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We analyze the critical properties of a quantum spherical spin-glass model with random inverse power-law
interactions r−�d+��. It was shown in a previous publication that the effective partition function calculated with
help of the replica method for the spin-glass fluctuating fields Q���k� ,�1 ,�2� separates into a mean-field
contribution for the Q���0,� ,−�� and a strictly long-range partition function for the fields Q����k� ,�1 ,�2�.
Here � ,�=1, . . . ,n are replica indices. The long-range part WLR describes a phase transition in a Q3-field
theory that we analyze using the renormalization group with dimensional regularization and minimal subtrac-
tion of dimensional poles. By generalizing standard field theory methods to our particular situation, we can
identify the upper critical dimensionality as dc= 5�

2 at very low temperatures due to the dimensionality shift
Dc=dc+ �

2 =3�. We then perform an ��=dc−d expansion to order one loop to calculate the critical exponents
by solving the renormalization-group equations.
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I. INTRODUCTION

It has been known for some time that the critical behavior
of classical systems with long-range �LR� inverse power-law
interactions V�r�=r−�d+��, where d is the space dimensional-
ity, falls into different universality classes depending on the
value of the range parameter ��0. From the early results in
the spherical model1 to the renormalization-group calcula-
tions in �4-field theory2 and �3-field theory,3 the picture
emerged that for ���o the critical exponents take their
short-range �SR� value, while for 0����o the system falls
into a different universality class with LR �-dependent ex-
ponents. The exact value of �o is still a controversial subject,
as in Refs. 2 and 3 it is proposed that �o=2 with a disconti-
nuity in the critical exponent 	, while in Ref. 4 it is sug-
gested that �o=2−	SR, where 	SR is the value of the expo-
nent 	 calculated in the �=4−d expansion for a �4-field
theory with SR interactions. The problem is revisited in a
more recent publication5 where a numerical analysis is pre-
sented that is not completely conclusive. The properties of
classical Ising spin glasses with long-range algebraic disor-
der were first studied in Ref. 6 and later in Ref. 7 with analo-
gous conclusions that for 0���2 the critical behavior is of
LR type, with �-dependent critical exponents. In this case
	SR is negative and �o=2.

In the present paper we study the critical properties of the
quantum spherical spin glass with LR algebraic disorder in
the region ��2 where the SR contributions are supposed to
be irrelevant. We do not investigate here the crossover be-
tween SR and LR behaviors. A particular class of systems
that presents a quantum critical point �QPC� is quantum spin
glasses such as the insulating LiHoxY1−xF4.8 The Ising spin
glass in a transverse field with random long-range interac-
tions has been considered in Ref. 9. For general reviews on
quantum phase transitions and quantum spin glasses we refer
the reader to Refs. 10 and 11.

In a recent publication12 we presented a detailed study of
the critical properties of the quantum spherical spin glass
with SR disorder by using renormalized perturbation theory

with dimensional regularization.13 From that work it
emerged that there is a dimensional shift from the space di-
mensionality d to the effective D=d+1 due to the time de-
pendence of the quantum operators and that scaling behavior
in the critical region requires the introduction of a dynamical
critical exponent z. The critical exponents are then calculated
in an expansion in �=6−D=5−d.

We extend here the theory in Ref. 12 to the study of the
critical properties of a quantum spherical spin-glass model
with random inverse power-law interactions r−�d+��. It has
been pointed out that quantum fluctuations may drive the
critical temperature to Tc=0 and that a new transition with a
dimensional shift D=d+1 may occur at a QCP.14 Although
we showed that this conjecture is satisfied in the quantum
spherical spin glass with short-range disorder,12 we will
show here that the dimensional shift satisfies a more general
relation and becomes also � dependent in the case of LR
disorder. The space dimensionality plays an important role in
phase transitions. There exists a critical dimension dc, called
the upper critical dimension, such that for d�dc the leading
infrared behavior will be given by the free theory, while for
d�dc the theory develops singularities that give rise to a
critical behavior different from mean-field theory. There is
also another critical dimension dl, called the lower critical
dimension, below which long-range order disappears. In
some cases one can also make expansions of critical expo-
nents for d�dl, like in the nonlinear � model where dl=2.13

While renormalization-group theory gives us a precise value
of the upper critical dimension dc, the evaluation of the lower
critical dimension is not an easy task. In Ref. 15 a detailed
analysis of dl for classical vector spin glasses with inverse
power-law disorder was presented, but we do not see how to
extend this calculation to the quantum case.

Detailed discussions and lengthy formal proofs of the ba-
sic theory were presented in Ref. 12; hence, we present here
only the mathematical expressions needed to follow our
work, referring the interested reader to that paper for details.
We obtained that the effective partition function calculated
with help of the replica method for the spin-glass fluctuating
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fields Q���k� ,�1 ,�2� separates into a mean-field contribution
for Q���0,� ,−�� and a strictly long-range partition function
for the fields Q����k� ,�1 ,�2�. Here � ,�=1, . . . ,n are replica
indices. The mean-field part WMF coincides with previous
results obtained in the quantum spherical spin glass with
infinite range interactions.16 The long-range part WLR de-
scribes a phase transition in a Q3-field theory that we analyze
using the renormalization group with dimensional regulariza-
tion and minimal subtraction of dimensional poles. By gen-
eralizing standard field theory methods to this particular situ-
ation, we observe that scale invariance requires imaginary
time and an inverse temperature to scale as 
=��/2, for � an
inverse length, inducing a dimensional shift D=d+ �

2 at very
low temperature. As the critical effective upper dimension is
Dc=3�, we obtain dc= 5�

2 for fixed � and we then perform an
��=dc−d expansion on the order of one loop to calculate the
critical exponents by solving the renormalization-group
equations.

The plan of the paper is as follows. We present in Sec. II
the model and results, while we reserve Sec. III for discus-
sions and comparison with previous work.

II. MODEL AND RESULTS

We consider a spin glass of quantum rotors with moment
of inertia I in the spherical limit12,16,17 with Hamiltonian

HSG + ��
i

Si
2 =

1

2I
�

i

Pi
2 −

1

2�
i,j

JijSiSj + ��
i

Si
2, �1�

where the spin variables at each site are continuous −

�Si�
 and we considered the canonical momentum Pi with
commutation rules as follows:

�Sj,Pk� = i� j,k. �2�

The sum in Eq. �1� runs over sites i , j=1, . . . ,N. The bond
coupling Jij in Eq. �1� is an independent random variable
with the Gaussian distribution6,7

P�Jij� = e−Jij
2 /2J2Vij� 1

2�J2Vij
�3�

and Vij = �R� i−R� j�−�d+�� is a long-range site-dependent variance
with Fourier transform at low momentum k,

V�k� � 1 − k�. �4�

The chemical potential � is a Lagrange multiplier that
insures the mean spherical condition

−
�	ln W


����
= �

i
�

0




d�	Si
2
 = 
N �5�

and 
=1 /T is the inverse temperature. We work in units
where the Boltzmann constant kB=�=1 and W is the quan-
tum partition function

W = Tr exp�− 

HSG + ��
i

Si
2�� �6�

that can be expressed as a functional integral12,18,19

W =� �
i

DSi exp�− AO − ASG� , �7�

where the noninteracting action AO is given by

AO = �
0




d��
i
� I

2

 �Si

��
�2

+ �Si
2���� �8�

and the interacting part is

ASG =
1

2�
i,j

Jij�
0




d� Si���Sj��� . �9�

The free energy may be calculated with the replica
method as

F = −
1


N
lim
n→0

Wn − 1

n
, �10�

where 	Wn
ca=Wn is the partition functional for n-identical
replicas, configurationally averaged over the probability dis-
tribution of Jij in Eq. �3�. Following the method in Ref. 12
we obtain that Wn may be expressed as a functional over
fluctuating spin-glass fields Q���k� ,� ,���, where �= 2�m


 is a
discrete Matsubara frequency for finite temperature and
� ,�=1, . . . ,n are replica indices, which separates into two
parts:

Wn = WMFWLR. �11�

Here, WMF is the mean-field functional for the fields
Q���0,� ,−�� already obtained in Ref. 16 that determines
the chemical potential ��T , I� through the spherical con-
straint in Eq. �5�, while WLR depends on the spin-glass fluc-
tuations Q����k� ,� ,��� for long-range interactions and de-
scribes the critical behavior. We remark that these fields
depend naturally on two independent times �frequencies� be-
cause the disorder is not time correlated and configurational
average restores translational invariance in space, but not in
the time direction. We obtain from Ref. 12

WLR =� �
���

DQ���k�,�,���exp�− ALR�Q�� , �12�

where � ,�=1, . . . ,n are replica indices and

ALR�Q� = �
���

�
�1�2

� dk��� − �c

�c
+ k� + s2��1

2 + �2
2��

�Q���k�,�1,�2�Q���− k�,− �1,− �2�

+
�

3! �
�����

�
�1�2�3

� dk�1dk�2 Q���k�1,�1,�2�

�Q���k�2,− �2,�3�Q���− k�1 − k�2,− �3,− �1� . �13�

The critical value �c=J in Eq. �13� determines the critical
line Tc�I� calculated in Ref. 16. Having in mind a
renormalization-group calculation, the frequency term in the
noninteracting inverse propagator is affected by the coeffi-
cient s2, as it will turn out that momentum and frequency
renormalize differently and their coefficients cannot be kept
both equal to unity. The infinite volume limit was taken in
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Eq. �13�, but for the moment the temperature is kept finite
and the sums are over discrete Matsubara frequencies. In
what follows it is implicit that Q�� stands for Q���, while
Q���� stands for Q���0,� ,−��. There is also a coupling
Q���q� �0�Q���Q��� that presents a smaller degree of infra-
red divergence at the critical theory, when �=�c, and can be
neglected.12

We now proceed with the renormalization-group calcula-
tion using dimensional regularization and minimal subtrac-
tion of dimensional poles13 to one loop order. In Eq. �13� we
kept only the terms O�Q3� because the terms O�Q4� would be
irrelevant close to the critical dimensionality of Q3 theory, as
there is no change in the sign of � for the Gaussian probabil-
ity distribution of the random bonds. To analyze the value of
the critical dimensionality we consider separately the case of
finite temperature from that of T=0. In both cases the vertex
functions that present divergencies needing renormalization
are the inverse propagator ��2�, the three-point vertex func-
tion ��3�, and the two-point vertex function with one inser-
tion ��2,1�.13 To one loop order they are given by the dia-
grams in Fig. 1. At this point it is important to distinguish
between the system temperature T and the critical parameter
t=

�−�c

�c
that measures the approach to criticality.

We start by analyzing the transition at finite temperature
T. Since the action in Eq. �13� must be dimensionless, di-
mensional analysis tells us that for � an inverse length

�k� = �, �Q� = �−�d+��/2, ��� = ��3�−d�/2, �14�

and the upper critical dimension is dc=3�, as corresponds to
a classical system. The vertex functions calculated with the
usual rules in �3-field theory3,13 are

��2��k�,�1,�2� = ��0��k�,�1,�2� − �n − 2�
1

2
�2

��
�
� dp� G0�p� ,�,�1�G0�k� − p� ,�2,− �� ,

�15�

where

��0��k�,�1,�2� = t + k� + s2��1
2 + �2

2� = G0
−1�k�,�1,�2�

�16�

and

��3��k�1,k�2,�1,�2,�3�

= � + �n − 3��3�
�
� dp� G0�p� ,�1,��G0�k�1 + p� ,− �,�2�

�G0�k�1 + k�2 + p� ,− �,�3� . �17�

The theory will be renormalized at the critical point t=0.
To get away from the critical point we should consider a
perturbation expansion in t by means of the insertion13

�A =
1

2!��,�
�

�1�2

� dq� t�q��� dp�

�Q���p� ,�1,�2�Q���q� − p� ,− �2,− �1� �18�

that leads to a third singular vertex function ��2,1� with two
external legs and one insertion shown in Fig. 1;

��2,1��k�,q� ,�1,�2� = 1 + �n − 2��2�
�
� dp� G0�p� ,�,�1�

�G0�q� − p� ,− �1,− ��G0�k� + p� ,�,�2� .

�19�

At finite temperature T and critical t=0, the sums over Mat-
subara frequencies in the vertex functions have only one sin-
gular term with �i=0, then we recover the transition for
classical spin glasses described by an expansion in �=3�
−d.7

A different scenario emerges when T is near zero. For
sufficiently low T the frequency sums may be replaced with
integrals

�
�

→
�
−





d� �20�

and now all the frequencies contribute to the renormalization
process. A look at ��0� in Eq. �16� tells us that the scale of
frequencies and inverse temperature must now be

��� = ��/2, �
� = �−�/2, �s� = �0. �21�

The vertex functions in Eqs. �15�, �17�, and �19� will be
singular at an effective dimension Dc=dc+ �

2 =3�, with the
upper critical space dimension becoming dc= 5�

2 .
The calculation of the integrals in the method of dimen-

sional regularization merits discussion. In the low-
temperature limit the sum over frequencies are replaced with

(a)

(b)

(c)

FIG. 1. Diagrammatic representation of the vertex functions. A
double line represents a propagator with two replica indices � and
�, momentum k�, and two frequencies �1 and �2. Top: ��2�, middle:
��3�, and bottom: ��2,1�.
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integrals as indicated in Eq. �20�, and then we need for ��2�

in Eq. �15�, at the critical value t=0,13

I2 =� d�dp�
1

p� + s2��1
2 + �2�

1

�p� − k��� + s2��2 + �2
2�

.

�22�

Differently from the classical case3 this integral cannot be
performed in closed form due to the presence of the �i

2 terms
in the denominator. To circumvent the above problem we
refer to our knowledge of the renormalization-group calcula-
tions in classical �4- and �3-field theories,3,4 where there are
no terms proportional to k� in the perturbation expansion.
The only corrections are proportional to k2 and they are ir-
relevant in the LR region, while they exhibit dimensional
poles in the SR region �=2. This is also the case here and
we renormalize the theory at the symmetry point13 with ex-
ternal momenta k�i=0 and frequencies �i=��/2, where � is
the scale parameter.

We present unified results for the critical properties in an
expansion in ��= 5�

2 −d to one loop order, in the LR case
when ��2 and in the SR case when �=2 that were calcu-
lated before.12 As frequencies renormalize differently than
momenta the exponent z differs from unity, depending also
on the range parameter � and the dimensionality through the
�� expansion. The integrals over momentum and frequency
of Eqs. �15�, �17�, and �19� are calculated at a space dimen-
sionality d when they converge3,13 and the singularities ap-
pear as dimensional poles in ��. We obtain for the singular
parts, to leading order in the coupling constant and n=0,

���
�2��k�,�1,�2� = k� + s2��1

2 + �2
2�

−
1

��
u0

2�s��1
2 + �2

2� − �
1

3s
k2� , �23�

����
�3� = u0���/2�1 − 3u0

2 1

s��
� , �24�

���
�2,1� = 1 − 2u0

2 1

s��
, �25�

where we considered the bare dimensionless coupling u0
through

��

2
�
d

2
�Sd = u0

2��� �26�

and Sd is the surface of the unit sphere in d dimensions. The
parameter � in Eq. �23� takes the value ��LR�=0 when �
�2 and ��SR�=1 when �=2. In order to cancel the dimen-
sional poles we must consider a renormalized dimensionless
coupling u and renormalized vertex functions by means of
renormalization of the field and insertion Q��

2 through the
functions ZQ and ZQ2. Similar to the classical problem, there
is no need of field renormalization for the LR disorder, when
��LR�=0 and ZQ=1, giving 	=2−�. The correction to the
frequency term �i

2 in ��2� in Eq. �21� requires renormaliza-
tion of the frequency coefficient s�u�. All together we obtain

�R
�2��u� = ZQ�u���2��u0,s� ,

�R
�3��u� = �ZQ�u��3/2��3��u0,s� ,

�R
�2,1��u� = Z̄Q2�u���2,1��u0� , �27�

where

u0 = u�1 +
6 − �

2��
u2� , �28a�

ZQ = 1 +
�

3��
u2, �28b�

Z̄Q2�u� = 1 +
2

��
u2, �28c�

s2 = 1 +
3 − �

3��
u2. �28d�

From Eq. �28a� we calculate the 
 function


�u� = �� �u

��
�

�

= −
��

2
u�1 −

6 − �

��
u2� �29�

that vanishes at the trivial fixed points u�=0, stable for ��
�0, and u�2= 1

6−���, stable for ���0. The results in Eqs. �28�
and �29� for �=1 were obtained in our previous SR
calculation.12 To obtain the critical exponents we have to
solve the renormalization-group equations13 for the vertex
function �R

�2��k� ,s�i , t ,u ,�� near criticality, where t=
�−�c

�c
.

Now we have to take into account also the dependence of s
on � through the coupling u and that there is no field renor-
malization, so calling yi=s�i , i=1,2, we obtain the
renormalization-group equation at the fixed point 
�u��=0 as
follows:

��
�

��
+ �s

��
i

yi
�

�yi
− �t

�

�t
− �	SR��R

�2��k�,yi,t,�� = 0,

�30�

where

� = ��
�

��
ln Z̄Q2�

u=u�

,

�s
� = ��

�

��
ln s�

u=u�

,

	SR = ��
�

��
ln ZQ�

u=u�

. �31�

The solution for �R
�2� in the SR case was discussed in Ref. 12;

hence, we concentrate here on the solution for LR disorder
with �=0 that has the scaling form
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�R
�2��k�,yi,t,�� = ��k� ;yit�

�−�s
�

� , �32�

where � is a function of the joint variable yit�
�−�s

�

and di-
mensional analysis tells us that for � an inverse length,

�R
�2��k�,yi,t,�� = ���R

�2�
 k�

�
,

yi

��/2 ,
t

�� ,
�

�
�

= ���� k�

�
;

yit�
�−�s

�

�3��/2�+�−�s
�� . �33�

If we choose13

� = �
 t

���1/��+��

, �34�

we obtain

�R
�2��k�,yi,t,�� = ��
 t

�����

�� k�

�

 t

���−�

;
yi

��/2
 t

���−�z� ,

�35�

from which we identify the space correlation length expo-
nent

� = 
 t

���−�

, �−1 = � + � = 2 − 	 + � �36�

and the time correlation length exponent

�t = 
 t

���−�z

= �z, z = 1 − �s
� 2

�
. �37�

From Eqs. �28�, �31�, �36�, and �37� we obtain the results
for the critical exponents, at the nontrivial fixed point,

�−1 = � −
��

3
, 	 = 2 − � − �

��

15
,

z = 1 +
��

6�
�1 −

�

5
� = 1 +

��

6�
+

�

4
	SR, �38�

where in the LR region when ��2 we have ��= 5�
2 −d and

�=0, while in the SR region we have �=2, ��=5−d, and �
=1. The correlation length exponent � varies continuously
from the LR to the SR values while the dynamical exponent
z exhibits the discontinuity in the exponent 	. Scaling theory
gives for the static spin-glass susceptibility �−1=�R

�2��0,0 , t�
� t�, with �=��2−	�=��, from Eq. �35�.

III. CONCLUSIONS

In the present paper we analyze the critical properties of a
quantum spherical spin-glass model with long-range random
interactions. Since the model allows for exact detailed calcu-
lations, we showed before12 how the effective partition func-

tion calculated with help of the replica method for the spin-
glass fluctuating fields Q���k� ,�1 ,�2� separates into a mean-
field contribution for the Q���0,� ,−�� and a strictly short-
range partition function for the fields Q����k� ,�1 ,�2�. Here
� ,�=1, . . . ,n are replica indices. The mean-field part WMF
coincides with previous results16 and it was discussed in de-
tail in Ref. 12 where we showed that it determines the
chemical potential ��T , I� through the spherical constraint in
Eq. �5�. The long-range part WLR describes a phase transition
in a Q3-field theory, where the fluctuating fields depend on a
position variable r� and two imaginary time variables �1 and
�2. Scale invariance requires frequencies to scale as ��/2 for
� an inverse length, then by generalizing the renormalization
group with dimensional regularization and minimal subtrac-
tion of dimensional poles13 to this particular situation we can
identify the upper critical dimension as dc= 5�

2 , for fixed �, at
very low temperatures due to the dimensionality shift Dc

=dc+ �
2 =3�. We then perform an ��=dc−d expansion on the

order of one loop to calculate the critical exponents by solv-
ing the renormalization-group equations, and they are listed
in Eq. �38�. For fixed dimensionality d we would have6 ��
=3��−�c�, where �c=d /3. We notice that the correlation
length exponent � goes continuously from the �-dependent
LR values when ��2 to the SR value for �=2, while the
dynamical exponent z shows a discontinuous behavior when
�=2, as it does the exponent 	.

The quantum Ising spin glass in a transverse field with LR
correlated disorder was considered in Ref. 9, where the prob-
lem is mapped into the general Landau theory of quantum
spin glasses of M-component rotors presented in Ref. 20.
Based on general properties of symmetry and invariance, the
authors present an effective functional for spin-glass Q
fields, and at some points we make contact with their results.
Our fields, as theirs, are bilocal in time, but our result for the
effective functional is simpler and more tractable by standard
field theory methods. We showed12 that the partition func-
tional separates exactly into a mean-field part for the replica
diagonal Q���k=o ,� ,−�� and a long-range part for the fluc-
tuating Q��
�k ,�1 ,�2� in Eq. �11�, while in the quantum
spin glass with LR disorder considered in Refs. 9 and 20 the
replica diagonal Q����� is considered as an order parameter
and a Landau functional is constructed for fluctuations diag-
onal in replica space around it. As a consequence of having
different propagators, the renormalization-group equations,
critical exponents, and the critical dimensionality obtained in
Ref. 9 differ from ours. We conclude that, in the case of
long-range disorder considered here, the quantum spherical
spin-glass model belongs to a different universality class
than the model in Ref. 9.
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