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A free-energy function for binary polycrystalline solid solutions is developed based on pairwise nearest-
neighbor interactions. The model permits intergranular regions to exhibit unique energetics and compositions
from grain interiors, under the assumption of random site occupation in each region. For a given composition,
there is an equilibrium grain size, and the alloy configuration in equilibrium generally involves solute segre-
gation. The present approach reduces to a standard model of grain boundary segregation in the limit of infinite
grain size, but substantially generalizes prior thermodynamic models for nanoscale alloy systems. In particular,
the present model allows consideration of weakly segregating systems, systems away from the dilute limit, and
is derived for structures of arbitrary dimensionality. A series of solutions for the equilibrium alloy configuration
and grain size are also presented as a function of simple input parameters, including temperature, alloy
interaction energies, and component grain boundary energies.
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I. INTRODUCTION

A variety of unique properties emerge as the characteristic
microstructural length scale of a polycrystalline material is
reduced to the nanometer range.1–8 The resulting structures
are composed of a high volume fraction of internal inter-
faces, which represent an interesting class of materials with
opportunities that extend to emerging technologies, and also
provide a platform for studying interface-dominated physics.
However, the introduction of a high density of interfaces has
an associated energetic penalty, and nanocrystalline materials
tend to be unstable with respect to thermally activated struc-
tural changes.9–11 The problem of nanostructure stability is
most apparent in elemental nanocrystalline metals, such as
Ni,2 Cu,12–16 Al,17,18 and Pd,19,20 which exhibit grain growth
at very low homologous temperatures. These materials oc-
cupy a far-from-equilibrium state, which can be understood
in the thermodynamic context formalized by Gibbs. The
change in the Gibbs free energy, G, with respect to grain
boundary area, A, is proportional to the grain boundary en-
ergy, �.

dG � �dA . �1�

An elemental metal has a positive grain boundary energy, so
a reduction in the interfacial area �i.e., an increase in grain
size� will always lower the Gibbs free energy.

Alloying has the potential to suppress the instability of
pure nanocrystalline materials, as evidenced by the enhanced
thermal stability of a number of binary nanocrystalline alloys
relative to their single-component counterparts.14,21–24 While
such behavior has been traditionally linked to kinetic phe-
nomena such as solute drag,25 recent studies have suggested
that nanocrystalline alloys could in fact be thermodynami-
cally stabilized by solute enrichment at the grain
boundaries.26–28 The idea of segregation-induced thermody-
namic stability in nanocrystalline solids was first addressed
analytically by Weissmüller,28–30 who considered the change
in the Gibbs free energy of a polycrystal upon alloying. Un-
der certain simplifying assumptions, a minimum free energy

is predicted at a specific solute content for a given grain size.
This critical segregant level can be physically interpreted as
the amount required to fill the available grain boundary sites
without supersaturating the interface. By solving the Gibbs
adsorption equation in the dilute limit assuming McLean-
type segregation,31 the grain boundary energy takes the fol-
lowing form:28

� = �o − ��X→0,f ig→0�Hseg + kT ln X� . �2�

Here �o is the grain boundary energy of the pure solvent, X is
the global solute content, � �X→0,f ig→0 is the solute excess in
the grain boundary �where the subscripts denote the limiting
assumptions with f ig the interfacial volume fraction�, Hseg is
the segregation energy �i.e., the difference in energy of a
solute atom occupying a grain boundary site vs a grain inte-
rior site�, k is the Boltzmann constant, and T is absolute
temperature. From Eq. �2�, it is evident that the grain bound-
ary energy can be reduced by enhancing the solute excess,
and if the magnitude of this reduction is sufficient to drive �
to zero, the grain boundaries can apparently exist in equilib-
rium.

Extremely fine nanocrystalline grain sizes have been real-
ized in a variety of binary alloy systems, for example Y-Fe,32

Ni-P,33 Pd-Zr,27,34 and Fe-Zr.35 Because the elements com-
posing these alloys are highly immiscible with a large posi-
tive heat of mixing, these systems are classified as strongly
segregating, with high assumed values of Hseg ��0.5 eV�
that can substantially reduce the grain boundary energy via
Eq. �2�. In all the alloy systems identified above, higher alloy
compositions have been experimentally correlated with finer
grain sizes �i.e., a higher volume fraction of grain bound-
aries�, suggesting grain boundary segregation as the essential
driving force for nanostructure stabilization. Alloys with a
weaker apparent segregation tendency have also been syn-
thesized with grain sizes spanning the entire nanocrystalline
regime. An example in this regard is the Ni-W system, where
there is some solid solubility, the segregation energy is low
��0.1 eV� and reduces further with increasing solute �W�
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addition;36 nevertheless, any grain size in the nanocrystalline
range can be produced by controlling the solute content.37

For some of the binary alloy systems discussed above,
solute enrichment at grain boundaries has been confirmed by
atom probe tomography.38–41 It has also been studied exten-
sively by computer simulations both for individual grain
boundaries42 and, more recently, for simulated nanocrystal-
line structures.36,43,44 A particularly clear illustration of the
principle behind Eq. �2� is provided by the molecular-
dynamics simulations of Millet et al.,44 which explicitly
show that for artificial states of segregation in Lennard-Jones
polycrystals, the grain boundary energy can indeed be driven
to zero.

Complementary analytical models have sought to extend
the early work of Weissmüller28 to understand the nature of
grain boundary energy reduction and solute distributions in
terms of the unique thermodynamic properties of binary
nanocrystalline systems.26,33,45–47 However, the key assump-
tions used in most of these models are quite severe, and
generally limit the discussion to dilute solutions with ex-
tremely high segregation tendencies. This is unfortunate be-
cause most of the experimental nanocrystalline alloys de-
scribed earlier are nondilute, and not all of them exhibit a
strong tendency for segregation �e.g., Ni-W�. Recently, Beke
et al.48,49 relaxed some of these assumptions in a statistical
model, and considered segregation to free surfaces on one-
dimensional nanocrystals. The statistical nature of this model
is attractive in principle, providing a concrete framework to
evaluate the conditions for equilibrium directly from a free-
energy function. However, being derived for segregation to a
free surface, this model lacks some of the thermodynamic
parameters associated with grain boundary properties that are
essential in differentiating various nanocrystalline alloys.

Thus, despite the progress cited above, there is as yet no
simple analytical model for grain boundary segregation-
based nanostructure stabilization that extends to general
�nondilute� alloys, and incorporates energetic interactions
that derive from the characteristic thermodynamic quantities
governing the mixing behavior of binary systems. In this
paper, we formulate such an analytical thermodynamic
model, without restricting ourselves to the dilute limit or to
strongly segregating solute species. The derivation is pre-
sented for grain geometries of arbitrary dimensionality, and
includes interactions among segregated solute atoms, which
alleviates the need to assume saturated grain boundaries. The
result is a simple model that permits comparative analysis of
various binary alloys and provides improved guidelines for
design of nanocrystalline materials.

II. ANALYTICAL FRAMEWORK

In this section, the statistical framework required to ana-
lyze grain boundary segregation in binary alloy systems is
developed. We begin by presenting a modified form of the
regular solution model that captures the additional energetic
penalty associated with introducing internal interfaces �i.e.,
grain boundaries� of a finite volume fraction into a single-
phase crystalline solution. The possibility of any competing
secondary or intermetallic phases is explicitly neglected, as

are contributions from any additional thermodynamic poten-
tials. The enthalpy of mixing is formulated by incorporating
the distribution of bonds in the grains and intergranular re-
gions into a modified solution model, and combined with
entropic contributions to establish the free energy of mixing.
A series of equilibrium equations are finally derived from the
free-energy function, which can be used to investigate ther-
modynamically stable grain sizes.

A. Solution model

To describe a binary mixture of solvent “A” and solute
“B” atoms, we consider a statistical framework that employs
pairwise interaction energies in a manner analogous to that
which yields the regular solution model. However, we divide
the full volume of the system into two separate regions—that
belonging to the grains, and that belonging to intergranular
regions. The latter region shall represent energetic contribu-
tions from all intergranular structural elements, including
grain boundaries, triple junctions, and quadruple nodes,
which are averaged together in this construction. The atomic
interactions are uniquely defined in the bulk and intergranu-
lar regions, as illustrated in Table I. It also becomes neces-
sary to introduce additional bonding pairs to capture bonds
that bridge between the two distinct regions, as depicted in
Fig. 1; we define these “transitional” bonds to have pairwise
energies characteristic of the intergranular region �cf. Table
I�. The solution energy can be written as a sum over the
individual bond energies, E, of all the possible atomic pairs,
N, in each bonding region, r;

Usoln = �
r

�Nr
AAEr

AA + Nr
BBEr

BB + Nr
ABEr

AB� , �3�

where the superscripts denote the bond types involved, and
the subscript “r” distinguishes bulk �b�, intergranular �ig�,
and transitional �t� bonds; all the possible bonding configu-
rations are shown in Table I. Within this framework, the
energy of mixing, �Umix, not only accounts for chemical
interactions in the solid solution, but also incorporates the
interfacial energy characteristic of the intergranular region,

TABLE I. Bulk, intergranular, and transitional bond configura-
tions and their corresponding energies. Note that transitional bonds
are assigned energies characteristic of the intergranular region.

Region Number Energies

Bulk Nb
AA Eb

AA

Nb
BB Eb

BB

Nb
AB Eb

AB

Intergranular Nig
AA Eig

AA

Nig
BB Eig

BB

Nig
AB Eig

AB

Transitional Nt
AA Eig

AA

Nt
BB Eig

BB

Nt
AB Eig

AB

JASON R. TRELEWICZ AND CHRISTOPHER A. SCHUH PHYSICAL REVIEW B 79, 094112 �2009�

094112-2



�Umix = Usoln − Uref, �4�

where Uref represents the energy of an unmixed, interface-
free state of the same composition,

Uref = � zNA

2
	Eb

AA + � zNB

2
	Eb

BB. �5�

The coordination number is denoted by z, and NA and NB are
the total numbers of A and B atoms in solution, respectively.

For a system with a given global composition, the total
number of each atom type is related to the number of bonds
via

zNA = 2Nb
AA + 2Nt

AA + 2Nig
AA + Nb

AB + Nt
AB + Nig

AB, �6a�

zNB = 2Nb
BB + 2Nt

BB + 2Nig
BB + Nb

AB + Nt
AB + Nig

AB, �6b�

where the factors of 2 account for each like bond connecting
two like atoms. We can express Eqs. �6a� and �6b� in terms
of the numbers of like bonds in the bulk, and substitute these
relations into Eqs. �3� and �5� to obtain the change in the
internal energy upon mixing,

�Umix = Nb
AB�Eb

AB −
Eb

AA + Eb
BB

2
	 + �Nt

AA + Nig
AA��Eig

AA − Eb
AA�

+ �Nt
BB + Nig

BB��Eig
BB − Eb

BB� + �Nt
AB + Nig

AB�

��Eig
AB −

Eb
AA + Eb

BB

2
	 , �7�

where terms involving the like bonding pairs in the bulk
have cancelled with the equivalent terms contributed by the

reference state. We now examine the geometric constraints
imposed by a grain structure and the pairwise probabilities
for forming the various bond types to determine explicit ex-
pressions for the seven remaining values of N in Eq. �7�.

B. Bond distributions

The number of bonds of each type present in each of the
three bonding regions can be resolved by considering the
total number of bonds inherent to each region, and the prob-
ability that each of these bonds is of a given type. To address
the bonding distribution, we consider the volumetric density
of atoms in each region, normalized by the total number of
atoms in the system. Given an arbitrary grain geometry, the
intergranular region is assigned as a shell of finite thickness,
t /2, with a geometrically similar shape to the grain; this is
illustrated in Fig. 1 for a two-dimensional grain of irregular
shape.

Normalizing the volumetric atomic density by the total
number of atoms eliminates the numerical shape factor asso-
ciated with any specific grain geometry, and the intergranular
volume fraction, f ig, can be expressed as

f ig = 1 − �d − t

d
	D

, �8�

where d is the grain size, and D is the dimensionality of the
grain structure. D=3 should be used for a general three-
dimensional polycrystal, while D=2 is useful for columnar
or highly elongated grain structures and D=1 applies to
lamellar or platelike grains. We can also uniquely define the
solute content in the bulk, Xb, and intergranular, Xig, regions,
which are related to the global solute content, X, by a volume
fraction-weighted average,

X = �1 − f ig�Xb + f igXig. �9�

The probability of each possible bond configuration can be
enumerated by assuming random site occupation based on
the defined compositions in each of the regions, and are
listed in Table II.

The total number of bonding pairs present in the bulk
�Pb�, intergranular �Pig�, and transitional regions �Pt� are
functions of f ig and the total number of atoms, No,

TABLE II. Bond configurations and existence probabilities, de-
rived from the solute concentration in each of the respective re-
gions, central to the free energy of mixing.

Region Bonds Energy Probability
Bonds/
Region

Bulk Nb
AB Eb

AB 2Xb�1−Xb� Pb

Intergranular Nig
AA Eig

AA �1−Xig�2 Pig

Nig
BB Eig

BB Xig
2

Nig
AB Eig

AB 2Xig�1−Xig�
Transitional Nt

AA Eig
AA �1−Xb��1−Xig� Pt

Nt
BB Eig

BB XbXig

Nt
AB Eig

AB Xig�1−Xb�+Xb�1−Xig�

FIG. 1. �Color online� Schematic of an arbitrary grain shape,
with the atomic configuration at the interface between the pictured
and adjacent grain highlighted. Intergranular bonds are those lo-
cated entirely within the intergranular region, and transitional bonds
connect these atoms to those in the bulk region.
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Pb =
z

2
�1 − f ig�No, �10a�

Pig = � z

2
f ig − z�f ig	No, �10b�

Pt = z�f igNo. �10c�

According to Eq. �10a�, the number of bulk bonds is simply
equal to the total number of bonds in the system, zNo /2,
weighted by the bulk volume fraction. The leading term in
Eq. �10b� has the same form, weighting the total number of
system bonds by the grain boundary volume fraction; the
second term subtracts off the number of transitional bonds,
which are counted separately in Eq. �10c�. The factor, �,
termed the transitional bond fraction, represents the effective
coordination for atoms contributing bonds to the transitional
bonding region, and will be taken for all subsequent numeri-
cal calculations as 1/2. This essentially assigns half the
atomic bonds at the bulk-intergranular interface as transi-
tional bonds, with type probabilities deriving from both the
bulk and intergranular solute fractions. When the occupation
probabilities shown in Table II are scaled by the respective
number of regional bonds, expressions for the seven bonding
pairs central to the change in internal energy upon mixing are
obtained.

C. Free-energy function

The free energy of mixing, �Gmix, is a combination of
enthalpic and entropic contributions expressed as

�Gmix = �Hmix − T�Smix, �11�

where �Hmix and �Smix represent the system enthalpy and
entropy of mixing, respectively. As is customary for con-
densed phases, we neglect the change in volume upon mix-
ing, and the enthalpy of mixing is thus represented by the
change in internal energy given by Eq. �7�, i.e., �Hmix
=�Umix. The entropy of mixing may be derived using the
standard statistical approach, considering the random distri-
bution of atoms over distinct atomic sites throughout the
system, and simplifies to a volume fraction-weighted average
of the random mixing entropy for the bulk and intergranular
regions,

�Smix = − kNo��1 − f ig�
Xb ln Xb + �1 − Xb�ln�1 − Xb��

+ f ig
Xig ln Xig + �1 − Xig�ln�1 − Xig��� . �12�

Because the enthalpy and entropy of mixing both scale with
system size, the free energy can be expressed on a per atom
basis by normalizing with respect to No. Introducing Eqs. �7�
and �12� into Eq. �11� yields the complete form of the free
energy of mixing for our system. However, before introduc-
ing this full functional form, it is useful to examine the
physical limits on grain size, which is bounded by 0	 f ig
	1, corresponding to t	d	
. For d→
, the free energy
of mixing takes the form,

�Gmix
b = zXb�1 − Xb��Eb

AB −
Eb

AB + Eb
AB

2
	

+ kT
Xb ln Xb + �1 − Xb�ln�1 − Xb�� , �13�

where Xb and X are equivalent via Eq. �9�. As expected, in
the infinite grain-size limit the free energy of mixing con-
verges to a regular solution model for the bulk phase, and the
combination of bond energies in Eq. �13� is accordingly rec-
ognized as the regular solution interaction energy:

�b = �Eb
AB −

Eb
AA + Eb

BB

2
	 . �14�

Equation �14� has important implications for bond preference
in the bulk, where �b=0 is characteristic of an ideal solution,
�b�0 prefers like bonds, and �b0 unlike bonds.

In the other limit, d→ t represents the reduction in grain
size to the so-called “amorphous limit,” where only the in-
tergranular region exists, with a corresponding free energy,

�Gmix
ig =

z

2
�1 − Xig��Eig

AA − Eb
AA� +

z

2
Xig�Eig

BB − Eb
BB�

+ zXig�1 − Xig��Eig
AB −

Eig
AA + Eig

BB

2
	

+ kT
Xig ln Xig + �1 − Xig�ln�1 − Xig�� �15�

and Xig is now equivalent to X. This expression may essen-
tially be regarded as a regular solution model for the inter-
granular material, and contains a characteristic regular solu-
tion parameter analogous to Eq. �14�,

�ig = �Eig
AB −

Eig
AA + Eig

BB

2
	 . �16�

In addition, the differences in like bond energies between the
grain and intergranular sites are incorporated by the first two
terms in Eq. �15�, and are proportional to the grain boundary
energies of the pure solvent, �A, and solute, �B, phases,

�A �
z

2
�Eig

AA − Eb
AA� , �17a�

�B �
z

2
�Eig

BB − Eb
BB� . �17b�

Introducing these relations into Eq. �15�, the resultant free
energy in the d→ t limit is written more succinctly as

�Gmix
ig =

�

t
�1 − Xig��A +

�

t
Xig�B + zXig�1 − Xig��ig

+ kT
Xig ln Xig + �1 − Xig�ln�1 − Xig�� , �18�

where the solvent atomic volume, �, normalized by the in-
tergranular shell thickness is taken for the proportionality
constants in Eq. �17�. Interestingly, Eq. �18� suggests that the
free energy of a binary intergranular region involves both the
chemical mixing preference and a weighted average of the
grain boundary energies of the pure components.

JASON R. TRELEWICZ AND CHRISTOPHER A. SCHUH PHYSICAL REVIEW B 79, 094112 �2009�

094112-4



Making use of some the above definitions, but without
carrying any of the simplifying assumptions, the full mixing
free energy function is written,

�Gmix = �1 − f ig��Gmix
b + f ig�Gmix

ig

+ z�f ig�
Xig�Xig − Xb� − �1 − Xig��Xig − Xb���ig

−
�

zt
�Xig − Xb���B − �A� . �19�

The leading two terms represent a rule of mixtures over the
free energies of the bulk and intergranular regions, given by
Eqs. �13� and �18�, respectively. The last term captures ener-
getic contributions from the transitional bonds between the
bulk and intergranular regions, demonstrating that the free
energy of a polycrystalline binary solid solution derives from
more complex interactions than those described by a simple
rule of mixtures.

D. Equilibrium equations

The equilibrium condition is given by the simultaneous
minimization of �Gmix with respect to the intergranular com-
position and grain size for a closed system �i.e., constant X�,

� ��Gmix

�Xig
�

X

→ 0, �20a�

� ��Gmix

� f ig
�

X

→ 0. �20b�

If we apply only the condition of Eq. �20a�, an expression for
the characteristic segregation isotherm is obtained, which de-

scribes the solute distribution for a given grain size,

Xig

1 − Xig
=

Xb

1 − Xb
· exp��Hseg

kT
� �21�

with a segregation energy, �Hseg, that bears some resem-
blance to the classical Fowler-Guggenheim form,

�Hseg = z��b −�ig�1 −
�

1 − f ig
	 −

�

zt
��B − �A��1 −

�

1 − f ig
	�

+ 2zXig�ig�1 −
�

1 − f ig
	

− 2z
Xb�b + ��Xig − Xb��ig� . �22�

The leading bracketed term in Eq. �22� is a combination of
bond energies that describes McLean-type segregation for a
free surface, with no segregated solute-solute interactions.
The additional terms account for such interactions, which in
the present model are functions of � and f ig, thus imparting a
grain-size dependence on the effective coordination in the
intergranular region.

The second equilibrium condition of Eq. �20b� is analo-
gous to imposing �→0, as the alloy grain boundary energy,
�, is directly related to the partial derivative,

� =
t

�
·
��Gmix

� f ig
, �23�

where the scaling factor t /� is the reciprocal of the propor-
tionality constant introduced in Eq. �18�. To calculate corre-
sponding equilibrium grain sizes for the solute distributions
given by Eqs. �9� and �21�, Eq. �20b� must be concurrently
evaluated and introduced into Eq. �23�,

� = �A −
ztXig

�
��b − �ig�1 −

�

1 − f ig
	 −

�

zt
��B − �A��1 −

�

1 − f ig
	� −

zt

�
��Xb

2 − 2XbXig��b + Xig
2 �ig�1 −

�

1 − f ig
	�

+
zt�

��1 − f ig�
��Xig�Xig − Xb� + Xb�1 − Xig���ig + Xb

�

zt
��B − �A�� +

tkT

�
�Xig ln�Xig

Xb
	 + �1 − Xig�ln�1 − Xig

1 − Xb
	�

= 0. �24�

While Eq. �24� appears cumbersome at first glance, its form
can be understood by considering a simplified system: one in
which we assume a dilute solute concentration �X→0�, a
high segregation tendency ��Hseg�kT�, and McLean-type
segregation �f ig→0�, assumptions that were central in the
prior models of nanostructure stability by Weissmüller28 and
Liu and Kirchheim.33 Under these simplifying conditions,
with �=1 /2, the segregation energy �denoted in this limit as
�Hseg

o � and alloy grain boundary energy simplify to

�Hseg
o = z��b −

�ig

2
−

�

2zt
��B − �A�� , �25a�

� = �A −
tXig

�

�Hseg

o + kT ln�Xb�� , �25b�

where Eq. �25a� characterizes McLean-type segregation, as
discussed above in reference to the leading term of Eq. �22�.
Equation �25b� is incorporated as the leading two terms of
Eq. �24�, and simplifies exactly to Eq. �2�; the solute excess
in the dilute, infinite grain-size limit is expressed as

��X→0,f ig→0 =
t · Xig

�
, �26�
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which is identical to the form provided in Ref. 33. Higher
order effects from solute-solute and solute-solvent interac-
tions in the bulk, transitional, and intergranular regions are
captured by the remaining terms.

The true equilibrium state of a polycrystal is determined
by simultaneously applying the two criteria of Eqs. �20�,
recast as Eqs. �21� and �24�, and solving for the two un-
knowns, intergranular solute content and grain size. Because
constant X is imposed, the equilibrium grain size is coupled
to the global solute content, such that for any given compo-
sition there is one equilibrium grain size, and for any grain
size there is one energy-minimizing composition. To illus-
trate this more clearly, we have schematically plotted
�Gmix-d contours for various values of Xig in Figs. 2�a� and
2�b� for a constant global composition. These plots are es-
sentially two-dimensional projections of the free-energy sur-
face as viewed along the Xig axis, with Fig. 2�a� showing the
approach to the minimum-energy configuration from below
the equilibrium value of Xig, and Fig. 2�b� showing the in-
crease in system energy beyond. In each of the �Gmix-d con-
tours there is a local minimum, but the true equilibrium grain
size, deq, only exists on a single contour, corresponding to a
single intergranular solute content, Xig

eq, at the global mini-
mum on the free-energy surface. The minimum in �Gmix
with respect to Xig can be more readily understood when
plotted at the equilibrium grain size, as illustrated in Fig.
2�c�. The free energy monotonically decreases when solute is

initially added to the system, and in order to satisfy Eq. �21�,
enough solute must be supplied to minimize �Gmix as indi-
cated. At lower solute contents, the grain boundaries can be
viewed as “underfull” with additional sites available for sol-
ute atoms, whereas when Xig surpasses the stable composi-
tion, the grain boundaries become saturated and solute atoms
occupy energetically unfavorable sites in the bulk, resulting
in the subsequent increase in �Gmix.

The minimization procedure described above can be em-
ployed to calculate equilibrium grain sizes and intergranular
solute contents as a function of global composition for alloys
with various interaction energies. The prototypical output of
this model is illustrated in Fig. 3: the equilibrium grain size
decreases with increasing global solute content in a power-
law-like decay. The functional form of this relationship is a
signature of thermodynamic stabilization, and is widely ob-
served in experimental data on this subject.27,32–34,37 Such
scaling is an inherent consequence of Eq. �8�, where the

(b)(a)

(c)

FIG. 2. �Color online� Two-dimensional slices of the free-energy
surface as a function grain size for intergranular solute contents �a�
less than and �b� greater than the equilibrium composition, Xig

eq. For
the equilibrium grain size indicated in �a� and �b�, �Gmix is plotted
in �c� as a function of intergranular solute content, and demonstrates
a minimum at Xig

eq; intergranular compositions less than or greater
than Xig

eq correspond to underfull or overfull boundaries, respec-
tively. The minimum identified in the free energy of mixing repre-
sents the global minimum on the free-energy surface, and defines
the thermodynamically stable state.

FIG. 3. �Color online� Equilibrium grain size as a function of
the global solute content for a single example set of interaction
energies. A power-law-like decay in grain size is observed with
increasing global composition, indicating that more solute is re-
quired to stabilize finer nanocrystalline grain sizes.

FIG. 4. �Color online� Interfacial excess and intergranular solute
content plotted against the global solute content. For the example
set of interaction energies, both quantities are independent of global
composition, and thus denote the critical intergranular coverage
level required to achieve equilibrium.
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grain boundary volume fraction is inversely related to grain
size. Additional solute is thus required to effectively fill the
grain boundaries and lower the system energy, especially at
the finest nanocrystalline grain sizes where interfaces be-
come the dominant structural feature.

While grain size correlates with the global composition,
the corresponding segregation isotherm in Fig. 4 indicates
that the intergranular composition is unaffected by solute ad-
ditions. However, because d is coupled to X, the interfacial
volume fraction varies with global composition, making it
very difficult to analyze the segregation behavior from a
characteristic isotherm. To address this complexity, we turn
our attention to the Gibbsian excess, or intergranular solute
excess, �,31,50 which is derived by considering the distribu-
tion of atoms, N, in the system,

� =
1

Aig
�Nig

B − Nb
B�Nig

A

Nb
A	� . �27�

This representation is convenient as � is normalized by the
interfacial area, Aig, thus incorporating the inherent variation
in interfacial volume fraction. Aig can be calculated from the
system volume, N0 ·�, and the intergranular volume faction
and shell thickness,

Aig =
N0 · � · f ig

t
. �28�

When Eq. �28� is introduced into Eq. �27�, the interfacial
excess takes the form

� =
t�Xig − Xb�
��1 − Xb�

. �29�

Note that this expression simplifies exactly to Eq. �26� in the
dilute, infinite grain-size limit. Introducing the results for Xig,
X, and f ig from the segregation isotherm into Eq. �29�, we
obtain � as a function of X, as illustrated in Fig. 4. As the
segregation isotherms imply, the interfacial excess is indeed
unaffected by solute additions for the given set of energetic
state variables. However, this does not imply that � is uni-
versally independent of X, which is only observed here as a
consequence of the chosen interaction energies. This will be
demonstrated in the following parametric study, which will
also emphasize the importance of incorporating grain-size
variations when analyzing segregation behavior.

III. PARAMETRIC STUDY

The equilibrium equations derived in Sec. II are param-
eterized by a number of geometric and thermodynamic state
variables that influence both the segregation tendency and
equilibrium grain size, including T, �b, �ig, �A, �B, and D. In
this section, we will illustrate the individual effects of these
parameters by numerically evaluating Eqs. �21� and �24� to
solve for equilibrium pairs of d and X, with an assumed
constant intergranular shell thickness of t=0.5 nm. The de-
fault settings of the state variables are the same throughout
this section: T=1000 °C, �b=0.03 eV ��2.9 kJ /mol�, �ig
=0 eV, �A=�B=0.48 J /m2, and D=3; these values are used
except where it is explicitly stated otherwise.

(a)

(b) (c)

FIG. 5. �Color online� Ther-
modynamic equilibrium states as a
function of temperature for inter-
action energies defined as: �b

=0.03 eV, �ig=0 eV, and �A

=�B=0.48 J /m2. With increasing
temperature, �a� the segregation
energy decreases, �b� the grain
size trends first shift to higher sol-
ute contents, followed by a scaling
inflection and shift to lower global
compositions as shown in the in-
set, and �c� the interfacial excess
decreases, indicating that tempera-
ture promotes a more random sol-
ute distribution.
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A. Temperature

Our free energy of mixing is derived for a system limited
to pairwise nearest-neighbor interactions, an assumption that
leads to a temperature-independent enthalpy, with T pre-
dominantly coupled to the entropy via Eq. �12�. The most
general influence of temperature, then, is to randomize the
solute distribution, desegregating systems that exhibit a seg-
regation tendency; this is captured in Fig. 5�a�, where we
have varied T over the range 200–1000 °C. Equilibrium
grain size decreases with global composition in Fig. 5�b�,
and the temperature-dependent segregation energy affects
this scaling in subtle and complex ways. First, for lower
global compositions �X10 at. %�, the reduced driving
force for segregation at elevated temperatures results in a
lower interfacial excess, as evidenced in Fig. 5�c�, and the
system therefore requires more solute to effectively eliminate
the alloy grain boundary energy; this is manifested in Fig.
5�b� as a shift of the d-X trends to higher global composi-
tions. However, as X is increased beyond 10 at. %, the d-X
trends instead shift to lower global compositions with in-
creasing T, as demonstrated in the inset of Fig. 5�b�. While
this appears counterintuitive, the observed reduction in � 
cf.
Fig. 5�c�� indicates that the system transitions to a more ran-
dom configuration with increasing X, which is favored at
elevated temperatures. Less solute is required to achieve
equilibrium in a more random system, thus accounting for
the observed inflection in the scaling of the grain size-
composition relationships with temperature.

B. Bulk interaction energy

The bulk interaction energy scales directly with the heat
of mixing, which is viewed as one of the principal driving
forces for grain boundary segregation. Here we examine the
influence of �b over the range 0.025–0.08 eV. The segrega-
tion energy, shown in Fig. 6�a�, markedly increases with in-
creasing �b, as expected from Eq. �22�; all other things being
equal, higher heat-of-mixing alloys should exhibit a higher
segregation tendency. The resulting effect on the equilibrium
grain size-composition relationships is shown in Fig. 6�b�;
for greater values of �b, less global solute is required to
stabilize a given nanocrystalline grain size, thereby shifting
the characteristic d-X trends downward. However, the effect
of �b on the interfacial excess, illustrated in Fig. 6�c�, is
more complex. For low bulk interaction energies ��b
0.05 eV�, the interfacial excess is independent of global
composition, as illustrated in Fig. 6�c� for �b=0.04 eV.
Composition-independent � are also evident at even lower
interaction energies, trending to reduced coverage levels as
the system approaches an ideal solution �i.e., �b=0�, and are
not included for clarity of presentation. As �b is increased
beyond 0.05 eV, bulk atomic interactions more strongly dic-
tate the segregation behavior, with like bond formation be-
coming more energetically favorable in the bulk. At higher
global compositions where the probability to form like bonds
is greatly enhanced, solute atoms prefer to occupy bulk sites
to minimize the system free energy. This leads to a more

(a)

(b) (c)

FIG. 6. �Color online� Ther-
modynamic equilibrium states as a
function of the bulk interaction
energy for the state variables: T
=1000 °C, �ig=0 eV, and �A

=�B=0.48 J /m2. With increasing
bulk interaction energy, �a� the
segregation energy increases and
�b� the grain size trends shift to
lower global solute contents, indi-
cating that less solute is required
to stabilize the nanostructure for
large bulk interaction energies. �c�
The interfacial excess is initially
independent of composition at low
�b, then scales with the global
solute content as �b further devi-
ates from �ig.
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rapid decrease in � with increasing X, as observed in Fig.
6�c�, especially when �b exceeds 0.06 eV.

C. Intergranular interaction energy

One of the essential features of the present model is its
adaptability to a variety of alloy systems via distinct, tunable
interaction energies. For clarity in evaluating the effect of T
and �b in Secs. III A and III B, the intergranular region was
assumed to behave as an ideal solution, with no particular
bonding inclination. In this section, the intergranular interac-
tion energy is varied and the results are contrasted with the
effect of the bulk interaction energy. The equilibrium results
are summarized in Fig. 7 as a function of �ig, and generally
exhibit opposite trends as compared to the effect of �b. Fig-
ure 7�a� illustrates that as �ig is increased, a noticeable re-
duction in the driving force for segregation results, owing to
the enhanced energetic penalty imparted on segregating at-
oms. The equilibrium d-X relationships, shown in Fig. 7�b�,
shift to higher global compositions to counteract the reduced
driving force for segregation.

D. Solvent grain boundary energy

In this section, we systematically vary �A while �B is held
constant at 0.48 J /m2; whereas the driving force for segre-
gation in Secs. III A–III C derived from the interaction ener-
gies of the bulk and intergranular regions, here the differen-

tial between the pure component grain boundary energies
becomes a second-order contribution to the segregation en-
ergy. Because a greater energetic penalty is imposed on at-
oms occupying intergranular sites as �A is increased, the de-
sire for solute atoms to segregate to the grain boundaries
diminishes, with a corresponding decrease in �Hseg 
Fig.
8�a��. However, since equilibrium requires segregated solute
to counteract the interfacial energy, more solute should be
required to effectively eliminate a higher grain boundary en-
ergy, as is indeed observed in Figs. 8�b� and 8�c� via an
upward shift of the d-X relationships and the interfacial ex-
cess with increasing �A. The segregation energy also varies
with X for various values of �A, and specifically depends on
the relative difference between �A and �B. When �A��B, a
decrease in the segregation energy is observed with increas-
ing global composition, while the opposite trend is realized
when �A�B. For the case where �A��B, an A-rich bound-
ary is characterized by a higher energy and lower driving
force for segregation, as discussed above, leading to the ob-
served decrease in �Hseg with X. The converse case follows
the same logic, and when �A=�B, the nature of the bound-
aries no longer influences the propensity for segregation, as
illustrated by the composition-independent segregation en-
ergy in Fig. 8�a�.

E. Grain structure dimensionality

The present model does not require specification of a dis-
tinct grain shape, but the dimensionality of the grains affects

(a)

(c)(b)

FIG. 7. �Color online� Ther-
modynamic equilibrium states as a
function of the intergranular inter-
action energy for the state vari-
ables: T=1000 °C, �b=0.03 eV,
and �A=�B=0.48 J /m2. With in-
creasing intergranular interaction
energy, �a� the segregation energy
decreases, �b� the grain size trends
shift to higher global solute con-
tents, and �c� the interfacial excess
increases toward higher coverage
levels, all of which support that
higher solute contents are required
to stabilize the nanostructure as
�ig tends toward large, positive
values.
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the scaling of grain boundary volume fraction with grain size
via Eq. �8�, and thus impacts the final equilibrium state. For
the chosen set of energetic state variables, the segregation
energy is calculated to be 0.36 eV, and is independent of both
dimensionality and global composition. However, the equi-
librium grain size-global composition relationships are a
function of grain dimension, as shown in Fig. 9�a�. As D
increases, the d-X curves shift to higher global compositions
for the same solute distribution. According to Eq. �8�, for a
specified grain size and intergranular shell thickness, the in-
tergranular volume fraction exponentially increases with
grain dimension, and additional solute is therefore required
to effectively eliminate the alloy grain boundary energy at
higher f ig. However, the critical interfacial excess required
for �→0 is independent of grain dimensionality, as shown in
Fig. 9�b�, and decreases with X to reduce the probability for
energetically unfavorable solute-solute interactions in the
grain boundary.

IV. IMPLICATIONS FOR EXPERIMENTAL
NANOCRYSTALLINE ALLOYS

The present model is strictly limited to binary systems
with no competing second phases, and considers only pair-
wise first-order interactions. Accordingly, it is not intended to
directly predict behavior of specific alloy systems in a quan-
titative sense, where higher order atomic interactions and

competing phases must be considered. However, it can offer
some qualitative guidelines for understanding differences in
the behavior of various binary alloys that have been studied
extensively in the experimental literature. For example, con-
sider electrodeposited alloys of Ni-W and Ni-P, which both
exhibit the characteristic d-X trend expected for segregation-
based stabilization, as shown in Fig. 10�a� after Detor and
Schuh37 and Liu and Kirchheim,33,34 respectively. Whereas
the experimental grain size-composition data for the Ni-P
system exhibit a very limited range of accessible nanocrys-
talline grain sizes, with a rather sharp bend in the curve at
�3 at. % P, results for the Ni-W system demonstrate a
much broader range of attainable grain sizes, with a more
gradual increase in the slope as compared to Ni-P. Further-
more, atom probe tomography has demonstrated a rather
subtle segregation tendency for Ni-W alloys,38 while consid-
erable segregation has been observed in Ni-P alloys.39 Al-
though these materials are deposited using a similar nonequi-
librium approach, and experimental evidence suggests that
they are not in a formally stable thermodynamic state, there
is evidence that they are in a deep metastable condition with
a strong thermodynamic contribution to their stability.21,26

Moreover, since they are both produced by essentially simi-
lar methods, they should be in comparable states, permitting
some comparison of their very different characteristic curves
in Fig. 10�a� on the basis of alloy energetics.

Thermodynamic data, such as solution interaction ener-
gies �i.e., �b�, are readily available for binary systems;

(a)

(b) (c)

FIG. 8. �Color online� Ther-
modynamic equilibrium states as a
function of the solvent grain
boundary energy for the state vari-
ables: T=1000 °C, �b=0.03 eV,
and �ig=0 eV. With increasing
grain boundary energy, �a� the
segregation energy generally de-
creases �but depends to a large ex-
tent on the global solute content
and relative magnitudes of the
solute-solvent grain boundary en-
ergies�, �b� the grain size trends
shift to higher global solute con-
tents, and �c� the interfacial excess
increases toward higher coverage
levels. These observations indi-
cate that more solute is required to
drive higher energy grain bound-
aries to equilibrium.
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for Ni-W in particular, �b is on the order of 0.05 eV when
considering only first-order interactions, which is roughly
a sixth �i.e., 2 /z� the magnitude of the heat of mixing
��0.27 eV /atom� as determined via Miedema’s semiempir-
ical mixing model.51–53 Similarly, for Ni-P we approximate
�b�0.1 eV by scaling the heat of mixing from Miedema’s
model by 2 /z. Employing these interaction energies and as-
suming �ig��b, T=100 °C �close to the deposition tem-
perature�, and �A=�B=0.5 J /m2, we computed d-X trends
for Ni-W and Ni-P-like interactions, as illustrated in Fig.
10�b�. Whereas the d-X relationship for �b of 0.1 eV exhibits
a relatively sharp increase in grain size at a low global solute
content, as demonstrated in Fig. 10�b� and similar to the Ni-P
data in Fig. 10�a�, the 0.05 eV interaction energy trend is
shifted to higher global solute contents with a more moderate
curvature, in line with the Ni-W experimental results. The
difference between these curves is a consequence of the
higher-order terms in Eq. �24�, where solute-solute and
solute-solvent interactions in the grain boundary tend to ease
the rate at which � decreases, thus shifting the equilibrium
trends to higher global solute contents.

This example illustrates how differences in alloy energet-
ics can influence the formation and stabilization of nanocrys-
talline structures. On the one hand, we may conclude that
more pronounced atomic interactions in the bulk �i.e., a high
bulk heat of mixing� correlate with a higher grain boundary
segregation tendency, which leads to more rapid grain refine-
ment at small solute additions. On the other hand, a lower
bulk interaction energy �lower heat-of-mixing� system re-
quires more solute to achieve the same grain size, and thus
has a more gently sloping d-X curve as in Fig. 10�b�; this
may offer more precise control over grain size than would
the steeper trend found in more strongly segregating systems,
where slight compositional fluctuations lead to large devia-
tions in grain size.

V. CONCLUSIONS

Within the framework of statistical thermodynamics, we
have developed an analytical model for nanostructure stabi-

(b)

(a)

FIG. 9. �Color online� �a� Equilibrium grain size vs global com-
position as a function of grain structure dimensionality. �b� Interfa-
cial excess plotted for D=1, 2, or 3 as a function of global solute
content. The trends in �a� shift to higher global solute contents as D
increases, attributed to the concurrent increase in grain boundary
volume fraction. The interfacial excess in �b� is independent of
dimensionality, and its functional dependence on X is imparted by
the assigned state variables: T=1000 °C, �b=0.03 eV, �ig=0 eV,
�A=�B=0.48 J /m2.

(b)(a)

FIG. 10. �Color online� �a� Experimental grain size-composition data for the strongly segregating Ni-P system and the weakly segregating
Ni-W system, after Liu and Kirchheim �Ref. 33� and Detor and Schuh �Ref. 37�, respectively. A higher alloy composition promotes finer
grain sizes, regardless of the segregation tendency. �b� Grain size as a function of global composition for systems modeled after Ni-P with
�b=0.1 eV, and Ni-W with �b=0.05 eV. The Ni-W-like trend is shifted to higher global solute contents, with a more gradual increase in
grain size with decreasing composition, as compared to the Ni-P-like trend.
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lization in binary systems, extending previous models to
more general segregation behavior and alloy compositions.
The result is essentially a regular solution model for a binary
polycrystalline system, in which grain size is a state variable
and grain boundary segregation contributes strongly to the
energetics of the system. Global energetic variables are iden-
tified from the various bonds �A-A, B-B, and A-B� in grain
interiors and grain boundaries, and their influence on the
equilibrium states were investigated in a parametric study,
revealing that:

�i� In binary systems, segregation of solute to grain
boundaries leads to an equilibrium grain size at which the
system energy is minimized, as suggested by prior models.
The equilibrium grain size decreases as solute is added to the
system.

�ii� A reduced segregation energy is exhibited by systems
with a lower bulk interaction energy, higher intergranular
interaction energy, and a higher solvent grain boundary en-
ergy.

�iii� Lower segregation energies generally shift the equi-
librium grain size-composition trends upward �to higher glo-
bal compositions�, and promote a gentler decrease in grain
size with increasing global solute content.

�iv� All other things being equal, temperature acts to ran-
domize the solute distribution, generally shifting the grain
size-composition trends upward, to higher global solute con-
tents.

The model offers some insight on differences between
various experimental alloys, and also offers guidance for the
selection of alloying elements that promote nanocrystalline
structures.
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