. ky) k) + F5(k k) gk, )]
0

(115)

Rearranging the first of Eq. (114) for ¢, and substituting into
the second immediately yields a Fredholm integral equation
of the second kind for the longitudinal distribution function

62
OBhe

. € If;
= (m>8kMk,k18kl<_ Ejl) :

In the massless limit, we see that ¢, is nothing but our pre-
vious solution obtained from Egs. (92) and (93). It is recov-
ered from the general integral Eq. (116) in the limit B> €.

2
= - ( )SkMk,klsklMllcl,kzwk27 (116)

where

(117)

Employing dimensionless variables, k= ck/kgT, and noting
the rescaling of the integration measures in Eq. (115), the
solutions of Eq. (116) are governed by the dimensionless
prefactor of the second term which we may denote as
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(118)

_1_ 4( lB)
Ar

where [;=\%/QB is the magnetic length, and N\y=7fc/kgT
is the thermal wavelength. Equivalently,

r~(0"7,)’, (119)
where 7' ~ €kgT/# is the inelastic scattering rate due to the
c0111s10ns at the clean fixed point, and 0¥?~ QB/(kgT/c?) is
the typical cyclotron rate of a thermal carrier.’* In the limit
r—0 the particles experience a large number of collisions
per typical period of revolution in the magnetic field. This
corresponds to the hydrodynamic limit studied in Refs. 30
and 34. In this respect, the magnetohydrodynamic parameter
r plays a similar role to the Knudsen parameter in the devel-
opment of Chapman-Enskog theory.®® Deep in this hydrody-
namic regime, B<< €%, the longitudinal distribution function
satisfies the homogeneous equation

Mk’klgklM]il’kZkaZ:O’ (120)
as follows directly from Eq. (116). In this limit, the distribu-
tion function projects onto a zero mode of the transverse
operator M'. From our previous discussion of the transverse
response (67) it is readily seen that

9o >+transverse (121)
Jgy

fa(k) = fo(k) + Nk - U(
is a zero mode of this collision operator. Moreover, this form
would also emerge in a relaxation time approximation where
N=r1,?and 7, is a suitable time scale. With parametrization
(85) we therefore consider

_ _f?_f0>
¢k—/\/( 26,

where A is a dimensionful parameter to be determined. This
normalization is fixed by the original inhomogeneous Eq.
(116) and may be found by taking moments and extrapolat-
ing to the appropriate hydrodynamic limit. Placing the last
term of Eq. (116) on the left-hand side, and inverting the
matrix operation in the definition of ¢, Eq. (116) may be
rewritten in the equivalent form

(122)

22 2 \2
(Q 2 C)|:(M_l)k,klslzll¢kl+<@) nglé,kllﬂkl:|

e
k (98k ’

In order to make contact with the functional dependence
(108) observed in the complementary regime, it is conve-
nient to multiply this equation by g, and integrate over all
momenta. Upon sending ¢ to the hydrodynamic form (122),
and working in the massless limit where e,=ck, one then
obtains the normalization condition

(123)
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2p2 k2o, -~ %o
NO*B ﬁcf s (M™)er b (— ﬂskl)
dk afo
— 2 2( Y
- (Zﬂ’}i)dk ( ﬂ8k>’ (24

where we exploit the fact that ¢, is a zero mode of M'.
Using Eq. (48) we see that the right-hand side of this equa-
tion is related to the entropy density. Moreover, using Eq.
(3.28) of Damle and Sachdev,2 we see that the left-hand side
involves the dc conductivity in the absence of a magnetic
field. Recalling the main steps, we parametrize, f.
=fo = Ok-Eypg(k), and substitute into the QBE Eq. (61)
with B=0. To linear order in the electric field one obtains

cio__ o

125
kﬁsk ( )

( )Mkk Pps(ky).

With this identification Eq. (124) may be recast in the form

Seh
NOQ*B*c J z Wﬁ)dkl/le(k) dT— (126)

where S, is the entropy density of a charged scalar field.
This may be rearranged to read

20% [ ad%
NB? —f k k]=TSC. 127
Since the electric current is given by

— 12 d_dk .
J.=20 (277—}1)dv"k Eps(k), (128)

the quantity in square brackets is the conductivity. That is to
say
TS,

N=—
BO'Q

: (129)

where oy is the universal and nontrivial value of the dc
electrical conductivity computed within the epsilon expan-
sion in the absence of a magnetic field.?° From this normal-
ization, N'= 7.¢2, we may extract the characteristic damping
time scale, 7, of the collective cyclotron mode discussed by
Hartnoll et al.*® Returning to our distribution function (122),
the heat current is given by

fo
ZNJ (zﬁ)dskvkk U( (98]{).

The corresponding thermal conductivity reads
_2NE [ d% k2< fy
Hor= Qahy \ " s,

(130)

) = NS, (131)

where we employ Eq. (48) again. Combining Egs. (129) and
(131) one obtains the relation
TS%

) 132
Fo (132)

Kyx =

deep in the hydrodynamic limit where B < €. We see that the
functional dependence is the same in both limits B> € and
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FIG. 5. Evolution of the dimensionless thermal conductivity
prefactor, g, as the ratio, ro B>/ €*, varies. Within the accuracy of
our three-dimensional Monte Carlo integrations (approximately
3%) the result interpolates between the value reported in our previ-
ous letter (Ref. 5), g.=5.55, and the magnetohydrodynamic value
(Ref. 30), go=8m(27%/45)%/(1.037) ~4.66. The latter corresponds
to the exact relation, EXX(B)=TS§h/ B0y, for B< €.

B< ¢ and only the dimensionless prefactor is modified by a
factor close to unity. As discussed in Appendix B, numerical
solution of the integral Eq. (116) yields the interpolation be-
tween these two regimes—see Fig. 5. It is instructive to note
that the hydrodynamic result (132), which holds exactly in
two dimensions, is accessible within the framework of the
epsilon expansion about d=3. The main delicate points are
that we should work in a regime where B << €, and be careful
to interpret the observables k,,, 0y, and S, by means of
their respective epsilon expansions.

XI. CONCLUSIONS

In this work we have examined the magnetothermoelec-
tric response in the vicinity of a quantum critical point. We
investigate the electrical and thermal transport and thermo-
dynamics, and have presented general scaling arguments
valid for arbitrary dimension, dynamical exponent, and car-
rier statistics. These are supported by explicit calculations at
the particle-hole symmetric SF-MI transitions of the Bose-
Hubbard model. The presence of a magnetic field strongly
influences the physical response, and we demonstrate the ex-
istence of a finite thermoelectric tensor, ay,y, and a finite ther-
mal conductivity, k,,(B), even in the absence of impurities.
We relate these observations to a number of different ap-
proaches, based on Lorentz invariance, the quantum Boltz-
mann equation (QBE), and field theory considerations. In
accordance with recent findings of Miiller et al.’* for
graphene, the dimensionless prefactor of our thermal con-
ductivity is a smoothly varying function of w.7,. We derive
an illuminating integral equation to describe this evolution,
which exemplifies the role of zero modes in the hydrody-
namic limit.>* Our analytic and numerical calculations
smoothly interpolate between the result presented in our pre-
vious letter,’ and the limit of two-dimensional relativistic
magnetohydrodynamics.® The recovery of the relativistic
hydrodynamic relations within the framework of the epsilon

PHYSICAL REVIEW B 79, 094502 (2009)

expansion around three dimensions is quite compelling. Al-
though the epsilon expansion is well established for the cal-
culation of critical indices relating to thermodynamic quan-
tities, it is much less widely employed in transport situations.
The present body of results clearly demonstrates that we may
address critical fluctuations in transport coefficients by using
such methods. We see that the QBE approach not only has
broad applicability but also provides a physically intuitive
way to incorporate both quantum and thermal fluctuations in
the hydrodynamic regime. Moreover, the results obtained are
physically transparent and provide a platform for further
studies.
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APPENDIX A: COLLISION TERM AND
POLYLOGARITHMS

In order to make progress with the Boltzmann equation it
is useful to linearize about an equilibrium Bose distribution.
There are two distinct linearizations depending on the con-
text. We gather some useful formulae below.

1. &f.(k)=k-Ch(k)

In this linearization we consider departures from equilib-
rium of the form &f. (k)= =k-Ch(k), where C is a constant
vector and h(k) is a function of |k|. This situation arises in
the longitudinal response to an electric field,”® C=QE, and
the transverse response to a temperature gradient, C=Q(U
X B). We want to expand the collision term (13) to linear
order in the applied field C. We may write

2ud .
1o===00 | du(Fe -7, (A1)
where, in units where Ai=c=1,
3
1 dk; 1
du=-— S |
H 28,12 (27T)d2£ki:|( ™
Xk +k,—Kk,—k3)2m) (e + &, — ey — &3)
(A2)

represents the remaining phase space measure in Eq. (13). Tt
is readily verified that
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F— .7:1;1 = =+ 3k - Ch(k)(ePle2tes) — ePen(e)n(e,)n(es) = k; - Ch(k,)(ePo - 6’3(82+83))I’l(Sk)I’L(SZ)I’l(83)
+ 3k, - Ch(ky)(eP® - 6ﬁ(8k+81))"(8k)’1(81)n(83) *ks- Ch(k3)(eﬁ(sk+£1) —eP)n(en(e))n(e,) + O(C?), (A3)

where n(e) =f(e) is the Bose distribution function, and we
have used the identity 1+n(e)=e”°n(e). Upon substituting
Eq. (A3) into Eq. (Al) it is convenient to interchange
k;—Kk, in the last term. This transformation preserves the
integration measure and the linearized collision term be-
comes

2 2
I: — Li = = (— %)J‘ dﬂ[k . Ch(k)Tl(kl,kz,k3)
+ K - Ch(k))Ty(k,ky,k3) + Ky - Ch(ky)T5(k,ky,k3)],
(A4)

where

Ty (ky,ky k) = 3(ePe2*%3) — ePern(e)n(e,)n(es),
(A5)

Ty(k,ky,ks) = (ePo — €ﬁ(52+83))H(Sk)ﬂ(sz)n(83), (A6)

Ts(k,ky,ks) = 2(eP% — ePe*e))n(g)n(e )nles). (A7)

As discussed by Damle and Sachdev,” to leading order in
the epsilon expansion one may evaluate the necessary inte-
grals directly in d=3. In addition, one may consider the
massless limit where g, =k, and we have set c=1. The angu-
lar integrals and one of the radial integrals may be carried
out explicitly by means of formulas (C1), (C3), and (C5) of
Ref. 20; in their notations d3k,Eki2dk,~dQ,-. Interchanging
k, <~ k; in the first term, and k; <>k, in the last, this proce-
dure yields

L 2uw\k-C [” h(k)
Lt: - —? (477)3 0 dkldk2 7T1(kl+k2—k,k2,k])
hk,)
XIy (k,ky,ky) 3—,{31[T2(k,k2,k +ky = k) (k. Ky, k)

_T3(k9k29k+kz_kl)13(k9kl’k2)]}’ (Ag)

where I}, I,, and I; are (domain dependent) polynomials
given in Egs. (C2), (C4), and (C6) of Ref. 20. In this way
one may write the linearized collision term in the compact
form?°

L.=*k-C{- ezf dki[h(k)F, (k,ky) + h(ky)Fo(k.k) T},
0

(A9)

where we use the fact that uy=(24/5)7€, and we define

2 (7
Fy(k,ky) = 5| dkaTy(ky + ky = kg k) (KoK ks)
25k° )

(A10)
and

27 (7
Fy(k,ky) =— Wf dky[ Ty(k,ky, k + ky = ky) Iy (k. ky,k5)
0

= T5(k, ky, b + ky = ky ) I3 (K, ke, k) ] (A11)

We again emphasize that the functions 7, T,, and T are
evaluated in the massless limit. More explicitly

6w nlk) [~
F(k,k)=— dk,n(k
1(k,ky) 25 kzn(k) . 2n(k,)
X[l +n(k1 +k2 —k)]ll(k,kl,kz). (A12)
Likewise, if we denote
Fa(k.ky) = F3(k,kp) + F(k.k,), (A13)
then
2w [1+nk)] (7
Fg(k,k1)=%m . dion(kp)n(k + ky = k) (k. ky, k),
(A14)
47 nk) (7
Fh(k,ky) = — — dle;n(k
2( 1) 75 k4n(k1) . n(ky)
X[l +n(k+k2—k1)]13(k,k1,k2) (AIS)

These expressions are in conformity with Egs. (C7) and
(3.28) of Ref. 20. As noted by Damle and Sachdev, integrals
(A12), (A14), and (A15) may be evaluated exactly using
polylogarithm functions. Although the method was carefully
explained, the explicit form of these kernels was not stated in
their original works.?>?! The expressions are quite lengthy
and are rather tedious to derive. Nonetheless, they are valu-
able for numerical work. We may write

6_77”(k1)n(k—k1)

Fy(k,ky) = 5 ) [O(k = ky) po(k.ky)
= Ok - k) py(ky, k)], (AT16)
together with
PO S P B ) S VP O

75 k*n(k,)

and
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4_77n(k)n(k1 —k)
75 kK*n(k))

— O(k; — k) L5(ky,k)],

F5(k.ky) = [O(k — ky)LA(k, k)

(A13)

where O (k—k,) is the step function. In writing these kernels
we have introduced

Ly(k, ky) = 24N, (k, ky) + 12[km3(k, k) + kg m3(ky,6) ]
— 6kk N5 (k, k1), (A19)
where
Ny (@.y) = BLi,(e7#) + Liy(e™)
*+ Li,(e7P%) = Li,(1)],

7(%,y) = B [Li, () = Li,(¢7) = Li, (™) + Li, (1)].
Further,
L3(k.ky) == 3[4py + 2(k — ky) py — kky sy + 4k v + 2Kk, v, ],
(A20)
where
pa(x.y) = B[Li, (1) + Li, (™) ~ Li, () = Li, ()],
and

Vn(x’y) = B_n[Lin(e_Bx) - Lin(e_By)]'
Here Li,(z) is the polylogarithm with series expansion

n

Z

Li,(z) = > (A21)
n=1

n
Note that we have used the fact that L5(k,k,) is symmetric in
order to eliminate the step functions from F4(k,k;). In writ-
ing these expressions we employ polylogarithms whose ar-
guments lie within the unit disk. Although tedious to check
analytically, the equality of these functions and the integral
representations (A12), (A14), and (A15) is readily verified
numerically. It is worth noting that the kernels F,(k,k,) and
F,(k,k;) possess singularities when their arguments coin-
cide.

2. &f.(k)=k-Ch(k)

In this linearization we consider departures from equilib-
rium of the form &f.(k)=k-Ch(k), where C is an arbitrary
vector and h(k) is a function of |k|. This charge-independent
situation arises in the longitudinal response to a temperature
gradient, C=U=(-VT)/T, and in the transverse response to
an electric field, C=E X B. In this case

FR = Fi =3k - Ch(k)(eP*2) — ePo1)n(e )n(e)n(es)
+ 3K, - Ch(k;)(eP'*2%3) — ePiyn(e )n(e,)n(es)
+ 3K, - Ch(ky)(eP°3 — eP ok *))n(e)n(e )n(es)
+ 3Ky - Ch(ks;)(eP*2 = ePE ) n(gy)n(e )n(e,)
+0O(C?). (A22)

PHYSICAL REVIEW B 79, 094502 (2009)

Substituting this into the collision term, and again making
the interchange k; <« k, in the last term, we find

’ 2”% ’
Lo Ll={ =0 | | dplk - CHIT (K ko ko)
+ kl . Ch(kl)Té(k,kz,k3)
+ k2 : Ch(kZ)T:;(k’kl»k3)]9 (A23)

where

Ti(ky ko ks) = 3(ePleates) - ePn(e))n(ex)n(es),
Tj(kky,ks) = 3(eP23) — ePe)n(e)n(ey)n(es),
Ti(k,k1,ks) = 6(eP®3 — ePEte))n (g )n(e ) )n(es).

(A24)

In particular, it is readily seen that 7|=T,, T5=-3T,, and
T;=3T;. This procedure therefore yields

, 2up\ k-C [~ h(k)
Li: —? (477-)3 o dkldkz 7T1(k1+k2—k,k2,k1)

h(k,)
X1y (k,ky,ky) + k_;[Tz(k,kz,k‘F ky = ko) (k. ky k)

+ T5(k,ky k + ky — k1)13(k,k1,k2)]} . (A25)

That is to say, the linearized collision terms may now be
written as

L. =k-C{- €2f dk\[Fy(k,ky)h(k) + F3(k,k)h(k)) T},
0

(A26)
where

Fi(kk) = Fi(kk), Fykk) = 3[F(k,k)) - F3(k.k)],

(A27)

and F,(k,k,), FS(k,k;), and F5(k,k,) are given by Egs.
(A16)—(A18), respectively.

APPENDIX B: LONGITUDINAL CROSSOVER EQUATION

As discussed in Sec. X, the thermal conductivity is a func-
tion of the dimensionless parameter, roB?/ €*, which con-
trols the ratio of the typical cyclotron frequency for a thermal
carrier to the inelastic scattering rate. The longitudinal distri-
bution function satisfies the integral Eq. (116),

. (E) ,

= - (QBﬁc Mk &k My, 1, ¥k, (B1)
where ¢, M, and M’ are given by Egs. (117) and (115),
respectively. For both numerical and analytic purposes it is
convenient to recast this equation in terms of the dimension-

less momenta, k=ck/ kgT. This rescaling modifies the coef-

ficient of ¢, given in Eq. (117), and it is convenient to in-
troduce
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€[ kyT
= (QB (B2)

and similarly for ;. Adopting this rescaling the integral Eq.
(116) may be recast in the dimensionless form

) V(k),

WD) = V() - f AR, R (B + 0a(E R )W),
0

(B3)

where
(B4)

and

Y _ __ Keh
\I’w(k)zkf dkl{ e ®1(k,k1)+®2(k,kl)L]
0 (ek—1)> (ef1—1)?

(B5)

coincides with our previous distribution function (96). The
nontrivial kernels, Q,(k,k,) and Q,(k,k;), are given by the

integrals

0,k = j R, ERRD|(ER),  (B6)
0

and

0,0y = f AR, (6 ) DY )
0

+ E¢2(E’El)]€lq){(lzl’];2) + E@z(l;,lgz)l;ﬂ)é(l;z,/;,)],
(B7)

where Fl(k,kl)E(I)l(lz,];l), Fz(k,kl)Eq)z(];,lgl), and their
primed counterparts, are the dimensionless kernels given in
Appendix A. Note that in deriving results (B5)—(B7), we
have also taken the massless limit in accordance with the
epsilon expansion.

It is evident from the longitudinal crossover Eq. (B3) that

the distribution function interpolates between W (k), as r
— 0, and a zero mode of the integral operator in the hydro-
dynamic limit, r— 0. In order to see this more formally it is
natural to consider an expansion of the form

W(k)=Wok) + r¥, (k) + W, k) + ... . (B8)

Substituting this expansion into Eq. (B3) and equating coef-

ficients at order 7' one finds that for a nonvanishing W (k)
to be present it must be an exact zero mode of the integral
operator:

| a0 @@ oaE Rl =0, (39)
0

As discussed in Sec. X, the function
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k
vy« Lo o ¢

dey, (ek_ 1)2

= Ro(k) (B10)

satisfies this homogeneous condition. Although it will not
concern us here, equating coefficients at higher order in r
leads to a recursive hierarchy of integral equations for the

functions W,(k). These are similar in spirit (if not in details)
to those encountered in the Knudsen expansion of the
Boltzmann equation; see for example §6.2 of the book by
Harris.%° Equation (B9) is particularly important from a nu-
merical perspective, since any regularization which lifts this
zero mode property (e.g., through truncation of the integra-
tion limits or through rounding errors) may potentially yield
a solution starting at order r, instead of order A, as evident
from Eq. (B8); on dimensional grounds this would yield a
thermal conductivity of the Wiedemann-Franz form. In order
to recover the exact nonvanishing hydrodynamic limit (132),
it is essential that this zero mode feature is properly imple-
mented. To this end, let us parametrize our solutions to the
integral equation in the form

(k) = Ro(k)P(k), (B11)
where ®(k) is the solution to be determined. Assisted by the
exponential decay of the prefactor, we convert the integral
Eq. (B3) into an approximate matrix equation by expanding

®(k) in a basis of N, basis functions:
Ny-1

> cful®).

n=0

D (k)= (B12)

Substituting this decomposition into Eq. (B3), multiplying by
K*f,,(k), and integrating (where we incorporate an extra fac-
tor of k? for convergence purposes) one obtains the matrix
equation

A= By, (B13)

where A,,,=A. +r7'A"

mn’

with explicit matrix elements

Ay = f x dICR () f,(K) () (B14)
0

and
Ap, = f dkdk,dlcyk*f,, (k)[R o (k) £, (k) O (K, k1 ko)
0

+ OV (e ky Ky R (k) fo(ky) T, (B15)

where QEA)(I;, ky,k,) denote the integrands (or arguments) of
the integral representations (B6) and (B7). In addition

B, = f " AR B (DR (B (B )
0

+ (Dz(];’lzl)lleo(lzl)]' (B16)

The dimensionless thermal conductivity parameter is defined
as

094502-19



BHASEEN, GREEN, AND SONDHI

| (R
=—| dkk*¥(k), B17
8=3- J( ) (k) (B17)
and is thus approximated as
Ny-1 o
= — dkk* R (k) f, (k). B18
8=3 74l o(k)f (k) (B18)

Evaluating the matrix elements numerically (while imple-

PHYSICAL REVIEW B 79, 094502 (2009)

menting the zero mode condition A{,ﬁ()zo exactly) we may
solve the linear system of equations for the coefficients c,,.
Using a basis of N,=7 monomials (1,k, ...,k%) we plot g as
a function of r in Fig. 5. It is readily seen that within the
numerical accuracy of our Monte Carlo integrations (ap-
proximately 3%) this dimensionless coefficient interpolates
between the result reported in our letter,’ and the hydrody-
namic result,’® as the parameter r= B>/ €* is varied.
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