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Recent numerical and analytical work has shown that for the square-lattice Heisenberg model the boundary
can induce dimer correlations near the edge which are absent in spin-wave theories and nonlinear sigma model
approaches. Here, we calculate the nearest-neighbor spin correlations parallel and perpendicular to the bound-
ary in a semi-infinite system for two different square-lattice Heisenberg models: �i� a frustrated J1-J2 model
with nearest- and second-neighbor couplings and �ii� a spatially anisotropic Heisenberg model, with nearest-
neighbor couplings J perpendicular to the boundary and J� parallel to the boundary. We find that in the latter
model, as J� /J is reduced from unity, the dimer correlations near the edge become longer ranged. In contrast,
in the frustrated model, with increasing J2, dimer correlations are strengthened near the boundary but they
decrease rapidly with distance. These results imply that deep inside the Néel phase of the J1-J2 Heisenberg
model, dimer correlations remain short ranged. Hence, if there is a direct transition between the two, it is either
first order or there is a very narrow critical region.
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I. INTRODUCTION

Square-lattice antiferromagnets have been studied exten-
sively in recent years.1–9 Yet, new surprises continue to arise.
In particular, recent quantum Monte Carlo studies by Hö-
glund and Sandvik10 showed that the existence of a free edge
induces pronounced dimerized correlations in the system. In
a follow up work, it was shown by Metlitski and Sachdev11

that the presence of a boundary induces dimer correlations
perpendicular to the boundary. Since the correlations decay
with distance from the boundary, their gradient induces alter-
nation in the spin correlations parallel to the boundary, lead-
ing to specific pattern of nearest-neighbor spin correlations
observed by Höglund and Sandvik in their simulations.
These effects are absent in spin-wave theories and in nonlin-
ear sigma model approaches.

Over the past few years, there has been considerable in-
terest in the possibility of direct continuous phase transitions
between Néel and valence bond crystal �VBC� phases.12–21

Such phase transitions have been called deconfined quantum
criticality and are marked by the liberation of spin-half de-
grees of freedom as well as the existence of massless spin-
singlet photon field. Strong numerical evidence for such a
scenario has been provided in Sandvik’s J-Q model,22–24

where the Heisenberg model is supplemented by a four-spin
interaction around a plaquette. An alternative possibility of a
weakly first-order transition has also been raised.25,26

A more realistic model of two-dimensional square-lattice
quantum antiferromagnets is the spin-half J1-J2 model,
where there is nearest-neighbor interaction J1 and second-
neighbor interaction J2. Increasing J2 increases spin frustra-
tion and is known to lead to a magnetically disordered state
at intermediate J2 /J1 values.5,7 There is substantial and
growing body of numerical evidence that the magnetically
disordered phase has VBC order.2,3,7,12 The question of
whether the transition between the Néel and dimer orders is
continuous or first order remains a subject of debate.27,28

In general, it is difficult to probe the weak dimer correla-
tions inside the Néel phase, which would require studying

the connected part of the four-spin correlation functions. The
existence of dimerization near the edges means that it is
much easier to study the dimer correlations in the presence of
an edge. Here, we would like to use the edge-induced dimer
correlations as a probe of growth of dimer correlations inside
the Néel phase and thus address the possibility of a diverging
dimer-correlation length in the Néel phase. We study two
models: a spatially anisotropic model with interactions J and
J� along the two axes. We choose the boundary to be parallel
to the direction of the weaker coupling J�. It is well known
that the one-dimensional �1D� Heisenberg model has power-
law decaying valence bond correlations. Thus, as one ap-
proaches the limit of small J�, one expects to see the edge-
induced correlations to have a long length scale. This model
acts as a test case for our method. We also study the J1-J2
Heisenberg model. It is for this model that one would like to
see how the range of dimer correlations grows near the
boundary as spin frustration given by the parameter J2 /J1
increases and one approaches the phase transition, where the
Néel order is lost.

II. SERIES EXPANSION

The antiferromagnetic Heisenberg models defined by two
coupling constants J1 and J2 �or by J and J�� are shown in
Fig. 1. We consider a semi-infinite �SI� system, with a
boundary parallel to the X axis also shown in Fig. 1. Since
we are considering a system inside a collinear Néel-ordered
phase, we develop an Ising series expansion,29 where all
Heisenberg couplings are written as

Si · S j = Si
zSj

z + ��Si
xSj

x + Si
ySj

y� . �1�

The parameter � acts as an expansion parameter. We develop
series expansions for on-site local magnetization �Si

z� as well
as for nearest-neighbor spin correlations �Si ·S j�, parallel and
perpendicular to the boundary. In the semi-infinite system,
these quantities depend on the distance R from the boundary.
In the series-expansion method, the boundary can be accom-
modated by accounting for the graphs that terminate at the
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boundary. Apart from this, the formalism of linked cluster
expansions remains unchanged.

III. RESULTS: CORRELATIONS AND EXCITATIONS
NEAR THE EDGE

First we present the results for the square-lattice Heisen-
berg model. The nearest-neighbor correlations parallel and
perpendicular to the boundary are shown in Fig. 2. These are
obtained by d-log Padé approximant analysis of the series.
They agree well with the results of Sandvik and Höglund.10

The important thing to note is that they both decrease rapidly
with distance and by R=5 they differ from the bulk value by
less than 0.1%.

The on-site magnetization also changes near the bound-
ary. The results for magnetization are more sensitive to ex-
trapolation methods than spin-spin correlations because one
expects a square-root singularity for this quantity. This

means that contributions of higher-order terms only decay as
1 /�N. We have followed the method used in Ref. 30 for the
bulk system. We obtain partial sums SN of series coefficients
and then fit them vs �= 1

�1+N
to estimate SN as N→�. These

are shown in Fig. 3 for values of R�2. We deduce the un-
certainty in the magnetization by the uncertainty in the linear
fits.

Results obtained this way are plotted in Fig. 4 where they
are compared to the nonlinear � model and spin-wave
results.11 The on-site sublattice magnetization is diminished
at the edge and its reduction is comparable to what is ob-
tained in spin-wave theory. Away from the edge, the sublat-
tice magnetization should approach its bulk value. In the
nonlinear � model and spin-wave theory, the change in mag-
netization follows a 1 /R behavior. On general grounds, one
expects the nonlinear � model results, when expressed in
terms of renormalized parameters, to be exact11 for large R.
The reduction is less in our calculation up to the largest
distance studied; that is, R=5. Part of the reason may be that
the asymptotic behavior may set in at significantly large R
due to the dimer correlations at the boundary. However, it is
also likely that the uncertainty in our calculations is much
larger than shown. Our estimate of the bulk magnetization is
0.302. If we replace it by the more accurate results from
higher-order series expansions9 or quantum Monte Carlo
simulations,22 which is 0.307, it would shift our calculated
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FIG. 1. �Left� J1-J� model on the semi-infinite square lattice.
The interaction J1=1 is perpendicular to the edge, the interaction J�
is parallel to the edge, and it is allowed to vary in the range 0
�J��1. �Right� J1-J2 model on the semi-infinite square lattice.
J1=1 and 0�J2�0.3. The parameter R defines the distance of a
particular lattice plane from the edge.
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FIG. 2. �Color online� Correlation function of the spin-1
2

Heisenberg model on the SI square lattice for bonds parallel and
perpendicular to the edge as a function of distance R. Notice that
bonds perpendicular to the edge have their centers at half-integer

values of R. The y axis is �Cij /Cij
0 =−

�S� i·S� j�SI−�S� i·S� j��

�S� i·S� j��

, where the �

index refers to the bulk value.
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FIG. 3. �Color online� Partial sums of series-expansion coeffi-
cients for the on-site sublattice magnetization of the semi-infinite
square-lattice model. The fit for different values of the parameter R
is shown. See text for details.
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FIG. 4. On-site sublattice magnetization for the spin-1
2 Heisen-

berg model on the semi-infinite square lattice. The nonlinear sigma
model and spin-wave results from Ref. 11 are also shown. The y
axis is �M = �MSI−M��.
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curves up by 0.005 and bring them closer to the spin-wave
results. This discrepancy in the bulk estimates implies that
the uncertainties are much bigger than estimated by the fits
and they are particularly magnified at larger R because we
are taking the difference of two quantities which are close in
magnitude.

In Fig. 5, we show the nearest-neighbor spin correlations
perpendicular to the boundary for the J-J� model. This is the
direction of the stronger coupling. In the 1D limit, one ex-
pects the free end to induce dimer correlations in the system
that decay as a power law away from the boundary. Indeed,
we find that as the system becomes more and more aniso-
tropic, the dimer correlations become more and more long
ranged.

In Fig. 6, we show the nearest-neighbor spin correlations
for the J1-J2 model. Correlations both parallel and perpen-
dicular to the boundary are shown. In this case, we find that
while a frustrating second-neighbor interaction enhances the
dimerization near the boundary, it does not appear to increase
the range over which dimer correlations extend. The conver-
gence of our analysis becomes poor as we get close to the
bulk transition away from the Néel order, which has been
estimated to be in the range J2 /J1�0.35–0.4.5,7,27

These results show that in the J1-J2 square-lattice Heisen-
berg model, one does not have appreciable range valence
bond correlation in the bulk even with significant frustration.

They suggest that a direct transition between Néel and dimer
phases is likely of first order. Our study cannot rule out the
possibility that the dimer correlations build up very quickly
close to the transition. This would imply a very narrow criti-
cal region in this model.

We have also calculated the spin-wave spectrum for the
magnon states that are bound to the surface for the nearest-
neighbor square-lattice Heisenberg model. The momentum
parallel to the surface is a good quantum number. In the
series-expansion calculations, the spin-flip states right at the
boundary have different excitation energies from those which
are away from the boundary. Thus, these states get separated
from the bulk states starting in zeroth order. Upon extrapo-
lation to the Heisenberg model, we find the dispersion of
these surface magnons as shown in the Fig. 7. Also shown
are results from the spin-wave calculations of Metlitski and
Sachdev.11 The latter has been renormalized to have the same
spin-wave velocity as the bulk. Our results are in agreement
with the latter that for a large part of the Brillouin zone, the
surface states are hugging the continuum. Only very near k
=	 /2, they clearly separate from the continuum. In this re-
gion, the binding energy in our calculation is smaller than in
the spin-wave theory.
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FIG. 5. �Color online� Correlation function of the spin-1
2 J1-J�

model on the semi-infinite square lattice for bonds perpendicular to
the edge as a function of distance R for selected values of J�. The
quantity �Cij /Cij

0 shown on the y axis is defined in the caption of
Fig. 2.
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FIG. 6. �Color online� Correlation function of the spin-1
2 J1-J2 model on the semi-infinite square lattice for bonds parallel �a� and

perpendicular �b� to the edge as a function of distance R for selected values of J2. The quantity �Cij /Cij
0 shown on the y axis is defined in

the caption of Fig. 2.
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FIG. 7. Excitation spectrum of the Heisenberg model on the
semi-infinite square lattice for 0�kx�	, where kx is the momen-
tum parallel to the edge. The bound states found by spin-wave
theory and series-expansion calculations are shown. The thin solid
line represents the upper limit of the continuum of states.
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IV. CONCLUSIONS

In this paper, we have studied the spin correlations and
excitations near the boundary of two-dimensional Heisen-
berg antiferromagnets. Two different square-lattice models
are considered: one where the exchange coupling parallel to
the boundary is smaller than the one perpendicular to the
boundary. In this model, we find that the boundary-induced
dimerization becomes more and more long ranged as the
anisotropy is increased. The second model is the J1-J2
Heisenberg model, with nearest- and second-neighbor ex-
change interactions. In this case, we find that as frustration is

increased in the model, the boundary-induced dimerization
increases close to the boundary but its range does not change
significantly. This suggests that in the J1-J2 model, the Néel
phase does not develop long-range dimer correlations.
Hence, either the transition from Néel to dimer order is first
order in this model or there is a very narrow critical region.
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