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Hysteresis loops in a 3.9�3.9�3.1 mm3 single-crystal ErFeO3 sample were studied in the 4�T�70 K
temperature interval. Above and near the compensation point Tcomp=46 K the hysteresis loops are rectangular,
with the coercive force diverging at Tcomp. As the temperature is lowered toward the erbium ordering transition
at TN2=4.1 K, the shape of the loops experiences a dramatic change. First, the loops develop triangular “tails.”
Then the triangles become prominent while the central rectangular part collapses. A double-loop hysteresis
pattern with two triangular loops emerges. This behavior is explained by a reversible motion of a single
magnetic domain wall in the sample. The simplicity of the magnetic state is related to the small magnetization
and correspondingly large domain sizes in orthoferrites. Our model reproduces the correlation of the loops’
shape with the temperature dependence of the total magnetic moment of ErFeO3.
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The process of field-induced magnetization reversal in a
ferromagnet is usually hysteretic with the hysteresis loop
M�H� produced by the interplay between the crystalline an-
isotropy of the material, the dipole interaction favoring a
magnetic domain structure determined by the sample shape
and saturation magnetization, Ms, and the pinning potential.
In macroscopic samples with many domains and many pin-
ning centers one normally observes S-shaped irreversible
hysteresis loops. Those curves appear smooth, but in fact
consist of a large number of infinitesimal magnetization
jumps reflecting the motion of numerous domain walls and
reversals of microscopic magnetic domains. Accordingly,
their shape can be described by Preisach models,1 based on
large ensembles of switching elements. The picture of quasi-
continuous reversal by many small jumps can be signifi-
cantly altered in two cases: �1� magnetic configuration is
characterized by only a few domain walls and �2� the pinning
potential has a few exceptionally strong centers. In both
cases the hysteresis loop can develop a shape with a small
number of large jumps separated by continuous reversible
segments.

The first case is realized when the size of the sample is
comparable to the size of individual domains and therefore
only a small number of domain walls, or other defects of
magnetic texture, are present. The examples include submi-
cron disks, where the magnetic texture defect is a single
magnetic vortex2 and nanorings with fractional vortex edge
defects.3 Since domain sizes are inversely proportional to the
magnetization,4 in strong magnets with a large value of Ms
the regime of a small number of magnetic defects is achieved
only for nanosized particles.

The second case of few strong pinning centers implies
that pinning potential is highly nonuniform in space. One
would not normally expect that to be the case in a nominally
uniform sample; however such a situation can be naturally
realized in the presence of a strong surface barrier for the
domain-wall creation. An example of such a situation is the
domain-wall motion magnetization reversal.5 In this case
creation of the wall requires the field to be so strong that

other pinning centers become irrelevant and the wall sweeps
through the sample as if there was no pinning in the bulk.
The magnetization is reversed in one jump and a rectangular
hysteresis loop is observed.

In this Brief Report we present a case where both condi-
tions �1� and �2� are satisfied in a millimeter-size rather than
a nanometer-size sample. The magnetic state of our relatively
large samples is characterized by a small number of domain
walls because the material is a weak ferromagnet with low
Ms. The orthoferrite ErFeO3 is a noncollinear antiferromag-
net with two magnetic subsystems, one of iron and another
of rare-earth ions. Its magnetic properties can be summarized
as follows.6–8 At Neel temperature TN1=636 K the iron mo-
ments order into a canted magnetic structure with antiferro-
magnetic moment G �a and weak ferromagnetic moment
F �c pointing along the crystallographic axes a and c. The
erbium ions remain paramagnetic all the way down to helium
temperatures. However, they are partially magnetized by the
molecular field of the ordered iron ions and acquire an in-
duced magnetic moment m. The total magnetic moment of
the crystal is M=F+m. The exchange interaction between
Er3+ and Fe3+ ions is negative,6–11 and the erbium moments
are pointing opposite to the iron ones partially canceling
them. In the temperature interval 88–97 K magnetization M
rotates from the c to a axis. At the compensation point
Tcomp�46 K magnetic moments of two subsystems are ex-
actly equal and M =0. The erbium subsystem orders magneti-
cally at the second Neel transition TN2=4.1 K.12–14

We studied the magnetic hysteresis in ErFeO3 in the tem-
perature range of 4.2–70 K. Measurements were performed
on a 3.9�3.9�3.1 mm3 single crystal grown by a
radiation-induced melting technique. The magnetic moment
was measured with a superconducting quantum interference
device �SQUID� magnetometer Quantum Design MPMS-5S.
Below 88 K the moment is directed along the a axis, and the
external field was applied along the same axis, H �a with the
accuracy of 3°. Saturation magnetization M�T� was obtained
in two ways: �a� by measuring M�T ,H0� in applied “mea-
surement field” H0, chosen to produce a single-domain state
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of the sample,10 and �b� more accurately from the analysis of
hysteresis loops M�H� �T=const at each temperature point. The
first method is usually sufficiently accurate and simplifies the
measurement procedure. However, correct interpretation of
its results relies on the knowledge of the hysteresis loops
shapes, as discussed below.

Above and near the compensation point the hysteresis
loops M�H� have rectangular shapes �Fig. 1�. The coercive
force Hcoerce�T�, defined as the position of the magnetization
jump, diverges for T→Tcomp in accord with previous
results.9 Here we focus on the shape of hysteresis curves in
the temperature region T�25 K �Fig. 2�. While they were
measured by sweeping the field between �3 kOe, only the
�500 Oe interval containing the loops is shown in the fig-
ure. Gradual transformation of the hysteresis curves with
temperature is clearly seen. The loop is still rectangular at
T=23 K but acquires triangular tail shape as the tempera-
ture is lowered �T=17 K and T=13 K curves�. Then it
transforms into a double-triangle loop �T=9 K and T
=5 K curves�. The triangular-tail and double-triangle loops

have three linear branches: the upper and lower branches
with small slope and the central branch going through the
origin with a large slope. At the saturation field �Hsat�T� the
central branch joins the upper/lower branches. The magneti-
zation abruptly jumps from upper/lower branches to the cen-
tral branch at the jump fields Hjump�↓↑��T�, where subscripts ↓
and ↑ mark the direction of the jump. The described change
in the loop shapes also leads to a peculiar temperature hys-
teresis of magnetization measured at constant external
field.11

We now build a theory for the observed hysteresis curves.
Experimentally observed magnitudes of the reversal fields
rule out the uniform rotation mechanism which would re-
quire a field H=K /M �10 kOe, as can be calculated from
the known values of anisotropy constant K and
magnetization.7,9,10 Earlier work15 has shown that in the case
of rectangular loops the reversal is likely to happen through
a domain-wall motion process. Here we explain the triangle-
tail and double-triangle loops through the same mechanism.

Our main assumption is that the central branch of the
loops represents the state of the sample with only two do-
mains separated by a wall. Experimentally, millimeter-size
domains were observed optically in another orthoferrite,
YFeO3.16 Theoretically the domain sizes can be estimated
from the results for cubic particles.17 For K�2�M2 �present
case� an equilibrium state of a cubic sample of size L is
two-domain for 25�L / lm�75, where magnetic length lm
=� /2�M2 is expressed through the energy � of the domain
wall. The latter is not well known for ErFeO3, but using the
value for TmFeO3 �Ref. 18� one obtains a condition 0.8
�L�2.4 mm, supporting the two-domain assumption for
our sample.

The two-domain magnetic state is fully characterized by
the position x of the wall separating the domains. For �x�
�1 the wall resides inside the sample, and it is expelled
from the sample for �x��1. In our experiments external mag-
netic field is small: H	K /M and H	Heff, where Heff
�3 kOe is the effective field characterizing the Er-Fe
interaction.7 Hence the applied field does not change much
the absolute value of magnetization in each domain, and the
total magnetic moment can be approximated by M=Mx.
Magnetic energy equals

E = AM2x2 − MHx , �1�

where the first term is the demagnetization energy with co-
efficient A capturing the properties of the sample shape and
the second term is the Zeeman energy. Equilibrium position
of the wall x0 is given by dE /dx �x0

=0;

x0�H� = H/Hexp�M� , �2�

where Hexp=2AM is the expulsion field. While the wall is
inside the sample, the pinning of the wall is assumed to be
negligible so that the wall follows the energy minimum po-
sition x0�H�. Then the central branch is described by

M�H� = Mx0�H� = H/2A . �3�

The no-pinning assumption was checked by the measure-
ments of minor loops for T�20 K. The central branch was
found to be completely reversible. Furthermore, Eq. �3� is in
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FIG. 1. �Color online� Hysteresis loops in the temperature inter-
val between the spin reorientation transition and the compensation
point.

FIG. 2. �Color online� Hysteresis loops M�H� �T=const in the tem-
perature range TN1�T�25 K.
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perfect correspondence with the data in Fig. 2 where the
central branch is a straight line M
H with a temperature-
independent slope. For a cubic sample the coefficient A can
be estimated from the demagnetization factor of a cube as
A�Ncube=2� /3�2.09. For our sample shape with one
shorter side this can be corrected using the approach of Ref.
19 to give an estimate A�2.42. With saturation magnetiza-
tion M �45 emu /cm3 at T=5 K, this would give Hexp
�220 Oe, while the experimental value is about 300 Oe
giving a reasonable correspondence with the theory.

At �H��Hexp the wall leaves the sample which becomes
monodomain after that. If the wall is expelled from the
sample, there is a barrier for it to get back. The wall must be
nucleated, e.g., at the surfaces x= �1.20 Consider a nucle-
ation event at x=1. The nucleation field Hn+ required for the
wall to enter the sample depends on the pressure dE /dx �x=1
=2AM2−MH acting on the wall and the properties of the

barrier. Close to the compensation point the magnetization is
small and sufficient pressure can be built only at large nega-
tive Hn+. As one goes away from Tcomp, the nucleation field
remains negative but its magnitude decreases. Due to the
demagnetization energy term there is a pressure pushing the
wall to enter the sample even at H�0 and at sufficiently
large values of M the nucleation field becomes positive,
Hn+�0. In the simplest model of wall nucleation there is a
constant barrier V�x� near x=1 with characteristic height
V0	AM2 and width �	1 preventing the wall from entering
the sample. The wall can overcome the barrier if the pressure
dE /dx �x=1 becomes larger than the maximum barrier resis-
tance �dV /dx�max�V0 /�. This estimate gives an expression

Hn+�T� = Hexp�T� −
C

M�T�
, C �

V0

�
. �4�

Consider now the hysteresis loop shape. As the field is
reduced from the large positive value, the sample remains in
the monodomain state with positive magnetization until the
wall is nucleated. Two possibilities exist, depending on the
value of Hn+. If Hn+�−Hexp, the wall will sweep through the
sample and leave it at the other end. A jump of magnetization
from +M to −M will be observed, and the resulting loop will
be rectangular with Hcoerce= �Hn�. On the other hand, if Hn+
�−Hexp, the wall will stop at the equilibrium position
x0�Hn+�. In this regime the nucleation field determines the
position of the magnetization jump from M= +M on the
upper branch to M=Mx0�Hn+�=Hn+ /2A on the central
branch. Emergence of a double-loop hysteresis pattern due to
a sudden nucleation of an equilibrium domain structure with
negligible pinning was previously discussed in the case of
thin films21 where multiple domain walls were created. In the
present case all evidence points to the nucleation of a single
wall as discussed in our concluding remarks.

Our theoretical predictions for Hn��T� and Hexp�T� are
shown in Fig. 3. The loop is rectangular when Hn+�−Hexp,
i.e., near Tcomp. The triangular tails appear at the point where
Hn+=−Hexp. The double-triangle loop is formed when Hn+
�0. The saturation field is always equal to the maximum of
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FIG. 3. Theoretical sketch of the temperature dependence of
expulsion field Hexp �solid curves� and nucleation field Hn� �dashed
curves�. Three temperature ranges are formed: with square, triangle-
tail, and double-triangle loops.

FIG. 4. Experimental temperature dependence of the saturation
field Hsat�T� and the absolute value of nucleation field �Hn��T��. As
predicted by the model, Hsat�T�
M�T�.

FIG. 5. Jump field dependence on the loop span. The value of
Hjump is stabilized at large span values.
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expulsion and nucleation fields, Hsat=max��Hn� , �Hexp��. In
the triangular tails and double-triangle loop regimes Hsat
=Hexp=2AM and hence should be proportional to the mag-
netization M�T�. Experimental values of Hsat�T� and
Hjump�T� are plotted in Fig. 4. Overall, the picture corre-
sponds to Fig. 3 and the proportionality Hsat�T�
M�T� is
maintained with good accuracy. The measured Hjump�T� de-
pendence does not follow Eq. �4� quantitatively but can be fit
with 15% accuracy by generalizing to a variable C�T�

 �Tcomp−T�2. In the future, this fit may give a clue about the
domain-wall surface nucleation mechanism.

To support the identification of the jump field as the
domain-wall nucleation field we measured Hjump at T=7 K
for variable loop span Hmax �Fig. 5�. Changes in jump field at
small spans can be explained by domain-wall pinning at the
boundary.20 If the loop span is only slightly larger than Hsat,
the domain wall may not leave the sample completely, and
some magnetization disturbance could be left at the surface.
This makes it easier for the domain wall to re-enter and thus
creates a positive shift of Hjump.

Hysteresis loops in orthoferrites are also known to acquire
triangular-tail or double-triangle shapes near the end points
of the spin-rotation transition.10,22,23 These are very likely to
be explained by the same domain-wall motion mechanism.
However, a more careful analysis is required since in the

spin-rotation region not only the magnetization but also the
domain-wall energies—and so the wall nucleation barriers—
exhibit a strong temperature dependence.18

In conclusion, our experiments and theoretical modeling
suggest that millimeter-size samples of ErFeO3 develop a
state with one domain wall in the temperature interval 4 K
�T�Tcomp. This picture is supported by the following argu-
ments: �a� the shapes of the hysteresis loops are naturally
explained by nucleation and reversible motion of a single
domain wall. The interplay between the wall nucleation field
and the wall expulsion field creates three distinct shapes of
the loops, all of which were observed in experiments; �b� the
width of the loop is in reasonable correspondence with the
calculation for a single domain wall; �c� theoretical estimates
of Ref. 17 point to the one wall state; �d� single-wall states
were observed in related materials;16 and �e� positions of the
magnetization jumps do not change from one measurement
to the other, unlike in the case of many domain walls in Ref.
21. In general, the weak ferromagnetism of the orthoferrites
makes them convenient model systems for studying the mag-
netic states of the nanosized strong ferromagnets.

It is our pleasure to acknowledge illuminating discussions
with V. G. Baryakhtar and J. Bartolome.
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