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Theory has predicted that the damping of magnetization dynamics may be anisotropic; i.e., it may depend on
the momentary orientation e�t� of the magnetization in the crystal. In the present Brief Report it is shown that
in general this anisotropy is averaged out at least to some extent for the special trajectory e�t� of the magne-
tization vector in a ferromagnetic-resonance �FMR� experiment. In principle it may be that there is no aniso-
tropy of the FMR linewidth although the damping is strongly anisotropic and although this anisotropy will be
essential in a more complicated trajectory e�t� of the magnetization vector.
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In recent years there has been a great research activity on
fast magnetization dynamics for micro- and nanosized mag-
nets because of their potential use in advanced information
storage and data processing devices, with special emphasis
on domain-wall dynamics �in particular for nanowires1�, on
magnetization reversal in nanomagnets,1 and on vortex
dynamics.2 Thereby, most theoretical investigations were
based on the Gilbert equation of motion3 for the magnetiza-
tion M�r , t�,

dM

dt
= − ��M � Heff� +

1

M
M � �

dM

dt
. �1�

Here, � is the gyromagnetic ratio; Heff is the effective
field composed of the external field H, the exchange field
Hex, the anisotropy field Hani, and the dipolar field Hdip; and
� is the scalar damping constant. Equation �1� is the simplest
conceivable equation which describes precession of M�r , t�
around Heff �first term on the right-hand side� as well as
damping �second term�. Of course the question arises �see,
e.g., Refs. 4–6� as to whether this equation really encom-
passes all the relevant physics for the time scale of the above
discussed experiments, which is the near-adiabatic time
scale4 between several picoseconds and nanoseconds. For in-
stance, Gilbert3,6 himself suggested a generalization of his
equation of motion, Eq. �1�, with the local damping term and
the scalar constant � replaced by a nonlocal damping term
�which relates the dynamics of the magnetization at site r to
the dynamics of the magnetization at all other sites r�� with
a damping matrix ��r ,r��. A damping of the dynamics de-
scribed by a damping matrix was suggested also by Barya-
khtar et al.7 �and Safonov8�, who already mentioned that the
replacement of the damping scalar by a damping matrix
might have an influence on the FMR linewidth. Finally, such
a generalized equation for the atomic magnetic moments
MR=MReR at the atomic sites R with magnitude MR and
orientation eR could be derived9 by a combination of the ab
initio electron theory with the phenomenological breathing
Fermi-surface model of Kamberský10 for the magnetization
dynamics close to the adiabatic limit,

deR

dt
= − �eR � Heff,R��eR��� + eR � �

R�

�R,R���eR��� ·
deR�

dt
.

�2�

In Eq. �2� the effective field Heff,R depends on the magnetic
configuration �eR�� of the whole system. This is not surpris-
ing and is accepted by everybody because also the field
Heff�r� of Gilbert equation �1� depends on the magnetization
field M�r� of the whole system via the exchange field and the
dipolar field. Furthermore, the damping matrices �R,R� de-
pend on the magnetic configuration of the whole system,
which was not anticipated by Gilbert.6 Within the breathing
Fermi-surface model this is a natural consequence of the fact
that both quantities Heff,R and �R,R� are related to the deriva-
tives �� jk /�eR of the single-electron energies �wave vector k,
band index j�, and these derivatives depend on the orienta-
tions �eR�� of all magnetic moments in the system. For a
collinear situation, i.e., eR�t�=e�t� for all R, the � jk depend
on the orientation e via the spin-orbit coupling. In a time-
dependent noncollinear situation the � jk change in addition
because of the interatomic exchange interactions.

For a collinear situation, Eq. �2� reduces to

de

dt
= − �e � Heff�e� + e � ��e� ·

de

dt
, �3�

which means that the constant damping scalar � of the Gil-
bert equation is replaced by a damping matrix which depends
on the momentary orientation e�t� of the homogeneous
magnetization.4,9–12 The matrix � has at most two nonzero
eigenvalues �p, with p=1,2, which correspond to two eigen-
vectors, and each of them describes the momentary damping
which we would have if the momentary de /dt was parallel to
the respective eigenvector. Altogether, we thus have two
types of anisotropy contributions, one related to the momen-
tary orientation e�t� �contribution 1� and the other one related
to the momentary change in orientation, de /dt �contribution
2�. It has been shown by ab initio calculations for bulk Fe,
Co, and Ni �Refs. 11 and 12� that the two eigenvalues �p in
fact depend on the momentary e�t�. For instance, in Co one
of them varies by a factor of more than 3 when changing the
direction e�t�. This anisotropy is very strong in systems with
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reduced dimensionality such as monatomic layers or mon-
atomic wires where there are orientations for which the
damping is identically zero.12 As an example, Fig. 4�b� of
Ref. 12 shows the calculated eigenvalues �p for a monatomic
hexagonal layer of Ni, with zeroes due to symmetry in some
high-symmetry directions and along the high-symmetry line

from �101̄0� to �21̄1̄0�. It has been suggested12 that this an-
isotropy of the damping represents a further option to opti-
mize the magnetization-reversal process in nanostructures by
choosing an appropiate trajectory e�t�.

The range of validity of the breathing Fermi-surface
model was discussed most recently by Gilmore et al.13 with
calculations based on the theory of Kamberský14 for the
random-phase approximation �RPA� circular susceptibility.
This theory is more general than the breathing Fermi-surface
model on one hand, but is also more restricted on the other
hand because it takes into account only spin-orbit coupling
�no noncollinearity�, and because it is valid only for a situa-
tion where the magnetization is oriented in a high-symmetry
direction of the crystal. Gilmore et al.13 showed that under
these circumstances the breathing Fermi-surface model is
valid if it suffices to take into account only scattering pro-
cesses between electronic states in the same band, and that
this is justified for low temperatures where the damping is
proportional to the electronic momentum relaxation time �
and hence to the Drude conductivity �. At high temperatures
the interband transitions become relevant, leading to a damp-
ing which is proportional to 1 /� and hence to the resistivity
�. For Ni these two contributions to damping could be re-
solved experimentally,15 whereas for Fe only the high-
temperature behavior could be observed in the experimental
temperature range.16

It should be noted explicitly that all the above discussions
and the following discussions hold only for an equation of
motion related to the damping contributions of the breathing
Fermi-surface model. In reality, there are also other
contributions13 �for a more general discussion see Ref. 17�.

Of course the question arises as to whether the anisotropy
of the damping matrix ��e� for a collinear magnetization
configuration can be observed directly experimentally, e.g.,
by studying the anisotropy of the linewidth of the ferromag-
netic resonance �FMR�. The problem of the FMR linewidth
in a system with anisotropic damping was pointed out al-
ready in Ref. 9, and in the present Brief Report it will be
solved quantitatively. As discussed in the last paragraph, one
could expect such an anisotropy for the case of Ni, whereas
for Fe the situation is not clear because for this material the
breathing Fermi-surface model is not valid. To test for the
anisotropy, one should compare the linewidths for two direc-
tions of the static FMR bias field which are crystallographi-
cally nonequivalent. For instance, for a magnetic film the
easy and hard directions are often determined by the demag-
netization field �i.e., by the dipolar contributions to Heff� but
are otherwise crystallographically equivalent. In the ab initio
versions of the breathing Fermi-surface model4,9,11,12 which
yield Eqs. �2� and �3�, the effect of a demagnetization field is
not included. Therefore these theories cannot make any pre-
diction on whether the damping is different for two direc-
tions which differ just in the demagnetization field but which

are otherwise crystallographically equivalent, i.e., which cor-
respond to the same spin-orbit coupling energy. Finally, the
FMR data for different directions of the FMR bias field
should not be analyzed with Gilbert equation �1�, but with
the modified equation of motion �3�. This equation can be
cast into a momentary Gilbert-type equation of motion of the
form of Eq. �1� with a damping scalar � �rather than a damp-
ing matrix �� which—however—is not a constant as in the
Gilbert theory but which depends on the momentary e�t� and
de /dt and in which the eigenvalues �p enter in a complicated
manner; see Eqs. �48�–�51� of Ref. 12. The problem is that in
an FMR experiment the continuous rotation of e�t� around a
fixed orientation prescribed by the static FMR bias field may
average out at least in part the anisotropy of the momentary
damping scalar �. Therefore it is not clear to what extent the
anisotropy of the damping can be investigated by an FMR
experiment. It is the purpose of the present Brief Report to
investigate this problem quantitatively.

In our model calculation we assume that the bias field
H=Hez is much stronger than the anisotropy field and the
demagnetization field so that e�t� rotates around ez, driven by
the circular FMR field H1 in the x-y plane with frequency 	
and strength H1
H. We then calculate the dissipated power
P, which is the average of

dW

dt
= − H1 ·

dM

dt
�4�

taken over one period 2� /	 with dM
dt given by Ms

de
dt , where

Ms is the absolute value of the magnetic moment of the
sample and where de /dt is given by Eq. �3�. With �̄= ��1
+�2� /2 and ��=�1−�2, Eq. �4� yields

P =−�MsH1
2 �̄

�1−x�2 + ��̄�2 −
����2

4
+

����2x2

�1 + x�2 + ��̄�2 −
����2

4

�5�

with

x =
�H

	
. �6�

For ��=0, Eq. �5� reduces to the well-known expression
from the conventional Gilbert equation, with the Gilbert sca-
lar � replaced by �̄,

P = −
�MsH1

2	2�̄

�	 − �H�2 + ��̄	�2 , �7�

corresponding to the linewidth �half-width at half maximum
�HWHM��

�H = �̄
	

�
. �8�

Whereas the Gilbert scalar � is assumed to be constant, the
mean value �̄ may depend on the orientation of H in the
crystal; i.e., �H may be anisotropic. This holds, e.g., for the
case of Ni �see Fig. 1�, where the two eigenvalues are the
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same for the orientations �111� and �001�, respectively, so
that �� is zero, but �̄ is different for the two orientations,
and thus the anisotropy should show up in the linewidth.

For the more general situation for which �� is nonzero,
we analyze Eq. �5� by inserting reasonable values for �̄ and
��, i.e., �̄ ,���some 0.01. Then the denominator in the
last term of the denominator of Eq. �5� is dominated by �1
+x�2, which is 4 for the case of resonance �	=�H�, and the
last two terms in the denominator nearly cancel close to reso-
nance so that Eq. �7� holds approximately also in the general
case with ���0. This means that the FMR power absorp-
tion P is nearly completely determined by the mean value �̄.
If �̄ is different for two orientations �as for �111� and �001� in
Ni; see above� then the linewidth is also different. Indeed, for
Ni an anisotropy of the linewidth has been observed for low
temperatures.18 For other materials FMR experiments did not
show a clear indication of an anisotropic intrinsic linewidth
�see, e.g., Ref. 19�, but—as discussed above—it may be that
in these materials the preconditions for the applicability of
the breathing Fermi-surface model �which predicts an aniso-
tropic intrinsic linewidth� are not fulfilled.

For instance, in the case of Fe, Mosendz et al.20 per-
formed FMR experiments and found a frequency dependence
of the FMR linewidth which is well described by a simple
Gilbert damping. As the above calculation has shown, this is

indeed to be expected even for a system with anisotropic
damping. The observed angular dependence of the FMR
linewidth in Fe was shown17 to be mostly caused by extrinsic
contributions �two-magnon scattering�.

Altogether, we have shown that the effect of the aniso-
tropy contribution 1 on the mean value �̄ can be investigated
by the anisotropy of the FMR linewidth. The question arises
as to whether there are situations for which the existence of
two eigenvalues �anisotropy contribution 2� and their depen-
dence on the orientation e�t� �contribution 1� are relevant. If
we want to see the two eigenvalues separately, we have to
perform experiments which enforce magnetization trajecto-
ries corresponding to just one of these eigenvalues, respec-
tively. For instance, we could investigate a precessional
switching by 180° in a very strong external field which ro-
tates the magnetization according to one of the two respec-
tive eigenvectors. �Thereby one should take into account that
the respective trajectories average over the anisotropy con-
tribution 1, but nevertheless the two averages will be differ-
ent in general.� Anyway, both anisotropy contributions are
physically relevant for dynamics for which the trajectory is
not restricted by a simple experimental approach to a situa-
tion where the effect of the two eigenvalues and their depen-
dence on e�t� is necessarily averaged out.

To conclude, we have calculated the width �H of the
FMR power absorption line for systems with anisotropic
magnetization damping. In such systems, the damping is de-
scribed by a damping matrix ��e� which exhibits two aniso-
tropic eigenvalues �1�e� and �2�e�, i.e., eigenvalues which
depend on the orientation e of the magnetization. The line-
width �H is nearly completely determined by the mean
value �̄ of these two eigenvalues. There may be situations
for which �̄ depends on e, and then �H should be aniso-
tropic. However, there may be also various orientations for
which �̄ is nearly the same, whereas the two eigenvalues are
drastically different. Then the FMR experiment does not give
any hint of the anisotropy of the damping which, however,
may be essential for a trajectory e�t� which is more compli-
cated than the trajectory for the FMR experiment.

Note added in proof. In the meanwhile we have redone
the calculations for a linear rather than a circular FMR field.
The numerical results are very similar to those for the circu-
lar field, but we did not manage to derive a simple analytical
equation for the dissipated power P.
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