PHYSICAL REVIEW B 79, 094304 (2009)

Theoretical basis of parametric-resonance-based atomic force microscopy
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Parametric resonance underpins the physics of swings, resonant surface waves, and particle traps. There is
increasing interest in its potential applications in atomic force microscopy (AFM). In this paper, the dynamics
of parametrically resonant microcantilevers for high sensitivity imaging and force spectroscopy applications is
investigated theoretically. Detailed numerical parametric-resonance simulations are performed to understand
how the microcantilever amplitude varies with tip-sample separation, the tip-sample interaction, and the scan-
ning dynamics of a microcantilever probe. We find three key advantages of a parametrically resonant micro-
cantilever for AFM applications: (a) the reduction in ringing effects near feature edges that occur for high-Q
microcantilevers; (b) an increase in the scanning speed while maintaining a low tip-sample interaction force
while imaging; and (c) an enhanced sensitivity to long-range magnetic and electrostatic force gradients acting
between the tip and the sample. Experimental results are presented with an aim to clearly identify the advan-

tages and disadvantages that parametric resonance offers for scanning probe applications.
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I. INTRODUCTION

A common problem encountered in the use of dynamic
atomic force microscopy (AAFM) is the broad resonance that
is characteristic of the microcantilever oscillation. Typically,
resonance Q factors of ~100-500 are achieved under ambi-
ent conditions. This limits the force sensitivity in dAFM de-
fined as the peak tip-sample interaction force (the imaging
force) applied by the oscillating tip on the sample. To im-
prove sensitivity and reduce the imaging force, Q control'~
has been introduced in dAFM wherein electronic feedback
circuits reduce the effective damping coefficient of the mi-
crocantilever system, increasing the force sensitivity and de-
creasing the imaging force.*> However Q control also re-
duces the system bandwidth, resulting in a long transient
response, slow scanning speeds, and unwanted “ringing”
effects.® Consequently there is a need for nonconventional
means to excite and resonate dAFM microcantilevers to re-
duce the imaging force and to improve force sensitivity with-
out sacrificing scan speed.

One recent development in the area of nonconventional
cantilever excitation has been the use of parametric excita-
tion and parametric resonance in dAFM.”!° Parametric ex-
citation and resonance underpin many physical phenomena
including the motion of surface waves, particle traps,'’"'? and
children’s swings.'> More recently, applications of paramet-
ric resonance to microelectromechanical and nanoelectrome-
chanical systems have been reported.'®!>

Before proceeding, it is helpful to distinguish between
parametric excitation and parametric resonance. Parametric
excitation is a nonconventional excitation that is achieved by
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varying periodically a system parameter such as the stiffness
or mass of an oscillator as opposed to applying a periodic
external force to it. Under certain conditions, parametric ex-
citation can lead to parametric resonance where the oscillator
begins to vibrate with significant amplitude. For instance,
when the frequency of parametric excitation is near twice the
natural frequency of an oscillator, and if the strength or gain
of the parametric excitation is above a threshold value, then
principal parametric resonance is said to occur in that oscil-
lator. Other secondary parametric resonances are also pos-
sible depending on the frequency ratio between the paramet-
ric excitation and the natural frequency of the oscillator and
the parametric gain.'®

Several methods have been proposed to introduce para-
metric excitation and resonance in microcantilevers.
Moreno-Moreno et al.” implemented parametric excitation
and resonance in microcantilevers by means of electronic
feedback to the base of the microcantilever. Requa and
Turner’ implemented parametric excitation and resonance
utilizing the Lorentz force by passing an alternating current
through a microcantilever placed in a uniform magnetic field.
Patil and Dharmadhikari'® investigated parametric excitation
and resonance by periodically moving the substrate instead
of the microcantilever to produce a periodic modulation of
van der Waals force. Ouisse et al.® theoretically investigated
parametric excitation and resonance using the electrostatic
force gradient near a biased microcantilever.

Parametric excitation has been previously proposed in
sensors and scanning probe microscopy (SPM) applications
as a mechanical preamplifier. Rugar and Grutter'” achieved
parametric excitation by generating an electrostatic force
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gradient near a microcantilever to demonstrate thermome-
chanical noise squeezing. Dougherty et al.'® used a time
varying magnetic moment to parametrically excite a micro-
cantilever fitted with a magnetic particle at the free end.
Dana et al.' achieved parametric excitation by mechanically
modifying the second-order nonlinear stiffness of a micro-
cantilever. However, the gain in these cases was below the
threshold value and consequently, parametric resonance was
not attained; instead parametric amplification was demon-
strated.

In this paper, we analyze the different methods of para-
metric excitation to achieve parametric resonance in micro-
cantilevers and use mathematical models to better understand
the advantages that parametrically resonant dAFM probes
might offer for advanced SPM applications. We compare our
simulation results for parametrically excited microcantilevers
to (a) the simulation results of a conventionally excited mi-
crocantilever, (b) the simulation results of a Q-controlled mi-
crocantilever, and (c) with other experimental results, with
an aim to clearly identify the advantages and disadvantages
that each technique offers for SPM.

II. THEORY

Consider a sharp probe tip (“tip” hereafter) attached at the
free end of a microcantilever. The equation of motion for the
free end of the microcantilever, oscillating in its first eigen-
mode about its equilibrium position, at a distance Z from the
sample is given by?°

G+ 2

0
where ¢ represents the instantaneous tip displacement from
its equilibrium position, ¢ and § represent the tip velocity
and acceleration, respectively, Q is the quality factor of the
fundamental eigenmode of the microcantilever, w, is the
natural frequency of the first eigenmode, f(¢) is the mode
dependent (modal) driving force, m is the effective modal
mass, F(z) is the interaction force between the tip and
sample, and z(r)=Zy+¢(t) is the instantaneous tip-sample
separation.

Parametric excitation of the microcantilever is achieved
by adjusting the modal driving force f(¢) so as to modulate
the stiffness of the microcantilever. For instance, Ouisse et
al.® reported the parametric excitation of the microcantilever
by using electrostatic interactions. An alternating voltage
V(t)=V, cos(wyt), where V,, the amplitude of an alternating
voltage applied to the substrate, excites a biased metallic
microcantilever positioned nearby so that the driving force is

1dC

given by f(1)= Eﬁ—ZVZ, where C is the capacitance between tip

and sample. After expanding f(¢z) in Taylor’s series about z
=Zy, Eq. (1), after rearranging terms, becomes

1 1
g+ wyq= 0+ —Fy(2), (1)

. W . 2 1 &ZC 2
+—qg+wy| 1l ——— — V(t
a Qq O( meg 9z° (0 Ja
z=Z0
1 oC F
= - v+ FsQ 2)
m 0z m

=2,

The left-hand side of Eq. (2) shows that the applied alternat-
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FIG. 1. (Color online) A diagram of the feedback scheme re-
quired to implement a parametric AFM. Parametric resonance is
achieved when the excitation frequency applied to the dither piezo
is twice the natural frequency ({2 ~2w,) and the gain G is greater
than the threshold value (G> Gy,).

ing voltage V(¢) can be used to modulate periodically the
equivalent stiffness of the oscillator [all the terms multiply-
ing g on the left-hand side of Eq. (2)]. If the right-hand side
of Eq. (2) is neglected we recover the linearized damped
Mathieu’s equation,?!

. @o .
61+Eq+w§[l -8(n]g=0, 3)
_ Vi #C . . .
where g(t)——4mw% o7 |=z,(1+cos 2w,t) is a harmonic function

of time. Thus electrostatic forcing can be conveniently used
to create parametric excitation especially if the microcantile-
ver is relatively close to the surface.

Requa and Turner” reported on parametric excitation us-
ing the electromagnetic Lorentz force. A U-shaped conduct-
ing microcantilever is placed in a uniform magnetic field and
an alternating current is passed through the microcantilever.
The lever experiences a periodic Lorentz force p(r) along its
longitudinal axis, thus alternating the compressive axial
stress in the microcantilever. The periodic compressive axial
stress in turn periodically modulates the effective out-of-
plane bending stiffness of the microcantilever thus para-
metrically exciting the structure. It has been shown that the
underlying linearized equation of motion that governs the
Lorentz force excited microcantilever is precisely the linear
damped Mathieu’s equation’ [Eq. (3)].

Finally Moreno-Moreno et al.” reported the parametric
excitation using an electronic feedback mechanism as shown
in Fig. 1. In this case the microcantilever deflection is fed
back electronically to the microcantilever dither piezo after
multiplying by cos({)¢) and a gain factor (G). Here, () is the
excitation frequency which is close to 2w,. It has been
shown’ that in this case, the underlying equation of motion is
Mathieu’s equation [Eq. (3)]. Thus the linearized Mathieu
equation commonly describes the linear physics of para-
metrically excited microcantilevers regardless of the specific
method of excitation.

It is well known that the nontrivial solutions of the
damped linearized Mathieu equation [Eq. (3)] can grow in
amplitude and become unbounded when g(z) varies with a
frequency close to double that of the natural frequency w
(principal parametric resonance) and the magnitude of para-
metric excitation is larger than a threshold value.?” In reality
many attendant nonlinearities in the system conspire to satu-
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rate the amplitude to a steady-state value under conditions of
principal parametric resonance. The nature of the nonlineari-
ties is diverse; for instance, Requa and Turner® considered
elastic nonlinearities due to large deformations of the micro-
cantilever (both curvature and inertial). Moreno-Moreno et
al.” considered nonlinear hydrodynamic damping. In the case
of electrostatically induced parametric resonance, the nonlin-
ear electrostatic forces could also affect the steady-state am-
plitude. As important as these nonlinearities are for determin-
ing the microcantilever oscillation amplitude far from the
sample, in AFM applications when the tip comes close to the
sample, the nonlinearities with the largest force gradient are
due to tip-sample interaction forces. Thus when the tip be-
gins to interact with the sample the other nonlinearities are
negligible. It follows that when the microcantilever is far
from the sample, its “free” vibration amplitude (A,) must be
determined by the other nonlinearities in the system. The free
vibration amplitude in AFM is usually small (~100 nm or
lower) to minimize the tip forces exerted on the sample. This
desire for small forces is yet another reason why structural
nonlinearities are usually small when compared to the tip-
sample interaction nonlinearities.

In what follows we specifically choose to consider a non-
linear hydrodynamic damping model so as to achieve finite
steady-state amplitude before the microcantilever begins to
interact with the sample. As we will show, this nonlinear
model captures very well the experimental data of recent
work on parametrically excited microcantilevers in dAFM.”
In principle, other nonlinearities can be included, but as we
will see the fundamental physics of the problem is deter-
mined by the tip-sample interaction forces.

Accordingly a modified version of Eq. (1) will serve as
the nominal model for the dynamics of parametrically reso-
nant AFM probes interacting with the sample, regardless of
the mechanism used for inciting the parametric resonance,

w, a 1
G+ w(1-Gcos U)g+ —'g+—|glg=—F(2). (4)
0 m m

where « is the coefficient of nonlinear hydrodynamic damp-
ing that is determined by comparing the experimental free
vibration amplitude to the predicted one, G represents gain,
and () represents the excitation frequency. For a parametri-
cally resonating microcantilever implemented using elec-
tronic feedback,” the gain (G) is the amplitude of the har-
monic signal multiplied by the microcantilever oscillation
signal (¢q) before feeding it back to the base of the microcan-
tilever.
For a parametrically resonating miczrocantilever using the
Vo #C

electrostatic force,® G is defined as —— =5
4moy 9z

tude of the harmonic signal, obtained from Taylor’s expan-
sion, can be controlled by changing V|, and Z,. For a para-
metrically resonating microcantilever using the Lorentz
force,’ the gain is defined as the amplitude of the periodically
modifying axial compressive force p(r), which is controlled
by changing the alternating current. () is the excitation fre-
quency, which is the frequency of the harmonic signal mul-
tiplied with the oscillation signal of the microcantilever be-
fore feeding it back to the dither piezo (as in Ref. 7), twice

|:=z,- The ampli-
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the frequency of the alternating bias voltage (as in Ref. 8),
and the frequency of alternating current (as in Ref. 9). The
threshold gain, Gy,=2/Q, is the minimum gain of excitation
signal required to overcome the damping in the system and
to achieve self-sustained oscillation. When () is close to 2w
and G is more than Gy, the microcantilever resonates para-
metrically (primary parametric resonance).

The short-range tip-sample interaction force (F,) is as-
sumed to include the van der Waals force and the Derjaguin-
Muller-Toporove (DMT) contact force.®* This serves as a
nominal tip-sample interaction model appropriate for hard
contacts with low tip-sample adhesion. F; depends on the
instantaneous tip-sample gap, z(¢), and is given by

AR
-— for z >
ro={ o 5)
s\Z) = AR 4E* ,E( )3/2 f -
- —+ -E"VR(ag—2z) r Z = a,
6a(2) 3 N 0 Z or 7 a()

where A is the Hamaker constant between the tip and the
sample, R is the effective tip radius, E* is the effective elastic
modulus of tip-sample combination, and a is intermolecular
distance at which contact is initiated.

In order to compare the potential benefits of the para-
metrically resonant microcantilever in AFM (parametric
AFM) over existing methods, the tip dynamics of parametri-
cally resonant microcantilevers are compared with conven-
tionally excited and Q-controlled microcantilevers at reso-
nance. For instance, the equation of motion of a conventional
acoustically excited microcantilever is given as?

w 1
j+ aoq + w(z)q = n—1FlS(z) + ®’YB cos(wt), (6)

where Y is the amplitude of the base motion, B=1.566 is the
modal parameter for the first eigenmode, and w is the exci-
tation frequency. Q-controlled AFM is modeled simply as a
tunable quality factor Q. which can be different from the
“natural” Q factor,*>

w 1
G+ —Oq + w(z)q = —F(2) + @”YB cos(wt). (7)
eff m

In order to achieve resonance in the conventional [Eq. (6)]
and Q-controlled [Eq. (7)] models, w is set to be equal to .

Parametric excitation is possible using both acoustic’ and
nonacoustic®® excitations. Equation (4) is the theoretical
model for parametric excitation irrespective of the method
(acoustic or nonacoustic) chosen to do so. In this paper we
compare the parametric excitation of a microcantilever
(acoustic or nonacoustic) with an acoustically excited con-
ventional and a Q-controlled microcantilever. For a moderate
to high Q factor, the frequency response of microcantilevers
using acoustic or nonacoustic excitation is not very different
near resonance. Hence it is valid to compare the parametric
excitation model developed in Eq. (4) with the acoustically
excited conventional [Eq. (6)] and Q-controlled [Eq. (7)]
models having the same free vibration amplitude as for the
parametric case at resonance.
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TABLE I. Parameters and properties of Si microcantilever and
HOPG sample used in numerical simulation.

Description Value
Tip radius R=10 nm
Microcantilever length L=125 um
Microcantilever width b=30 um
Microcantilever thickness h=4 pum
Microcantilever material density p-=2300 kg/m?3
Microcantilever Young’s modulus E =130 GPa
Effective elastic modulus (sample) E*=10.2 GPa
Natural frequency f0=310.9 kHz
Quality factor (natural) 0=520
Quality factor (Q controlled) Q.r=6000
Hamaker constant (Si-HOPG) A=2.96%x10"17 J
Intermolecular distance ap=0.3813 nm
Feedback gain (parametric excitation) G=1.0139G,

III. NUMERICAL SIMULATIONS

The theoretical models for the microcantilever interacting
with a sample in parametrically resonant, Q-controlled, and
conventional AFMs are given by Egs. (4), (6), and (7), re-
spectively. These equations are numerically integrated using
the FORTRAN based DDASKR routine with root finding algo-
rithm implemented to accurately integrate the nonsmooth tip-
sample interaction forces. The DDASKR routine is based on
DASPK, a differential algebraic equations software pack-
age. 2426

The numerical integrations are simulated for a highly ori-
ented pyrolytic graphite (HOPG) sample and a silicon micro-
cantilever having a resonance frequency of 286.6 kHz. The
microcantilever stiffness and natural Q factor of 520 are cho-
sen to replicate the experimental results of prior work.” Table
I lists the specific tip-sample and microcantilever properties
chosen for the simulations. A very small numerical tolerance
(107'?) and a very small time step (1000 points per cycle) are
chosen to ensure accurate integration results. The steady-
state solutions are obtained after discarding the initial tran-
sient cycles (5000 cycles for conventional and 10 000 and
100 000 for Q-controlled and for parametrically excited mi-
crocantilevers, respectively). Amplitude and phase of the mi-
crocantilever oscillation are calculated with respect to the
harmonic signal at half of the excitation frequency using a
Fourier transform over ten oscillation cycles, corresponding
to a lock-in time constant of 32 us.

For parametrically resonant microcantilevers, three kinds
of simulations are performed, namely, (a) frequency response
(tuning curves) far from the sample, where the amplitude
response is computed when the excitation frequency (£}
~2w,) is swept across twice the resonance frequency of the
microcantilever, (b) approach curves are simulated, where
the amplitude response is computed by continuously chang-
ing Z, with the parametric excitation frequency fixed at ()
=2w, and (c) surface scans are simulated where the ampli-
tude of an oscillating microcantilever is computed as the tip
encounters surface features at a fixed parametric excitation
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FIG. 2. (Color online) Experimental plot (from Ref. 7) of the
frequency response for a conventional and a parametrically excited
microcantilever. The data are well fit by the simulation results. For
a parametrically excited microcantilever the horizontal axis is half
of its excitation frequency whereas for a conventionally excited
microcantilever, the horizontal axis represents the excitation fre-
quency. The nonlinear hydrodynamic damping coefficient () was
estimated by matching the amplitude and bandwidth of the experi-
mental parametric curve. To fit the data, a value of a=2.62
X107 kg/m is required.

frequency =2, while maintaining a fixed equilibrium tip-
sample separation Z,. Open loop scans (no feedback) are
performed to study the transient behavior of a resonating
microcantilever under parametric excitation. In an open-loop
scan no correction is made to the piezoheight when the mi-
crocantilever undergoes transient oscillations after encoun-
tering a surface feature. The study of such transient behavior
is essential to design a scanning controller; the fewer the
transients in an open-loop scan, the easier it is to scan faster.

Such simulations for the parametrically resonant micro-
cantilever are systematically compared with similar simula-
tions performed for conventional and Q-controlled excita-
tions. However in comparing the parametrically resonant and
Q-controlled simulations, it is essential to choose an effec-
tive Q factor (Q.y) for the Q-controlled case that makes a
fair comparison possible. This issue is discussed in Sec. I'V.

IV. NUMERICAL RESULTS

Before presenting the simulation results for the three dif-
ferent types of microcantilever excitation, the value of the
nonlinear fluidic damping coefficient (@) in Eq. (4) is esti-
mated to be 2.62 X 10~ kg/m, a value obtained by matching
the experimental frequency response in Ref. 7 with the the-
oretical predictions using a gain (G) of 1.0041*Gy,. The re-
sulting fit is shown in Fig. 2. Here, Gy, is the threshold feed-
back gain required to cancel damping in the system. In order
to achieve a self-sustained oscillation, the feedback gain
should be greater than the threshold gain Gy,=2/Q. The mi-
crocantilever parameters such as natural frequency f
=286.6 kHz and Q factor Q=520 are taken from Ref. 7. The
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FIG. 3. (Color online) Calculations of the resonance peak for a
parametrically excited microcantilever (f,=310.9 kHz), a Q-con-
trolled microcantilever, and a conventionally excited microcantile-
ver. For the parametrically excited microcantilever, the horizontal
axis is half of its excitation frequency whereas for the Q-controlled
and the conventionally excited microcantilevers, the horizontal axis
represents the excitation frequency. The effective Q factor for the
Q-controlled microcantilever is chosen to be Q.=6000 to match
the resonance bandwidth (3 dB width) with that of a parametrically
excited microcantilever. The gain for the parametrically excited mi-
crocantilever is chosen to be G=1.0139Gy,.

value for the nonlinear fluidic damping coefficient («) ob-
tained in this way is used for all further computations. How-
ever, for simulation purposes we use the parameters f
=3109 kHz and Q=520 as listed in Table I and G
=1.0139"Gy,. These parameters better represent a standard
intermittent contact mode cantilever commonly used in prac-
tice.

In order to compare Q-controlled AFM and conventional
AFM with parametric AFM on a rational basis, we choose an
effective Q factor (Q.g) for the Q-controlled case, so that the
resonance bandwidth (defined as the ratio of resonance fre-
quency and 3 dB frequency bandwidth of the peak) is the
same as that for parametric resonance. Additionally, the free
vibration amplitude (A,) of the Q-controlled microcantilever
oscillation is set equal to that of the parametrically excited
microcantilever. Finally, in the case of the conventionally
excited microcantilever, the natural Q factor from Table I is
used for the simulations while the free amplitude (A,) of the
oscillation is set equal to that of parametric case.

Figure 3 shows a comparison of the frequency response
for a parametrically resonant, a Q-controlled, and a conven-
tionally resonant microcantilever. The effective Q-factor re-
quired by Q-controlled excitation to match the resonance
bandwidth of parametrically excited microcantilever is esti-
mated to be Q.=6000. The free vibration amplitude of
Q-controlled and conventional excitations at resonance is
chosen to be same as that of free vibration amplitude of
parametric resonance. Unless otherwise stated, all the fol-
lowing simulations are performed with the parameters listed
in Table I. In what follows we compare the three excitation
mechanisms in terms of (a) peak imaging force, (b) ampli-
tude sensitivity, (c) transient dynamics, and (d) sensitivity to
long-range force gradients.
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FIG. 4. (Color online) A comparison of the calculated amplitude
reduction (approach curve) for a Si tip mounted on a microcantile-
ver as it approaches an HOPG sample. The calculations are per-
formed for parametric, Q-controlled, and conventional microcanti-
lever excitations.

A. Imaging force

As the tip is brought close to the sample, it intermittently
interacts with the sample and experiences short- and long-
range forces while imaging the topography of the sample.
The peak force is defined by the maximum (attractive and
repulsive) imaging force per cycle. The value of the peak
force reflects important physical properties of the sample
such as adhesion, viscoelasticity, and specific chemical
interactions.”’?® Figure 4 provides a comparison between
different approach curves (oscillation amplitude A vs Z;) for
three different types of microcantilever excitation. For each
approach curve, the imaging force calculated using Eq. (5)
depends on the instantaneous tip-sample separation z. The
peak forces (attractive and repulsive) plotted in Fig. 5 are the
envelope of the imaging force where a positive peak force
represents the repulsive force and a negative peak force rep-
resents the attractive force.

Figure 5 shows that the peak force in the parametric ap-
proach curve is comparable with that of the Q-controlled
approach curve. However in the plot for the Q-controlled
approach curve, the transition from the attractive to repulsive
regime is accompanied by an oscillatory (ringing) transient
behavior. In contrast, for parametric resonance the transition
from the attractive to the repulsive regime is faster,

80
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=~ Ke .
2 40} 7 v
c h \
2 1 ]
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FIG. 5. (Color online) A comparison between the calculated
peak interaction forces (attractive: negative and repulsive: positive)
between a Si tip and an HOPG sample. The calculations are per-
formed for parametric, Q-controlled, and conventional microcanti-
lever excitations.
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smoother, and without ringing transients. The ringing tran-
sients in peak force for the Q-controlled case produce an
unwanted (and uncontrolled) large interaction force as illus-
trated in Fig. 5. We also find that the peak repulsive force in
the parametric approach curve is an order of magnitude
smaller than found for a conventional approach curve. As
discussed above, parametric AFM can achieve Q. as high as
6000, a value about ten times the natural Q factor. It is dif-
ficult to implement such a high Q. in Q-controlled AFM.?
Nonetheless in order to make a fair comparison with our
simulations, we present a comparison of interaction forces
and transients for parametric vs Q-controlled AFM using an
equal value of Q.;=6000. We have performed several simu-
lations (not shown) that clearly show that these advantages
persist so long as Q. is greater than twice the natural Q
factor.

Reduced imaging forces imply reduced indentation of the
tip which is critical for scanning soft biological samples.
Further simulations show that if the feedback gain G is
brought closer to Gy,, the imaging force becomes purely at-
tractive until the set-point amplitude (A/Ag) is very small.
For a conventionally resonant microcantilever, it has been
shown that due to the presence of the tip-sample interaction
force, there exist two stable oscillation states.?*33 While ap-
proaching the sample, the tip experiences an attractive tip-
sample interaction force before encountering an instability.
Thereafter the tip experiences the repulsive part of the tip-
sample interaction force. On the contrary, for Q-controlled
AFM probes with high Q., it has been shown that the at-
tractive regime exists over a large range of set-point ratios,’
so it is possible to approach the sample without transitioning
to the repulsive regime. As a consequence, the interaction
forces remain small.

For the parametrically resonant probe the situation is
similar since as G approaches G, the frequency response of
the parametrically resonant probe becomes sharper. As a con-
sequence, the probe remains in the attractive regime during
the approach to the sample. Thus during approach, the para-
metrically resonant probe exerts greatly reduced forces simi-
lar to the Q-controlled probe. However when the system
does transition to the repulsive regime it does so without
experiencing significant force transients. With such gentle
imaging forces and no ringing, parametric resonance based
AFM offers advantages when scanning ultrasoft biological
samples.

B. Amplitude sensitivity

Amplitude sensitivity is defined as the slope of the ap-
proach curve with respect to approach distance (dA/dZ,).
Greater amplitude sensitivity implies that larger changes in
amplitude (A) will occur due to changes in the tip-sample
equilibrium gap (Z,). This in turn reduces controller effort
required to track the sample topography. Thus amplitude sen-
sitivity is directly related to image height resolution.

Upon computing the approach curves for the three cases,
we find that the amplitude sensitivity is similar for all three
types of excitations as shown in Fig. 6(a), at least for our
particular choice of a relatively hard sample (HOPG). When
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FIG. 6. (Color online) A comparison between the calculated
amplitude sensitivity (dA/dZ,) for different types of microcantile-
ver excitations at two different feedback gains. The calculations
were performed for a Si tip approaching an HOPG sample. In (a), a
feedback gain, G=1.0139G;,. The inset provides an expanded view
of the transient behavior. In (b), a feedback gain, G=1.0041Gy,.

the tip begins to intermittentantly contact the sample, the
amplitude gradient of parametric excitation is slightly better
than the conventional excitation, as shown in the inset of Fig.
6(a). However, at lower gain, for example, when G
=1.0041Gy, and at lower set-point values (~5%—-10%), the
amplitude sensitivity for the parametrically resonant case im-
proves by 25% as shown in Fig. 6(b).

Thus the parametrically resonating microcantilever shows
higher amplitude sensitivity at lower gain values as com-
pared to an equivalent conventional or Q-controlled resonant
microcantilever. Furthermore, as discussed above, at lower
gain the microcantilever remains in the attractive force re-
gime, enabling a parametric AFM to obtain better height res-
olution while imaging ultrasoft samples.

C. Transient scanning dynamics

The results of numerically simulating an open-loop line
scan are shown in Fig. 7. An open-loop scan is performed in
order to understand the dynamics of an oscillating microcan-
tilever by different excitations without any feedback from the
controller. The response of the microcantilever to the surface
feature shown in Fig. 7(a) is calculated numerically.

To begin, the microcantilever is positioned close to the
sample at a fixed Z,. The microcantilever is allowed to reso-
nate while the tip intermittently interacts with the sample via
the tip-sample interaction force [Eq. (5)]. The microcantile-
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FIG. 7. (Color online) A comparison of a numerically simulated
open-loop line scan of a parametric AFM with an equivalent
Q-controlled AFM. In (a), a plot of the surface to be scanned. In (b),
a plot of the microcantilever oscillation amplitude for a parametric
resonance based AFM and a Q-controlled AFM. In (c), a plot of the
peak interaction forces (both attractive and repulsive) for both a
parametric AFM and a Q-controlled AFM. In (d), a plot showing
transients in the amplitude of the microcantilever response of a
Q-controlled AFM (broken line) and a parametric AFM (solid line)
for the left (step-up) feature. In (e), a similar plot for the right
(step-down) feature.

ver is moved across the surface to scan the topography. Any
change in the sample’s surface is recorded as a change in the
amplitude of the resonating microcantilever. In the case of no
feedback (an open-loop scan), when the resonating micro-
cantilever tip encounters a surface feature, the controller
does not act to correct the amplitude of the microcantilever.
The microcantilever naturally oscillates until the transients
die out and a steady-state oscillation amplitude is reached.
Already in Fig. 5, we provided clear evidence that the tip in
conventional AFM exerts an undesirably large force on a
sample as compared to other methods. For this reason in this
section we only compare parametric AFM with Q-controlled
AFM.

A tip, resonating at an equilibrium distance Z;=80 nm
from the sample, encounters a step of 1.0 nm height and 50
nm length, as shown in Fig. 7(a). Numerical simulations of
the open-loop scan using Q-controlled and parametrically
resonating microcantilevers are compared in Fig. 7(b). The
details of the transients are plotted in Figs. 7(d) and 7(e) for
the left and right steps, respectively. The transient time of
open-loop parametric scan is found to be an order of magni-
tude smaller than that of the open-loop Q-controlled scan.
Moreover, as the resonating microcantilever scans the step-
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down and step-up surface features, the Q-controlled micro-
cantilever exhibits a pronounced ringing transient, in strong
contrast to the steplike change in amplitude observed for the
parametrically resonating microcantilever. The smaller tran-
sient time of a parametrically resonating microcantilever will
enable the parametrically resonant AFM to scan faster as
compared to a Q-controlled AFM. By comparing the tran-
sient response for the two cases plotted in Figs. 7(d) and
7(e), we estimate that the parametrically resonant AFM can
scan about a factor of 10 faster than a Q-controlled AFM.

We find that the ringing transients present in a
Q-controlled AFM are the main reason behind the undesir-
ably large (and uncontrolled) tip-sample interaction forces
evident in Fig. 7(c). The ringing transients that occur when a
tip encounters a surface feature in a Q-controlled AFM also
require a slower scanning speed as compared to the case of a
parametrically resonating microcantilever.

It is useful to discuss why there are ringing transients
present in a resonating microcantilever under Q-controlled
excitation whereas they are absent in a parametrically reso-
nating microcantilever. From Eq. (4), we find that equation
of motion for a parametrically resonating microcantilever is
a second-order homogeneous differential equation whose so-
lution grows exponentially until reaching the steady state. On
the contrary, the equation of motion for a microcantilever
resonating under Q-controlled excitation is an inhomoge-
neous equation having a particular as well as a homogeneous
solution. The amplitude of the particular solution dies out
exponentially with time whereas the homogeneous (steady-
state) solution provides a fixed amplitude solution for all
times. It is important to realize that the two solutions for a
Q-controlled microcantilever have slightly different frequen-
cies. These two frequencies generate a beat frequency which
results in a ringing transient that persists for a much longer
time than the parametrically resonating microcantilever.

D. Sensitivity to the long-range force gradients

In the presence of long-range interaction forces, the stiff-
ness of the microcantilever is modified as

kett = ke + dF\/dZy, (8)

where k. is the microcantilever stiffness, F, is the long-range
interaction force, dFy./dZ, represents the long-range interac-
tion force gradient, and k. is the effective stiffness of the
microcantilever in the presence of the long-range interaction
force gradient. Equation (8) provides an operational defini-
tion for parametrizing the long-range interaction force gradi-
ent. For example, in the presence of an attractive long-range
interaction force with dF\./dZ,>0 the microcantilever will
effectively stiffen, increasing the microcantilever resonance
frequency. The shift in resonance frequency is a measure of
the strength of the long-range interaction force gradient. A
positive shift (increased resonance frequency) signals the
presence of positive long-range interaction force gradient
whereas a negative shift (decreased resonance frequency) in-
dicates the presence of negative long-range force gradient.
The shift in the resonance frequency eventually leads to a
change in amplitude and phase of the oscillating microcanti-
lever.
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FIG. 8. (Color online) The variation in amplitude of a microcan-
tilever oscillating in the presence of a long-range interaction force
gradient. The horizontal axis plots the ratio of the long-range force
gradient to the microcantilever stiffness. The vertical axis represents
the variation in the normalized amplitude of the probe as the
strength of the interaction force gradient increases.

Figure 8 shows how the normalized amplitude (A/Ag)

changes in the presence of a long-range interaction force

. . . . . dF,
gradient normalized by the microcantilever stiffness Lok

* ke dZy
From Fig. 8, it is apparent that a conventional AFM shovs(/]s
little sensitivity to the long-range force gradient. When the
normalized long-range force gradient is less than ~1.5, both
Q-control and parametric based AFMs show a similar sensi-
tivity as judged by a change in the normalized amplitude. For
normalized force gradients greater than ~3.5, the parametric
based AFM looses sensitivity since the normalized amplitude
rapidly approaches zero. From the slope of the curves we can
infer that when the normalized force gradient lies between
1.5 and 3.5, the change in the normalized amplitude is largest
for parametric AFM. Hence we find that measurements of
the normalized amplitude using a parametric AFM can pro-
vide more sensitivity to long-range interaction force gradi-
ents when compared to Q-controlled or conventional AFM.

Both magnetic and electrostatic forces can generate long-
range force gradients dF),/dZ, close to the surface. Magnetic
force microscopy (MFM) and electrostatic force microscopy
(EFM) are useful to study magnetic and electric effects at the
nanoscale.’*-37 The higher amplitude sensitivity of the para-
metrically resonant microcantilever to the presence of a long-
range interaction force gradient suggests that MFM or EFM
performed using a parametrically resonant microcantilever
should provide better resolution of magnetic or electric
forces at the nanoscale.

V. IMPLEMENTING A PARAMETRIC AFM

An experimental study was independently performed to
confirm the numerical findings outlined above. In what fol-
lows, we outline the experimental setup and discuss a few
relevant experimental results.

A. Experimental considerations

The experimental setup used for implementing parametric
resonance in AFM is identical to the one described
elsewhere.” Briefly parametric excitation is implemented by
multiplying, in hardware, the measured microcantilever de-
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FIG. 9. A block circuit diagram illustrating the essential compo-
nents required to implement parametric excitation of a microcanti-
lever using electronic feedback.

flection with a harmonic parametric excitation signal at a
drive frequency (). The resulting signal is amplified with a
gain (called parametric gain, G) and then used to excite the
dither piezo.” Figure 9 shows a schematic layout of the cir-
cuit used to multiply the two signals for a parametric excita-
tion of the microcantilever. By tuning the drive frequency
such that Q) ~2wy (v, is the natural frequency of first eigen-
mode) and increasing the parametric gain G, it is possible to
drive the microcantilever into parametric resonance. For im-
aging purposes, the drive frequency is fixed as the microcan-
tilever approaches the sample. Upon approach, the root-
mean-square oscillation amplitude (A, is reduced. At a
certain amplitude reduction (set-point ratio), the scanning
controller maintains a constant set-point ratio as the sample
is rastered beneath the oscillating microcantilever. It is im-
portant to note that unlike conventional AFM where the drive
and microcantilever frequency are identical ()~ w,), in
parametric AFM Q) ~2w, so that a lock-in amplifier at the
drive frequency cannot be used to detect the cantilever am-
plitude. Instead, in our implementation we measure A, and
use it as the feedback signal for scanning.

B. Experimental results

The experiments are performed using a stiff microcantile-
ver series: PPP-NCLR from Nanosensors, Switzerland with a
nominal stiffness of 48 N/m. Figure 10 shows a measured
frequency response of the parametrically resonating micro-
cantilever far from the sample surface demonstrating a Qg
=1550, approximately three times that of the natural Q factor
(0=520). The parametrically resonant microcantilever is
used to scan a silicon grating [MikroMash Si grating
(TGZ02)] in the amplitude modulated (intermittent contact)
mode at an amplitude set-point ratio of 0.6. In implementing
these scans it is necessary to correctly choose the propor-
tional (Kp) and integral (K;) gains which are crucial param-
eters to minimize the error signal.

In order to identify the set of values for K» and K; to
minimize the error signal, first Kp was increased keeping K;
constant until imaging instabilities set in. Then K is reduced
to half the critical value and the value of K| is systematically
increased until the error signal is minimized. Interestingly for
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FIG. 10. (Color online) An experimental response curve ob-
tained using the parametric-resonance circuit described in Fig. 9.
The nominal stiffness of the microcantilever is 48 N/m. The gain
was adjusted to set Q.¢=1550, approximately three times the natu-
ral Q factor (Qpaura=520). Note that parametric resonance occurs
when the drive frequency Q~2w, (experimental value for
wy=171.83kHz) as predicted by theory.

this cantilever and image scan size, we find that unlike con-
ventional AFM, where optimal Kp/K; ratio is about 2, in
parametric AFM this ratio is closer to 800.

In Fig. 11 we show a topographic image of a Si grating,
along with a line profile for the optimal combination of the
Kp and K; parameters. These experiments clearly demon-
strate that the parametrically resonant microcantilever does
not exhibit ringing transients as is evident by the smooth
edges observed in the topographic profiles despite the scan
rate of 1.0 Hz for a image size of 5X5 um” with a Q.
=1550. The absence of the ringing transients despite the
higher Q. confirms the simulation results described in Sec.
IV above.

The experiments have also allowed us to better identify
some of the challenges in the routine experimental imple-
mentation of a parametric AFM. Under ambient conditions,
approaching the sample at very high Q. (Q. greater than
three times the natural Q factor) is a problem because the air
damping between the microcantilever and the sample in-
creases slightly upon approach due to squeeze film effects.
As a consequence, at some point during the approach, the
parametric gain falls below the threshold value required to
sustain parametric resonance. This can be avoided by using
lower Q.. Second, we have found that achieving small free
vibration amplitudes (less than 50-100 nm) is difficult due to
the high sensitivity of the microcantilever’s oscillation am-
plitude to parametric gain.

VI. SUMMARY AND CONCLUSIONS

In summary, we find that parametric resonance is a prom-
ising way to excite an AFM probe in a narrow frequency
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1 2 3 4 5 6 7 8
X (fum)

FIG. 11. (Color online) An AFM image of a MikroMasch silicon
grating (TGZ02) imaged by a parametric AFM with an amplitude
set-point ratio of 0.6A,,,. Scan rate is 1.0 Hz. The figure demon-
strates that at typical scan rates, there are minimal ringing transients
at the edges in spite of a high Q.;=1550. The image size is 5
X 5 um?. A topographic profile along the diagonal line is shown in
the inset.

bandwidth. Parametric AFM has a number of distinct advan-
tages over Q-controlled AFM such as sharp resonance band-
width and low tip-sample interaction forces without incur-
ring the disadvantages of Q-controlled AFM such as
unwanted ringing effects and slow scanning speeds. Based
on simulations, parametric AFM exhibits a lower tip-sample
interaction force, reduced cantilever transients, and an im-
proved amplitude sensitivity in the presence of long-range
interaction forces as compared to Q-controlled and conven-
tional AFMs. Experimental results using a parametric AFM
confirm the absence of ringing transients at higher Q..
Taken together these results suggest that parametrically reso-
nant cantilevers offer distinct advantages over other dynamic
AFM techniques, especially with regard to reduced imaging
forces and reduced transients.
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