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We present an easy-to-implement technique for determining the effective properties of composite materials
with periodic microstructures, as well as the field distributions in them. Our method is based on the transfor-
mation tensor of Eshelby and the Fourier treatment of Nemat-Nasser et al. of this tensor, but relies on fewer
limiting assumptions as compared to prior approaches in the literature. The final system of linear equations,
with the unknowns being the Fourier coefficients for the potential, can be assembled easily without a priori
knowledge of the concepts or techniques used in the derivation. The solutions to these equations are exact to
a given order, and converge quickly for inclusion volume fractions up to 70%. The method is not only
theoretically rigorous but also offers flexibilities for numerical evaluations.
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I. INTRODUCTION

The effective properties of composite materials are deter-
mined by the statistical distribution of their constituent phase
properties and the spatial distribution of the phases. Usually
a volumetric average of individual phase properties repre-
sents the lowest-order approximation to the effective proper-
ties, while geometric factors provide second- and higher-
order corrections.1,2 The corrections are critical for
essentially all nonparallel microstructures, but are unfortu-
nately difficult to ascertain for complicated microstructural
arrangements. Although substantial efforts have been made
to solve for many mathematically analogous effective
properties3 such as electrical and thermal conductivity, di-
electric constant, mass diffusivity, and magnetic permeabil-
ity, understanding of geometric effects remains limited.

Among the simplest heterogeneous continuum micro-
structures are those with periodically distributed inclusions.
Periodic composite materials can be completely specified by
the phase distribution in one unit cell which is repeated pe-
riodically in space. Periodicity not only significantly simpli-
fies the microstructure representation, but even permits ana-
lytical homogenization procedures. These procedures can be
used to predict the effective properties of some real micro-
structures that can be approximated as periodic, e.g., the
transverse sections of some fiber-reinforced composites.
These analytical homogenization procedures can also be po-
tentially useful for extrapolating the properties of nonperi-
odic composite materials of physically meaningful size. As-
suming a periodic stacking of a representative volume
element �RVE� might be a more accurate and efficient
method than representing the composite with the RVE itself,4

particularly when the convergence with respect to the RVE
size is slow.

Existing methods �e.g., Refs. 5–16� for deriving the effec-
tive properties of periodic composite materials mostly rely
on representations in the Fourier space. Using the Fourier
expansion of the potential or field can automatically satisfy
the continuity boundary conditions that are otherwise diffi-
cult to solve, and can also convert an integral equation into a
system of linear equations for the unknown Fourier coeffi-

cients. For example, Helsing8 expanded a displacement de-
scriptor �force density� in a Fourier series and solved the
resulting set of linear equations for the Fourier coefficients.
Bergman and Dunn5 and Cohen and Bergman6 used the Fou-
rier expansion for displacements, but they progressively
tightened the upper and lower bounds instead of directly
solving for the Fourier coefficients. Nemat-Nasser et al.9,10

calculated the overall elastic properties of materials with pe-
riodically distributed inclusions or voids by expanding the
Eshelby transformation strain tensor17 in the Fourier series.

In solving for the elastic field of an inclusion embedded in
an infinite matrix, Eshelby17 introduced a transformation
strain in the inclusion region so that, with the modified
strain, the stress-strain relationships everywhere could be de-
scribed by only the elastic constants of the matrix material.
For periodic composite materials, Nemat-Nasser et al.9,10 ex-
pressed the spatially varying transformation strain as well as
other fields in the Fourier series and derived an integral equa-
tion from consistency and equilibrium requirements. The
idea of Nemat-Nasser and co-workers is theoretically rigor-
ous and conceptually straightforward. Consequently, the idea
has been subsequently used for a variety of specific prob-
lems, such as the elastic properties of solids with periodically
distributed cracks18 and of periodic masonry structures,19

elastic stiffness and the relaxation moduli of linear viscoelas-
tic periodic composites,20,21 the overall stress-strain relations
of rate-dependent elastic-plastic periodic composites,22 elec-
trical conductivity,23 thermal conductivity,24 dielectric, elas-
tic, and piezoelectric constants of periodic piezoelectric
composites,25 and the dielectric response of isotropic graded
composites.26

However, the original derivations of the transformation
field method9,10 contain one considerably simplifying as-
sumption, which has propagated through the line of works
mentioned above �e.g., Refs. 9, 10, 18, 22, and 27�. The
simplification arises in deriving the relationship between the
Fourier coefficients for the transformation strain and those
for the true deformation field. The equilibrium condition has
not been interpreted strictly �Eq. �2.5� became Eq. �2.8� in
Ref. 9�. Specifically, given an infinite summation that must
be equal to zero, it was assumed that each individual term in
the summation should be equal to zero. Consequently, the
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two essential features, the infinite summation and the posi-
tion dependence in particular, in the original equation have
been discarded. Moreover, the series for the transformation
and perturbation strain have different numbers of terms, with
the former including �and the latter excluding� the constant
term corresponding to the reciprocal vector �0, 0, 0�. Due to
these issues, the final solution obtained by individually set-
ting each term equal to zero might not be the true general
solution. Discarding the infinite summation could result in
larger deviations from the true solution for more complicated
problems such as piezoelectric composites which require si-
multaneous solution of two governing equations.

In addition to the above considerations, in the original
work of Nemat-Nasser and co-workers,9,10 several approxi-
mations to the spatial distribution of the transformation strain
were proposed in order to solve the equations. The one used
most frequently by later authors is the assumption of a con-
stant or piecewise-constant transformation strain within the
inclusions. This assumption neglects the interactions among
inclusions, which are significant at moderate to high inclu-
sion volume fractions and can make the transformation strain
position dependent. Another solution method recommended
was to additionally expand the transformation strain as a
polynomial series and solve for the polynomial coefficients.
This method is not theoretically efficient since it involves an
additional power series besides the initial Fourier series. The
“complete solution method,” which does not rely on any as-
sumption on the distribution of the transformation strain and
is thus most accurate among all the solution methods pro-
posed, has, however, seldom been used, probably because of
the difficulty in assembling or solving the system of linear
equations.

In this paper, we adopt prior ideas of expanding the
imaginary transformation “strain” in the Fourier series and
building the equations from consistency and equilibrium re-
quirements, but we derive the equations in a different, rigor-
ous way, without making any assumptions that oversimplify
the solution or render it accurate only for special circum-
stances. We show that, with the equations built properly, we
can implement the “complete solution method” easily and
obtain the Fourier coefficients �and hence the effective prop-
erties� efficiently. The results are exact to a given order and
close to convergence approximately at the tenth order, which
is computationally achievable. The method is in theory ap-
plicable to any microgeometry in a cuboid unit cell, and
applies most easily for a single centered inclusion contained
in a cubic unit cell. We present numerical results for cubic
arrays of spherical and cubic inclusions, and further compare
with some data adapted from the literature.

II. FORMULATION

In this section, we derive the effective diffusivity of peri-
odic composite materials using Eshelby’s concept of the
transformation field17 and the Fourier series representation of
the field.9 For clarity, the equations presented in the follow-
ing are written for composites with isotropic diffusion prop-
erties, i.e., the diffusivity tensor for each phase reduces to a
scalar, but the same procedure should apply to anisotropic

constituent properties as well. The unit cell is a rectangular
prism with dimensions L1, L2, and L3 along the Cartesian
coordinate axes. The total volume of the unit cell, V
=L1L2L3, is partitioned into the matrix region VM and the
inclusion region VI, with V=VM +VI. The phase boundaries
are assumed to be perfectly bonded.

A. Perturbation and transformation fields in Fourier series

Consider an infinite isotropic material with diffusivity DM

placed in a concentration field C0�R� � that induces a uniform

concentration gradient E0=−�C0�R� �, with E0 the diffusion

driving force and R� = �x1 ,x2 ,x3� the position vector in three
dimensions. Inserting a periodic distribution of isotropic in-
clusions with diffusivity DI into the matrix changes the con-

centration field to C�R� �=C0�R� �+Cd�R� � and the concentration

gradient to E�R� �=E0+Ed�R� �, where Cd�R� � and Ed�R� � are the

perturbations due to the insertion of inclusions, and Ed�R� �=

−�Cd�R� �. Because the inclusion distribution is periodic, both

Cd�R� � and Ed�R� � are periodic functions with periodicity L� in
the ���=1,2 ,3� direction. Therefore, the actual concentra-

tion field C�R� � can be split into a linear part C0�R� � and a

periodic part Cd�R� �, and accordingly, the concentration gra-

dient E�R� � comprises a constant vector E0= �E1
0 ,E2

0 ,E3
0� and a

periodic vector Ed�R� �= �E1
d�R� � ,E2

d�R� � ,E3
d�R� ��. Since the peri-

odicity of Cd�R� � guarantees the periodicity of Ed�R� � while

the converse is not necessarily true �e.g., a constant Ed�R� �
would indicate a linear, instead of periodic, Cd�R� ��, we first

write Cd�R� � as a Fourier series,

Cd�R� � = �
�

Ĉd���ei�·R� , �1�

where the reciprocal vector �= ��1 ,�2 ,�3�
= �2�n1 /L1 ,2�n2 /L2 ,2�n3 /L3� with n1, n2, n3=0, �1, �2,
. . .. Then the perturbation in the gradient in the � direction,

E�
d�R� �, is proportional to the partial derivative of Eq. �1� with

respect to x�, the �th component of R� ,

E�
d�R� � = − i�

�

���Ĉd���ei�·R� , �2�

where the prime on the summation symbol ��� denotes a

summation excluding �= �0,0 ,0�, because the term Ĉd��
= �0,0 ,0�� in Eq. �1� does not contribute to the differentia-
tion with respect to position.

The diffusional flux in the composite in the � direction,

J��R� �, is

J��R� � =�DM�E�
0 + E�

d�R� �� in VM

DI�E�
0 + E�

d�R� �� in VI.
� �3�

Now, introduce a transformation gradient E��R� � so that with

the modified concentration gradient E0+Ed�R� �−E��R� �, the
whole composite can be described with the diffusivity of the
matrix material, DM, everywhere,
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J��R� � = DM�E�
0 + E�

d�R� � − E�
��R� �� . �4�

The equivalence between Eqs. �3� and �4� defines the trans-

formation gradient E��R� � as

E�
��R� � = �0 in VM

�1 − DI/DM��E�
0 + E�

d�R� �� in VI.
� �5�

Because of the geometric periodicity, E��R� � is also periodic
and can be written as a Fourier series as well,

E�
��R� � = �

�

Ê�
����ei�·R� �6�

with each Fourier coefficient being

Ê�
���� =

1

V
�

V

E�
��R� �e−i�·R�dR� =

1

V
�

VI

E�
��R� �e−i�·R�dR� , �7�

where dR� denotes dx1dx2dx3. The second equality in Eq. �7�
results from the fact that E��R� � is always zero for any R� in
VM according to Eq. �5�.

Because the normal component of the diffusional flux J

has to be continuous across phase boundaries, Ed�R� � in Eqs.
�3�–�5� may be discontinuous in certain direction�s�. The

transformation gradient E��R� � in Eq. �5� is also not necessar-

ily continuous. The Fourier series for Ed�R� � in Eq. �2� and

that for E��R� � in Eq. �6� thus represent discontinuous func-
tions, and require many high-order terms in order to capture
the discontinuities. However, as will be shown in the follow-
ing subsections, our derivation for the effective diffusivity is
based on the integration of the fields rather than the specific
field distributions, and as such may actually converge faster
than the spatial distribution of the fields themselves. The

above definitions of Ed�R� � and E��R� � are analogous to the
perturbation strain and transformation strain defined in the
work of Nemat-Nasser et al.9 In the following, we introduce
a more rigorous method to solve for the Fourier coefficients
for the above two series.

B. Solution technique

Replacing E�
d�R� � in Eq. �5� with the Fourier series in Eq.

�2�, we have

E�
��R� � = �1 − DI/DM�	E�

0 − i�
��

����Ĉd����ei��·R�
 in VI.

�8�

Here the original symbol � in Eq. �2� is changed to ��, which
is the same reciprocal vector as �. ��= ��1� ,�2� ,�3��
= �2�n1� /L1 ,2�n2� /L2 ,2�n3� /L3� with n1�, n2�, n3�=0, �1,

�2. . .. Multiplying both sides of Eq. �8� by e−i�·R� and inte-

grating R� over VI, we have

�
VI

E�
��R� �e−i�·R�dR� = �1 − DI/DM�	E�

0�
VI

e−i�·R�dR�

− i�
��

����Ĉd�����
VI

e−i��−���·R�dR�
 .

�9�

The left side of Eq. �9� is equal to VÊ�
���� according to Eq.

�7�. As a result,

Ê�
���� = f I�1 − DI/DM�	E�

0gVI
��� − i�

��

����gVI
�� − ���Ĉd����
 ,

�10�

where f I=VI /V is the inclusion volume fraction, and the geo-
metric factor gVI

��� is

gVI
��� =

1

VI
�

VI

e−i�·R�dR� . �11�

Equation �10� provides the connection between the Fourier

coefficients for the transformation gradient, Ê�
� , and the Fou-

rier coefficients for the perturbation concentration field, Ĉd.

Here, in our method, each Ê�
���� value is an infinite summa-

tion over terms containing Ĉd����, in contrast to the treat-
ments used in prior works �e.g., Ref. 9� which would sug-

gest, incorrectly, that each Ê�
���� can be fully determined by

the corresponding Ĉd��� with the same reciprocal vector �.

The steady-state condition requires that � ·J�R� �=0. Using

the expression for J�R� � in Eq. �4�, we obtain

� · �Ed�R� � − E��R� �� = 0. �12�

We substitute E�
d�R� � and E�

��R� � in Eq. �12� with the series
expression in Eqs. �2� and �6�, respectively,

�
�

���� · ��iĈd��� + � · Ê�����ei�·R� = 0, �13�

where Ê����= �Ê1
���� , Ê2

���� , Ê3
�����. We multiply both sides of

Eq. �13� by e−i�·R� and integrate R� over an arbitrary volume
�,

�
�

���� · ��iĈd��� + � · Ê�����g��� − �� = 0, �14�

where the geometric integration function g has already been
defined in Eq. �11�. This procedure introduces into the equa-
tion a virtual vector �= �2�m1 /L1 ,2�m2 /L2 ,2�m3 /L3�,
where m1, m2, and m3 can be any integer, and a virtual inte-

gration volume �. As Eq. �13� holds for any R� in the unit
cell, the integration can be carried out over any finite volume
� inside the unit cell in order to convert Eq. �13� to the
position-independent Eq. �14�. � is not restricted to be the
inclusion volume VI or unit-cell volume V, and this flexibil-
ity ensures the equivalence between Eq. �13� and Eq. �14�.
We however avoid assigning � as the unit-cell volume V

because the integration of ei��−��·R� over V is zero for any �
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��. Instead, we choose � in the range VI��	V.

Replacing components of Ê���� in Eq. �14� with Eq. �10�
results in a linear equation whose only unknowns are the

Ĉd��� values, the Fourier coefficients for the perturbation

concentration field Cd�R� � in Eq. �1�.

�
�

�	 �� · ��Ĉd���
f I�1 − DI/DM�

− �
��

��� · ���gVI
�� − ���Ĉd����
g��� − ��

= i�
�

��� · E0�gVI
���g��� − �� . �15�

In the second term on the left side of Eq. �15�, we first
exchange the symbols � and �� and then exchange the se-
quence of summation to make the outer summation the one
over �.

�
�

��
��

��� · ���gVI
�� − ���Ĉd����g��� − ��

= �
��

��
�

���� · ��gVI
��� − ��Ĉd���g��� − ���

= �
�

�	�
��

���� · ��gVI
��� − ��g��� − ���
Ĉd��� . �16�

Then we group the two terms on the left side of Eq. �15� and

obtain the final equation for the unknowns Ĉd���,

�
�

�	 �� · ��g��� − ��
f I�1 − DI/DM�

− �
��

���� · ��gVI
��� − ��g��� − ���
Ĉd���

= i�
�

��� · E0�gVI
���g��� − �� , �17�

where �= �2�n1 /L1 ,2�n2 /L2 ,2�n3 /L3�, ��
= �2�n1� /L1 ,2�n2� /L2 ,2�n3� /L3�; the summations in this ex-
pression run over all possible integer combinations for
�n1 ,n2 ,n3� and �n1� ,n2� ,n3��, respectively, except �0,0,0�. For
certain phase geometries, Eq. �17� may be further reduced to
a simpler analytical form. For example, the derivation for a
cubic lattice of cubic inclusions is shown in the Appendix.
Although a substantial reduction to the form of Eq. �A5� is
possible, it is not certain at present whether further simplifi-
cation is possible. Thus in the following, we solve for the
unknowns numerically.

If the infinite series is truncated at the Nth order, n and n�
can be any value among 0, �1, �2. . . �N. As each n and n�
can take 2N+1 values, there are �2N+1�3−1 � and �� vectors
in the summations. Thus there are �2N+1�3−1 unknown

Ĉd��� values in Eq. �17�. Accordingly, we can choose �2N
+1�3−1 arbitrary � vectors to build a system of linear equa-
tions with a square coefficient matrix, as Eq. �17� leads to
one equation for each independent � vector. The specific
choices of the vector � and the integration volume � should
not affect the solution, but their values affect the condition
number of the coefficient matrix of the linear equations. �The

condition number is the ratio between the maximal and mini-
mal singular values of the coefficient matrix, and a lower
number indicates a well-conditioned matrix and a reliable
solution from matrix inversion.� As a result, we can obtain a
well-conditioned coefficient matrix by choosing appropriate
� and � at a specific inclusion volume fraction f I and diffu-
sivity contrast ratio DI /DM.

Our solution method presented above directly solves for
the unknown Fourier coefficients from the governing equa-
tions without first approximating the fields to any simpler
form, such as constant, piecewise constant, or polynomial
position dependent, which have been widely used previously
at the expense of accuracy or efficiency.23 The method cor-
responds to the idea of the “complete solution method” pro-
posed by Nemat-Nasser et al.,9 but is, we believe, somewhat
simpler and more transparent. We derived the correlation be-
tween the Fourier coefficients for the transformation field
and those for the perturbation field, as presented in Eq. �10�,
from the definition of the transformation field in Eq. �5�,
which naturally connects the transformation field to the per-
turbation field. Then we constructed the governing equation
from the equilibrium or steady-state condition. The series of
works that followed the method of Nemat-Nasser and co-
workers �e.g., Refs. 9, 10, 18–23, and 25–27� have worked in
the opposite way, i.e., deriving the relationship from the
equilibrium condition and constructing the governing equa-
tion from the definition of transformation field, and used the
simplifications elaborated in Sec. I. Furthermore, we have
introduced a parameter—the integration volume �—when
we converted a position-dependent equation, Eq. �13�, into a
position-independent one, Eq. �14�. In addition to contribut-
ing to theoretical thoroughness, � is also practically useful
as it can be varied to optimize the conditioning of the coef-
ficient matrix of the final linear equations; we will return to
this issue later when we consider some example problems.

C. Effective diffusivity

The effective diffusivity of the composite, Deff, is defined
as

Deff =
�J��R� ��V

�E�
0 + E�

d�R� ��V

, �18�

where � �V denotes an average over the unit cell. Here � can
be any direction in which the macroscopic applied concen-
tration gradient E�

0 �0. Introducing the expression for the

flux J�R� � in Eq. �4� into Eq. �18�,

Deff = DM
1 −
�E�

��R� ��V

E�
0 + �E�

d�R� ��V

� , �19�

where

�E�
��R� ��V =

1

V
�

V

E�
��R� �dR�

= Ê�
��� = �0,0,0��

= f I�1 − DI/DM�
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�E�
0gVI

��0,0,0�� − i�
��

���� gVI
�− ���Ĉd�����

= f I�1 − DI/DM�	E�
0 − i�

�

���gVI
�− ��Ĉd���
 .

�20�

In Eq. �20�, the second equality is due to Eq. �7�, the third is
due to Eq. �10�, and the fourth introduces a notation change
from �� back to � in the second term. From Eq. �2�, the

volume average of E�
d�R� � vanishes because �Vei�·R�dR� =0 for

any �� �0,0 ,0�,

�E�
d�R� ��V =

1

V
�

V

E�
d�R� �dR� = −

1

V
i�

�

���Ĉd���
�
V

ei�·R�dR��
= 0. �21�

Introducing Eqs. �20� and �21� back into Eq. �19�, we obtain
an explicit expression for the effective diffusivity,

Deff = �1 − f I�DM + f IDI +
f I�DM − DI�

E�
0 i�

�

���gVI
�− ��Ĉd��� ,

�22�

where the Ĉd��� values are the solutions of the governing
equation Eq. �17�. In Eq. �22�, the effective diffusivity con-
sists of two parts, the first being a volumetric average of the
matrix and inclusion diffusivities and the second being a se-
ries summation. The series summation results from the peri-
odicity of the inclusion distribution, and depends on the in-
clusion geometry via the integration function g and the

g-dependent Ĉd��� values. Although Eq. �22� is derived using

the transformation gradient E�
��R� � which is specific to the

present study, it is analogous to expressions for other effec-
tive transport properties in the literature, e.g., Refs. 5 and 28,
because of the similar definitions of effective transport prop-
erties.

III. EXAMPLES AND DISCUSSION

In this section, we shall discuss the computational aspects
of our method and examine the convergence of the effective
diffusivity with respect to the truncation order N, the highest
order in the Fourier series included in the calculation. We
will also compare our results with the predictions from some
other theories. We specifically evaluate the effective diffu-
sivities of composite materials containing a cubic array of
either cubic or spherical inclusions. In these cases the unit
cell for the periodic composite is cubic so that L1=L2=L3
=L in all previous equations in Sec. II.

A. Computation

The geometric factor g defined in Eq. �11� for a centered
cuboid inclusion of volume VI is

gVI
��� =

1

VI
�

VI

e−i�·R�dR� = �
�=1

3 
 1

LI�
�

−LI�/2

LI�/2

e−i��x�dx�� ,

�23�

where LI� is the size of the inclusion in the � direction. Each
multiplying term in Eq. �23� is

Y���� =
1

LI�
�

−LI�/2

LI�/2

e−i��x�dx�

= �1 if �� = 0

2

LI���

sin
LI���

2
� if �� � 0.� �24�

For cubic inclusions, LI1=LI2=LI3=LI in Eqs. �23� and �24�.
The geometric factor g for a spherical inclusion with ra-

dius r�4�r3 /3=VI� is9,28

(a)

(b)

FIG. 1. �Color online� �a� Contour plot of the condition number
of the coefficient matrix of Eq. �17� as a function of inclusion
volume fraction f I and normalized omega ��−VI� / �V−VI� when
DM =10 and DI=1. �b� Contour plot of the condition number as a
function of diffusivity contrast and normalized omega at f I=0.4.
Both figures are obtained from the lowest-order �N=1� calculations
for a cubic array of cubic inclusions only to show the heterogeneity
in the condition number due to the variations in �.

ANALYTICAL HOMOGENIZATION METHOD FOR… PHYSICAL REVIEW B 79, 094104 �2009�

094104-5



gVI
��� =

1

VI
�

VI

e−i�·R�dR�

= �1 if � = �0,0,0�
3

����r�3 �sin����r� − ���r cos����r�� if � � �0,0,0� . �
�25�

The maximum radius of a sphere in the cubic unit cell is
rmax=L /2 so the maximum possible volume fraction of
spherical inclusions in this case is f I max=4�rmax

3 / �3L3�
=� /6�0.5236. Our method should work for overlapping
spheres as well, except that the integration function gVI

in
Eqs. �17� and �22� can no longer be calculated from Eq. �25�
and needs to be specifically evaluated.

For convenience, we confine � in Eq. �17� to be
in the same range as � and ��, i.e., �

= �2�m1 /L1 ,2�m2 /L2 ,2�m3 /L3�, where m1, m2, and m3=0,
�1, �2. . . �N. Both the shape and the volume of � can be
varied to simplify the integration or improve the condition-
ing of the coefficient matrix, although in principle, any
choice of � should yield the same result. For example, for
both cubic and spherical inclusions, using cubic and spheri-
cal shapes for � yields the same value of effective diffusiv-
ity. The final results we present in the following are calcu-
lated from cubic � for both cubic and spherical inclusions,
thus the integration over � can be calculated from Eqs. �23�
and �24� with VI replaced by �.

The effect of the volume � is illustrated in Fig. 1 where
we varied � between VI and V for cubic inclusions and cal-
culated the condition number of the coefficient matrix at dif-
ferent inclusion volume fractions f I and diffusivity contrasts
DI /DM. The vertical axis is normalized so that a value of 0
indicates integration over inclusion volume VI while a value
of 1 means integration over the unit-cell volume V. Both

TABLE I. The effective diffusivities of composites containing a cubic array of cubic inclusions at various volume fractions f I for different
orders N. DM and DI are respectively diffusivities for the matrix and inclusion material.

N f I=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DM =1, DI=10 �DI /DM =10�
0 1.9000 2.8000 3.7000 4.6000 5.5000 6.4000 7.3000 8.2000 9.1000

1 1.4207 2.0441 2.8971 3.9073 4.9851 6.0657 7.1151 8.1207 9.0811

2 1.3764 1.7491 2.2944 3.1424 4.2925 5.5904 6.8617 8.0209 9.0597

3 1.3412 1.7346 2.1458 2.7180 3.6620 5.0223 6.5333 7.8971 9.0357

4 1.3284 1.6932 2.1362 2.6134 3.3034 4.4933 6.1439 7.7460 9.0087

5 1.3162 1.6675 2.0961 2.6050 3.1826 4.1243 5.7352 7.5665 8.9785

6 1.3109 1.6621 2.0555 2.5772 3.1654 3.9342 5.3652 7.3606 8.9448

7 1.3043 1.6446 2.0495 2.5267 3.1568 3.8665 5.0798 7.1348 8.9071

8 1.3017 1.6407 2.0390 2.5000 3.1234 3.8536 4.8932 6.9006 8.8652

9 1.2973 1.6340 2.0210 2.4964 3.0756 3.8496 4.7904 6.6724 8.8189

10 1.2959 1.6275 2.0164 2.4877 3.0442 3.8318 4.7495 6.4647 8.7680

11 1.2928 1.6258 2.0124 2.4689 3.0358 3.7959 4.7331 6.2888 8.7124

12 1.2920 1.6201 2.0025 2.4577 3.0336 3.7539 4.7308 6.1500 8.6522

13 1.2896 1.6187 1.9989 2.4559 3.0237 3.7226 4.7266 6.0482 8.5875

DM =10, DI=1 �DI /DM =0.1�
0 9.1000 8.2000 7.3000 6.4000 5.5000 4.6000 3.7000 2.8000 1.9000

1 8.8720 7.7337 6.7117 5.7903 4.9397 4.1343 3.3554 2.5887 1.8183

2 8.8117 7.7126 6.6618 5.6743 4.7775 3.9637 3.2077 2.4844 1.7695

3 8.7940 7.6390 6.6114 5.6602 4.7535 3.9107 3.1431 2.4293 1.7387

4 8.7641 7.6298 6.5720 5.6212 4.7421 3.9005 3.1154 2.3975 1.7178

5 8.7593 7.6047 6.5657 5.5966 4.7184 3.8955 3.1062 2.3787 1.7030

6 8.7465 7.5980 6.5488 5.5918 4.6998 3.8841 3.1040 2.3679 1.6921

7 8.7425 7.5880 6.5383 5.5837 4.6931 3.8711 3.1016 2.3623 1.6839

8 8.7369 7.5815 6.5354 5.5725 4.6909 3.8617 3.0968 2.3599 1.6775

9 8.7331 7.5778 6.5273 5.5677 4.6856 3.8575 3.0906 2.3590 1.6726

10 8.7307 7.5719 6.5229 5.5660 4.6787 3.8562 3.0846 2.3585 1.6688

11 8.7273 7.5705 6.5211 5.5611 4.6744 3.8547 3.0801 2.3577 1.6659

12 8.7262 7.5662 6.5164 5.5566 4.6731 3.8516 3.0774 2.3561 1.6637

13 8.7234 7.5648 6.5141 5.5553 4.6718 3.8478 3.0762 2.3541 1.6620
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Figs. 1�a� and 1�b� are obtained from the lowest-order �N
=1� calculations merely to show the heterogeneity in the
condition number due to the variation in �. For all these
different � values, we obtained the same effective diffusiv-
ity; this is the expected behavior of a correct solution. How-
ever, in other situations where the coefficient matrix is too ill
conditioned to solve easily, the flexibility of choosing shapes
and volumes for � might be useful for obtaining more reli-
able solutions.

The coefficient matrix in the governing equation Eq. �17�
is a full matrix, but its requirements for computer memory
and CPU time can be reduced either by attempting to further
simplify Eq. �17� analytically, as demonstrated in the Appen-
dix, or by making use of matrix operations and symmetries.
As we show in Tables I and II, and will discuss at more
length later, a truncation order N=10 produces reasonable

results for most of our examples. At this order, even if all
symmetries are ignored, the calculation would take only
�1 GB of memory and �20 h using a personal computer if
the coefficient matrix of the governing equations is as-
sembled using row vectors instead of element by element,
and would take �2 GB of memory and �8–10 h if column
vectors are used instead �although Eq. �17� is presented on a
row basis�. A quad-core computer would further reduce the
computing time to �2 h for this scenario and to only a few
minutes if all calculations are based on matrix operations.
The computational expense could be further reduced if sym-
metries are taken into account. We thus find that the comput-
ing cost is acceptable considering the accuracy and simplic-
ity of the method.

B. Convergence

Table I presents the effective diffusivities calculated at an
increasing truncation order N for composites containing a
cubic array of cubic inclusions at various inclusion volume
fractions f I. For both diffusivity contrast ratios, DI /DM =10
and 0.1, the effective diffusivities calculated always decrease
monotonically with increasing order N. This is because, as
shown both in Eq. �22� and in the table, the zeroth-order
solution is simply the linear average of phase diffusivities,
Deff= �1− f I�DM + f IDI, which is an upper bound. As we add
more high-order terms, more interaction effects are progres-
sively taken into account. The resulting diffusivities con-
verge quite quickly as we increase the truncation order N for
volume fractions f I	0.7 when DI /DM =10 and for all frac-
tions when DI /DM =0.1. When DI�DM, the interactions
among inclusions become stronger at higher volume frac-
tions, making it more difficult to achieve convergence; more
high-order terms are needed in order to capture these strong
interactions. On the other hand, the range of f I	0.7 should
cover inclusion volume fractions of most periodic compos-
ites, as an exceptionally high length ratio of LI /L=0.9 only
results in f I=0.729.

The effective diffusivities for a cubic array of spherical
inclusions are listed in Table II. The trends of convergence
discussed above for cubic inclusions are also generally true
here, except that the transition to a “high” volume fraction
occurs much sooner for spheres than for cubic inclusions
because the maximum volume fraction of nonoverlapping
spheres is only about 0.52.

The data in Tables I and II for cubic and spherical inclu-
sions, respectively, are also plotted in Fig. 2. Here it is easier
to compare the convergence trends for the two inclusion ge-
ometries �data for cubic inclusions are plotted as squares
while those for spherical inclusions are plotted as circles�
and for different diffusivity ratios �DI /DM =10 in filled sym-
bols on the left and DI /DM =0.1 in open symbols on the
right�. When DI /DM =10, Deff for composites with spherical
inclusions is lower than that for composites with cubic inclu-
sions at f I=0.1, 0.2, and 0.3, but becomes higher when f I
=0.4 and 0.5. This might be because at the same volume
fraction, the minimum distance between spherical inclusions
is much smaller than that between cubic inclusions. Since the
diffusivity of the segregated inclusions is higher, the effec-

TABLE II. The effective diffusivity for a cubic array of spheri-
cal inclusions at various volume fractions f I for different orders N.
DM and DI are, respectively, diffusivities for the matrix and inclu-
sion material.

N f I=0.1 0.2 0.3 0.4 0.5

DM =1, DI=10 �DI /DM =10�
0 1.9000 2.8000 3.7000 4.6000 5.5000

1 1.3999 1.9941 2.7765 3.6742 4.6239

2 1.3354 1.7252 2.3618 3.2636 4.2820

3 1.3128 1.6594 2.1592 3.0046 4.0707

4 1.2935 1.6363 2.0684 2.8329 3.9306

5 1.2859 1.6170 2.0287 2.7146 3.8288

6 1.2785 1.6009 2.0086 2.6325 3.7510

7 1.2738 1.5911 1.9944 2.5765 3.6888

8 1.2703 1.5848 1.9818 2.5390 3.6379

9 1.2671 1.5790 1.9705 2.5140 3.5954

10 1.2651 1.5738 1.9610 2.4969 3.5590

11 1.2630 1.5701 1.9538 2.4847 3.5276

12 1.2615 1.5673 1.9486 2.4755 3.5002

13 1.2601 1.5645 1.9444 2.4680 3.4759

DM =10, DI=1 �DI /DM =0.1�
0 9.1000 8.2000 7.3000 6.4000 5.5000

1 8.8587 7.7018 6.6452 5.6527 4.6746

2 8.7953 7.6725 6.6091 5.6010 4.6022

3 8.7878 7.6556 6.5957 5.5834 4.5835

4 8.7818 7.6484 6.5880 5.5744 4.5745

5 8.7787 7.6447 6.5829 5.5691 4.5683

6 8.7768 7.6419 6.5795 5.5656 4.5639

7 8.7752 7.6398 6.5772 5.5630 4.5609

8 8.7743 7.6384 6.5755 5.5610 4.5585

9 8.7733 7.6373 6.5742 5.5594 4.5566

10 8.7728 7.6363 6.5730 5.5581 4.5551

11 8.7722 7.6355 6.5721 5.5570 4.5538

12 8.7718 7.6349 6.5713 5.5561 4.5527

13 8.7714 7.6344 6.5708 5.5554 4.5518
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tive diffusivities of the composite material will be higher
when the inclusions are closer to each other. This effect be-
comes evident at high volume fractions. It is the opposite
case when DI /DM =0.1. Now the matrix phase becomes the
main diffusion path and the narrow necks of the matrix ma-
terial may limit the diffusional flow. Therefore Deff for com-
posites with spherical inclusions is higher than that for com-
posites with cubic inclusions at f I=0.1, 0.2, and 0.3, and then
becomes lower when f I=0.4 and 0.5.

The convergence with respect to the terminating order N
of the partial sum of the Fourier series can be revealed by the
spatial distributions of the solved fields as well. The distri-

butions of the perturbation field E2
d�R� � defined in Eq. �2�, the

transformation field E2
��R� � defined in Eq. �6�, diffusional flux

J2�R� � defined in Eq. �3�, and J2�R� � defined in Eq. �4� are
shown in Fig. 3 for the case of matrix diffusivity DM =1 and
inclusion diffusivity DI=10 and in Fig. 4 for the opposite
case, DM =10 and DI=1. In both Figs. 3 and 4, a unit diffu-
sion driving force is applied in the x2 direction �E0

= �0,1 ,0��, and what are shown are the distributions of the

fields on the symmetric plane x3=0 �R� = �x1 ,x2 ,0�� in the unit
cell for cubic inclusion �left� and spherical inclusion �right�
at inclusion fraction f I=0.1. Ed reflects the perturbation in E0

due to the insertion of a periodic distribution of inclusions.
Its distribution pattern arises mainly because E0 is in the x2
direction, and it is almost zero in the matrix far from the
inclusion. The distribution of E2

� approaches the shape of the

inclusion as N increases, and a convergence indicator is that
E2

� is only nonzero in the inclusion as suggested by Eq. �5�.
The increasing similarity between the distribution of J2 in
Eq. �3� and that of J2 in Eq. �4� at high N indicates more
convincingly the numerical results being close to conver-
gence. As discussed at the end of Sec. II A, accurate repre-
sentations of discontinuous functions by the Fourier series
require a sufficient number of high-order terms. The resem-
blance between J2 in Eq. �3� and J2 in Eq. �4� at high N
implies there are adequate terms in the partial sum of the
Fourier series.

C. Comparison with other theories

In Table III, we compare the high-order numerical results
in Tables I and II with predictions from some earlier models,
including the Maxwell-Garnett �MG� formula, which coin-
cides with the Hashin-Shtrikman �HS� bounds,29 Rayleigh’s
method,30 and McKenzie and McPhedran’s model.31,32 It is
generally recognized that the MG formula, Rayleigh method,
and McKenzie et al. model are of order 1, 2, and 4, respec-
tively �the order here is different from the truncation order N
used in our calculation�.31 The models of Rayleigh and McK-
enzie et al. are specifically derived for a cubic array of
spheres.

When DM =1 and DI=10, our results are slightly above
the predictions of the MG formula �or HS lower bound�.

FIG. 2. �Color online� Convergence of the calculated effective
diffusivity Deff with respect to the truncation order N at various
inclusion volume fractions f I=0.1–0.9. The squares �� and ��
denote data for cubic inclusions while the circles �� and �� are the
data points for spherical inclusions. The filled symbols �� and ��
are for the case of DM =1 and DI=10, and the open symbols �� and
�� are for the case of DM =10 and DI=1.

FIG. 3. �Color online� The distribution of perturbation field

E2
d�R� � defined in Eq. �2�, transformation field E2

��R� � defined in Eq.

�6�, diffusional flux J2�R� � in Eq. �3�, and J2�R� � in Eq. �4� under a
unit applied diffusion driving force in the x2 direction �E0

= �0,1 ,0�� with increasing terminating order N of the Fourier series.
Shown in the figure are the distribution of these fields on the sym-

metric plane x3=0 �R� = �x1 ,x2 ,0�� in the unit cell for cubic inclusion
�left� and spherical inclusion �right� with matrix diffusivity DM =1
and inclusion diffusivity DI=10 at inclusion fraction f I=0.1.
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Both the matrix and the inclusion phases are isotropic and
the diffusivity of the isolated inclusions is higher than the
diffusivity of the surrounding matrix material so the micro-
structure is very close to the HS lower bound.33 Comparing
results from the method of Rayleigh, the model of McKenzie
et al. and our results for spherical inclusions, it is seen that
higher-order evaluations generally result in higher effective
diffusivities. Although our results may vary a few thou-
sandths considering the convergence trend shown in Tables I
and II, the variation is marginal and this trend still holds. For
the same type of composite microstructures, Gu et al.23 also
observed that predictions from homogenization approaches
that include higher-order interactions are close to but some-
what above the lower bound for isotropic structures.

When DM =10 and DI=1, the results are very close to the
HS upper bound because now the percolating matrix phase
has a higher diffusivity. For cubic inclusions, our high-order
results converge well to below the upper bound at volume
fractions f I=0.1–0.7, but seem to stay a little above the up-
per bound at f I=0.8 and 0.9 even though convergence has
almost been reached, as shown in Table I and Fig. 2. For
spherical inclusions, although the results seem to have al-
most converged at all inclusion fractions �see Table II and
Fig. 2�, Deff at f I=0.1 and 0.2 remain slightly above the

upper bound while Deff at f I=0.3–0.5 are below the upper
bound.

IV. SUMMARY

In summary, we have proposed a technique for calculating
the effective properties of composite materials with periodic
microstructures and the field distributions in them. Numeri-
cal examples for a cubic array of cubic inclusions and spheri-
cal inclusions were presented and compared to the predic-
tions from some existing homogenization theories. The
method is rigorous, easy to use, and reasonably efficient. The
solutions to the problem are exact to a given order and are
converging. It is hoped that the present developments will
encourage further numerical and analytical work on such mi-
crostructures, which have broad applicability across many of
the physical sciences.
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APPENDIX: FURTHER ANALYTICAL SIMPLIFICATION
OF THE GOVERNING EQUATION

As there is a high degree of element symmetry in Eq.
�17�, we can possibly further simplify the equation analyti-
cally. As an example, consider cubic inclusions. From the
equations for the geometric integration gVI

��1 ,�2 ,�3�
=��=1

3 Y���� in Eqs. �23� and �24�, we can further obtain

�
���

Y���� − ���Y���� − ��� =
L

LI
Y��� − ��� , �A1�

�
���

���Y���� − ���Y���� − ��� =
L

LI

�� + ��

2
Y��� − ��� ,

�A2�

if we retain all terms up to infinite order in the Fourier series.
Equations �A1� and �A2� have been derived by making use
of the Fourier expansions for the Bernoulli polynomials34

B1��� = � −
1

2
= −

1

�
	�

n=1



sin�2�n��

n 
 , �A3�

B2��� = �2 − � +
1

6
=

1

�2	�
n=1



cos�2�n��

n2 
 . �A4�

If we assume that the integration volume �=VI and then
introduce Eqs. �A1� and �A2� back into Eq. �17�, we obtain

�
�

�	DI + DM

DI − DM
�� · �� + �� · ��
gVI

�� − ��Ĉd���

= − i�� · E0�gVI
��� . �A5�

FIG. 4. �Color online� The distribution of perturbation field

E2
d�R� � defined in Eq. �2�, transformation field E2

��R� � defined in Eq.

�6�, diffusional flux J2�R� � defined in Eq. �3�, and J2�R� � defined in
Eq. �4� under a unit applied diffusion driving force in the x2 direc-
tion �E0= �0,1 ,0�� with increasing terminating order N of the Fou-
rier series. Shown in the figure are the distribution of these fields on

the symmetric plane x3=0 �R� = �x1 ,x2 ,x3�� in the unit cell for cubic
inclusion �left� and spherical inclusion �right� with matrix diffusiv-
ity DM =10 and inclusion diffusivity DI=1 at inclusion fraction f I

=0.1.
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TABLE III. Comparison of our high-order results with predictions from other theories.

f I

First order
�MG�

Second order
�Rayleigh�

Fourth order
�McKenzie and McPhedrana�

Present Method

Spherical
inclusion

Cubic
inclusion

DM =1, DI=10 �DI /DM =10�
0.1 1.2432 1.2433 1.2433 1.2601 1.2896

0.2 1.5294 1.5317 1.5317 1.5645 1.6187

0.3 1.8710 1.8870 1.8876 1.9444 1.9989

0.4 2.2857 2.3567 2.3631 2.4680 2.4559

0.5 2.8000 3.0532 3.1133 3.4759 3.0237

0.6 3.4545 3.7226

0.7 4.3158 4.7266

0.8 5.5000 6.0482↓
0.9 7.2308 8.5875↓

DM =10, DI=1 �DI /DM =0.1�
0.1 8.7671 8.7669 8.7669 8.7714 8.7234

0.2 7.6316 7.6280 7.6280 7.6344 7.5648

0.3 6.5823 6.5630 6.5632 6.5708 6.5141

0.4 5.6098 5.5468 5.5480 5.5554 5.5553

0.5 4.7059 4.5496 4.5519 4.5518 4.6718

0.6 3.8636 3.8478

0.7 3.0769 3.0762

0.8 2.3404 2.3541

0.9 1.6495 1.6620

aReference 31.
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