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We compute the electronic component ��� of the thermal conductivity and the thermoelectric power ��� of
monolayer graphene within the hydrodynamic regime, taking into account the slow rate of carrier population
imbalance relaxation. Interband electron-hole generation and recombination processes are inefficient due to the
nondecaying nature of the relativistic energy spectrum. As a result, a population imbalance of the conduction
and valence bands �i.e., a nonequilibrium state with �e+�h�0, where �e ��h� denotes the electron �hole�
chemical potential� is generically induced upon the application of a thermal gradient. We show that the
thermoelectric response of a graphene monolayer depends upon the ratio of the sample length to an intrinsic
length scale lQ set by the imbalance relaxation rate. At the same time, we incorporate the crucial influence of
the metallic contacts required for the thermopower measurement �under open circuit boundary conditions�
since carrier exchange with the contacts also relaxes the imbalance. These effects are especially pronounced for
clean graphene, where the thermoelectric transport is limited exclusively by intercarrier collisions. For speci-
mens shorter than lQ, the population imbalance extends throughout the sample; � and � asymptote toward their
zero imbalance relaxation limits. In the opposite limit of a graphene slab longer than lQ, at nonzero doping �
and � approach intrinsic values characteristic of the infinite imbalance relaxation limit. Samples of interme-
diate �long� length in the doped �undoped� case are predicted to exhibit an inhomogeneous temperature profile,
while � and � grow linearly with the system size. In all cases except for the shortest devices, we develop a
picture of bulk electron and hole number currents that flow between thermally conductive leads, where steady-
state recombination and generation processes relax the accumulating imbalance. Our analysis incorporates, in
addition, the effects of �weak� quenched disorder.
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I. INTRODUCTION

Both quenched disorder and interparticle interaction ef-
fects influence electric and thermal transports in
graphene.1–11 At exactly zero doping �the so-called “Dirac
point”�, the electron-hole fluid of massless Dirac quasiparti-
cles is predicted to exhibit a perfectly finite, nonzero dc elec-
trical conductivity � for temperatures T�0, even in the ab-
sence of disorder, due entirely to electron-hole collisions.8–12

Since the carrier plasma is electrically neutral at zero doping,
an applied electric field does not couple to the center-of-mass
momentum of the fluid; instead, electrons and holes are
driven in opposite directions, and electron-hole collisions
limit the developing electric current. By contrast, a tempera-
ture gradient can induce a thermal drift of both electron and
hole fluid components in the same direction; in the absence
of quenched disorder, the resulting energy current grows un-
impeded by interparticle collisions, which cannot influence
the center-of-mass momentum. It has been therefore claimed
that the electronic component � of the thermal conductivity
of clean undoped graphene is infinite,10 being limited only by
the amount disorder in a dirty sample. We note that the ther-
moelectric power �=0 at the Dirac point due to �approxi-
mate� particle-hole symmetry.

In this paper we demonstrate that the above picture is
incomplete: a clean graphene sample at the Dirac point will
in general exhibit a perfectly finite electronic thermal con-
ductance Gth, independent of the sample length L for L� lQ,
where lQ represents a certain intrinsic length scale �set by the
bulk properties of the material and the average temperature�.
In such large specimens, the response is predicted to be in-

homogeneous, with temperature gradients confined to bound-
ary regions of size lQ adjoining the sample edges. In the
opposite limit L� lQ, the temperature falls linearly across the
entire sample, and we find a well-defined L-independent �.
At nonzero doping, the thermoelectric transport properties
exhibit several different behavioral regimes. In the large sys-
tem size limit L→	, both � and � asymptote toward per-
fectly finite values at nonzero T and �, even in the absence
of disorder, in accord with the results of Ref. 10. In the
opposite limit of a sufficiently short device L�LQ, we obtain
completely different results. The mechanism responsible in-
volves only interparticle collisions but in particular the com-
paratively slow relaxation of electron-hole population imbal-
ance.

Imbalance refers to a state in which the electron and hole
populations deviate from their values in chemical equilib-
rium so that these carriers possess independent chemical po-
tentials �e,h and particle densities ne,h. By contrast, equilib-
rium slaves �e=−�h�� in graphene �a zero band-gap
semiconductor� so that both ne and nh are completely deter-
mined by � and the temperature T. Recombination or gen-
eration processes relax a population imbalance within a time
interval 
Q, the imbalance relaxation lifetime. �In the physics
of semiconductors, 1 /
Q is referred to as the recombination-
generation rate.� The lowest-order �“Auger” or two-particle
collision� relaxation processes typically involve the absorp-
tion or emission of an electron-hole pair, i.e.,

e− ↔ e− + e− + h+, �1.1a�
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h+ ↔ h+ + h+ + e−. �1.1b�

In graphene, however, these processes are kinematically sup-
pressed by the conservation of energy � and momentum p
because the spectrum ��p� of the quasiparticles is not decay-
ing,

d2��p�
d2p

� 0.

�Negative curvature of the spectrum at T=0 K arises due to
the logarithmic renormalization of the Fermi velocity vF at-
tributed to electron-electron interactions.�13–15 As explicated
in Fig. 1, the linear spectrum allows only decay products
with collinear momenta �i.e., pure forward scattering�, but
these processes make a negligible contribution to the imbal-
ance relaxation. The sublinear spectrum forbids even this
forward-scattering decay. In clean graphene, higher-order
�e.g., three-particle collision� imbalance relaxation processes
are already allowed, while impurity-assisted collisions will
contribute in a disordered sample; 
Q is therefore likely finite
although it may significantly exceed other relaxation times in
the system.

In the limit of zero relaxation, a graphene monolayer
probed through thermally conducting, electrically insulating
contacts would possess electron and hole populations that are
strictly conserved. In direct analogy with a single component
nonrelativistic classical gas,16 the electron-hole plasma in
clean graphene with vanishing imbalance relaxation would
exhibit a finite electronic thermal conductivity � for arbi-
trarily large system sizes. �The imbalance relaxation length
lQ, introduced above, diverges as 
Q→	.� In this regime,
interparticle collisions facilitate heat conduction without par-
ticle number convection. In this paper, we will demonstrate
that the same behavior obtains for nonzero imbalance relax-
ation �1 / lQ�0� in the limit of short samples, L� lQ. By
comparison, prior work10 effectively assumed infinite relax-
ation of population imbalance �lQ→0�. We demonstrate that
the results previously obtained in Ref. 10 for both � and the
thermoelectric power � at nonzero doping and temperature
emerge in the limit of asymptotically large system sizes L

� lQ for a finite rate of imbalance relaxation, �lQ�0�. We
will show that when the ends of a graphene slab of length
L lQ are held at disparate temperatures and no electric cur-
rent is permitted to flow, steady-state particle convection
does nevertheless occur; carrier flux is created or destroyed
by imbalance relaxation processes near the terminals of the
device. Similar physical phenomena in bulk �three-
dimensional �3D�� semiconductors were studied in the
1950s.17

Thermopower measurements require the junction of the
graphene slab with metallic contacts. We incorporate into our
calculations carrier exchange with nonideal contacts, which
also relaxes the imbalance, and we carefully delimit the re-
gimes in which deviations from the infinite relaxation limit
should be observable in experiments. The effects of weak
quenched disorder are included in all of our computations.

In this paper, we restrict our attention to the hydrody-
namic �or “interaction-limited”� transport regime, where in-
elastic interparticle collisions dominate over elastic impurity
scattering. Prior work addressing thermoelectric transport in
the opposite, “disorder-limited” regime, in which real carrier-
carrier scattering processes may be neglected, includes that
of Refs. 11, 18, and 19. In the disorder-limited case, � and �
are determined by the energy dependence of the electrical
conductivity, via the “generalized” Wiedemann-Franz law
and Mott relation, respectively.20 The effect of the slow im-
balance relaxation upon the dc conductivity in graphene un-
der nonequilibrium interband photoexcitation has also been
addressed.22

What essential new physics emerges through the incorpo-
ration of imbalance relaxation effects into the description of
thermoelectric transport and how can it be extracted from
experiments? The entirety of linear transport phenomena in
graphene within the hydrodynamic regime is essentially
quantified by four intrinsic parameters. A finite rate of imbal-
ance relaxation means that electrons and holes respond inde-
pendently to external forces; the single “quantum critical”
conductivity identified previously in Refs. 8–10 generalizes
to a 2�2 tensor of coefficients with diagonal elements �ee
and �hh and off-diagonal elements �eh=�he; all are mediated
entirely by inelastic interparticle collisions. The description
is similar to that of Coulomb drag:23 the diagonal element
�ee ��hh� characterizes the response of the conduction-band
electrons �valence-band holes� to a �gedanken� electric field
that couples only to that carrier type, whereas �eh character-
izes the “drag” exerted by one carrier species upon the other
�due to electron-hole collisions� under the application of
such a field. �ee and �hh are related by particle-hole symme-
try, leaving two independent parameters which we can take
as �eh and �min���ee+�hh−2�eh�; the latter combination is
equal to the bulk dc electrical conductivity � at the Dirac
point in the hydrodynamic regime.12 The imbalance relax-
ation length lQ constitutes the third intrinsic graphene param-
eter, while the fourth is provided by the elastic mean free
path lel for a disordered sample.

Of these, lel and �min can both be obtained from either the
bulk dc conductivity � �measured at variable doping� or from
the combined measurement of the “infinite imbalance relax-
ation” thermoelectric transport coefficients �	 and �	. Here,
�	 and �	 are the �electronic� thermal conductivity and ther-

FIG. 1. Kinematical constraints for imbalance relaxation. The
left figure shows the Feynman diagram for the typical two-particle
decay process given by Eq. �1.1�; �i and pi respectively denote the
energy and momentum of the ith electron or hole. The right figure
depicts momentum conservation for this process. The length of the
dashed path Lf ��p2�+ �p3�+ �p4� traced out by the sum of “decay
product” momenta is always greater than or equal to the length Li

��p1� of the “parent” particle momentum: Lf�Li. If the particle
energy spectrum takes the form ��p�= �p��, then the depicted decay
process is kinematically forbidden for ��1. For �=1, only forward
scattering is allowed.
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mopower, respectively, as measured in a graphene device
with L� lQ. By contrast, the off-diagonal parameter �eh can
be independently determined through measurement of either
� or � for a sufficiently short device satisfying L� lQ. �A
precise discussion of the limiting and crossover behaviors of
� and �, incorporating the complicating effects of the exter-
nal contacts, is presented in Sec. IV of this paper.� Finally,
the imbalance relaxation length lQ can be ascertained via the
measurement of either � or � in the crossover regime L
� lQ or through spatial resolution of the inhomogeneous tem-
perature or electrochemical potential profiles across a device
with L lQ. The four intrinsic graphene transport parameters
discussed above and suggestions for their experimental de-
termination are listed in Table I.

The rest of this paper is organized as follows. In Sec. II,
we formulate a hydrodynamic description of carrier transport
that admits carrier population imbalance and relaxation. In
order to illustrate ideas, we apply this formalism to a putative
experimental device. The hydrodynamic approach allows us
to obtain the inhomogeneous temperature, chemical poten-
tial, and number current profiles across the device; some of
these are sketched in Fig. 4 for a system at zero doping. In
Sec. III, we derive the thermal conductance Gth at the Dirac
point, and we discuss the short and long device asymptotics
of heat transport. General results for � and � at arbitrary
doping are obtained and discussed in Sec. IV.

We neglect phonon effects throughout the body of this
work, but these are considered in Sec. V. We focus in par-
ticular upon the influence of electron-phonon interactions on
the electronic transport coefficients derived in this paper. We
demonstrate that phonons may be neglected at low tempera-
tures or for graphene samples of mesoscopic size.

II. HYDRODYNAMIC FORMULATION AND SOLUTION

A. Two fluid hydrodynamics

We take as our starting point the hydrodynamic equations
of motion for carriers in graphene, expressed in relativisti-
cally covariant notation:

�iJe
i = − �iJh

i = − eI , �2.1�

� j�
ij −

1

vF
Fij�Jej + Jhj� = bel

i , �2.2�

where Je
i and Jh

i denote the electron and hole electric three-
current densities, respectively, �ij is the traceless energy-
momentum tensor for the �classically� scale-invariant two-
component plasma, and Fij is the Faraday tensor
incorporating both external and self-consistent fields. The
Fermi velocity in graphene is denoted by vF, while e=−�e� is
the electron charge. Summation over repeated “space-time”
indices is implied in Eqs. �2.1� and �2.2�, where xi

� �x0 ,x1 ,x2	= �vFt ,x ,y	, while �i�� /�xi. The quantity I in
Eq. �2.1� is the imbalance relaxation flow, which is propor-
tional to the rate 1 /
Q of carrier recombination or generation
between the electron and hole bands. The frictional force
density bel

i in Eq. �2.2� manifests the effects of elastic scat-
tering of carriers by quenched disorder. In a microscopic
quantum kinetic equation treatment, I and bel

i are obtained as
certain momentum averages of the inelastic and elastic col-
lision integrals, respectively. In the limit I→0, electrons and
holes are separately conserved.

By adopting the hydrodynamic approach, we posit fast
equilibration of the electron-hole plasma due to inelastic col-
lisions; in particular, we assume 
in�
el �the interaction-
limited transport regime, see Ref. 11�, with 
in the inelastic
lifetime due to interparticle scattering and 
el the elastic life-
time due to quenched disorder. We express Je,h

i and �ij in
terms of local thermodynamic variables and a hydrodynamic
three-velocity Ui���vF ,u�, with u the ordinary fluid veloc-
ity and �2= �1−u2 /vF

2�−1. Incorporating dissipative devia-
tions from local equilibrium, we write24

Je
i � e�neU

i + �e
i � , �2.3�

Jh
i � − e�nhUi + �h

i � , �2.4�

�ij � 3P
 1

vF
2 UiUj −

1

3
gij� + �ij , �2.5�

where �e,h
i and �ij represent the dissipative fluctuations of the

electron and hole number currents and stress tensor, respec-

TABLE I. Intrinsic transport parameters for graphene in the hydrodynamic regime and how to extract them from thermoelectric transport
�and other� measurements. ��L� is the electronic contribution to the thermal conductivity and ��L� is the thermopower. Here and below, L
denotes the length of the putative graphene device, which should be compared to the imbalance relaxation length lQ. The parameters lQ and
�eh have been introduced in this work. Relevant results obtained in this paper can be found in the equations listed in the third column.

Parameter Description Extract from measured quantity

lQ Imbalance relaxation length
Temperature T�x� or electrochemical potential V��x� pro-

file �Eqs. �2.27�, �2.31�, �2.40�, and �2.41��

lel Elastic mean free path �due to quenched disorder�

Bulk dc conductivity � �Eq. �2.21��; ��L�→�	 and
��L�→�	 obtained in the limit L� lQ �Eqs. �2.22� and

�2.23��

�min=�ee+�hh−2�eh

Inelastic carrier-carrier scattering contribution
to the bulk �

Minimum conductivity at the Dirac point �Eq. �2.21��;
��L�→�	 and ��L�→�	 obtained in the limit L� lQ

�Eqs. �2.22� and �2.23��

�eh

Off-diagonal �“drag”� component of the conductivity
tensor due to inelastic electron-hole scattering

��L� or ��L� obtained in the limit L� lQ �Eqs. �4.3� and
�4.4��
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tively. In Eqs. �2.3� and �2.4�, ne and nh represent proper �rest
frame� electron and hole densities. P denotes the total pres-
sure in Eq. �2.5�, where we have used the thermodynamic
relation 3P=H, with H as the enthalpy density; this is a
consequence of relativistic scale invariance. In this same
equation, gij denotes the Minkowski metric tensor.25

In what follows, we will neglect for compactness of pre-
sentation the nonequilibrium component of the stress tensor
�ij, which describes viscous effects in nonuniform fluid flow.
For the thermoelectric transport problem studied here, vis-
cous drag along the sample edges is irrelevant under the
condition W2��vF

2
el /3P, where W is the sample width
transverse to parallel electric and heat current flows and � is
the first �dynamic� viscosity coefficient.24 �The second vis-
cosity � vanishes for a massless relativistic gas.�16 By insert-
ing the decomposition in Eqs. �2.3�–�2.5� into Eqs. �2.1� and
�2.2� and taking the nonrelativistic limit u2�vF

2 , we derive
the following entropy, momentum, and particle number bal-
ance equations:

T��ts + � · 
su −
�e

T
�e −

�h

T
�h�

= �eE − T � 
�e

T
� · �e + ��e + �h�I

+ �− eE − T � 
�h

T
� · �h − u · bel, �2.6�

3P
vF

2

du

dt
= �E − ne � �e − nh � �h − s � T + bel, �2.7�

�tn + � · Jn = − 2I , �2.8�

�t� + � · J = 0. �2.9�

Here, s is the entropy density, �e,h are the electron and hole
chemical potentials, and E is the electric field. Jn and J,
respectively, denote the total carrier number and electric cur-
rent densities in Eqs. �2.8� and �2.9�; these are defined as

Jn � nu + �e + �h, �2.10�

J = Je + Jh = �u + e��e − �h� . �2.11�

In Eqs. �2.8�–�2.11�,

n � ne + nh, � � e�ne − nh� �2.12�

represent the net carrier number and electric charge densities,
respectively. Let us also define the imbalance �I and relative
� chemical potentials via

�I �
�e + �h

2
, � �

�e − �h

2
. �2.13�

On the left-hand side of Eq. �2.7�,

d

dt
� �t + u · � �2.14�

is the material derivative.

Within linear response, Eq. �2.6� implies that the thermo-
dynamic “forces” �eE−T� ��e /T� ,−eE−T� ��h /T� ,u ,2�I	
determine the conjugate “fluxes” ��e,h ,bel , I	 via the matrix
equation,

�
e2�e

e2�h

bel

I
� = M̂�

eE − T � 
� + �I

T
�

− eE + T � 
� − �I

T
�

u

2�I

� . �2.15�

Onsager reciprocity26 of the entropy balance Eq. �2.6� dic-

tates that the kinetic coefficient matrix M̂ is symmetric,

M̂T = M̂,

where the superscript T denotes the matrix transpose opera-
tion. Assuming vanishing or weak quenched disorder and

slow imbalance relaxation, M̂ can be written as

M̂ = �
�ee �eh 0 0

�eh �hh 0 0

0 0 −
3P

vF
2
el

0

0 0 0
n�Q

2�

� . �2.16�

The electric conductivities �ab, ab� �ee ,hh ,eh	, arise solely
due to interparticle collisions and can be computed in prin-
ciple within a microscopic quantum kinetic equation �QKE�
formulation.12 The elastic lifetime 
el determines the fric-
tional force density bel�−u; Eqs. �2.15� and �2.16� provide
an implicit definition for 
el. Finally, �Q is a dimensionless
parameter that characterizes the efficacy of generation and
recombination processes.

Both ��ab	 and �Q are functions of the dimensionless ra-
tios � /kBT and �I /kBT. Particle-hole symmetry requires that
the diagonal conductivity elements satisfy the condition,

�ee
 �

kBT
,
�I

kBT
� = �hh
−

�

kBT
,
�I

kBT
� . �2.17�

Equations �2.15� and �2.16� therefore assert that the interpar-
ticle collisions give rise to two independent kinetic coeffi-
cients, �ee and �eh, which carry the units of electrical con-
ductance, in addition to the dimensionless imbalance
relaxation parameter �Q. In this paper we focus upon trans-
port in the nondegenerate regime, kBT� ��� , ��I�; within the
accuracy of the linear response approximation, ��ab	 and �Q
can then be regarded as fixed constants, typically evaluated
at the Dirac point ��=�I=0�. Under these conditions, Eq.
�2.17� implies that �ee=�hh.

It is worth pointing out that the friction density bel and
imbalance relaxation flow I appear already at the level of the
“ideal” hydrodynamics: to compute �in principle� the param-
eters 1 /
el and �Q in Eq. �2.16�, it is sufficient to solve the
associated QKE at zeroth order in the inelastic relaxation
time 
in, with electron and hole distribution functions locally
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constrained to take the Fermi-Dirac form.16,24,27 The ideal
hydrodynamics is captured by Eqs. �2.6�–�2.11� with �e
=�h=0.

To zeroth order in 
in, bel is nonvanishing for a convective
particle flow in the rest frame of the disorder �u�0�, while
nonzero I arises whenever a population imbalance occurs
��I�0�. The explanation for this is as follows: the inelastic
collision integral governing interparticle scattering for a
clean graphene system with vanishing imbalance relaxation
would possess zero modes associated to homogeneous fluid
convection �momentum conservation� and global shifts of
the total carrier number density. These zero modes are made
“massive” through the introduction of disorder and the inclu-
sion of some mechanism for imbalance relaxation �such as
three-particle collisions�. For graphene in the hydrodynamic
regime, the “masses” �scattering rates� �1 /
el� and �1 /
Q�,
respectively associated to weak disorder and inefficient im-
balance relaxation are much smaller than the inelastic scat-
tering rate �1 /
in� for electron and hole number-conserving
collisions. Even in the limit of arbitrarily efficient equilibra-
tion due to frequent and strongly inelastic such collisions
�
in→0�, nonvanishing u and �I induce dissipation by cou-
pling to these weakly massive modes. The dominant effect of
these forces is the generation of bel and I in the ideal hydro-
dynamic description.

By contrast, a small but nonzero 
in allows out-of-
equilibrium deformations of the electron and hole distribu-
tion function shapes. The ��ab	 acquire nonzero values in the
first order of the QKE expansion in 
in. This separation of
zeroth-order and first-order responses justifies the assumed
block-diagonal form of the kinetic coefficient matrix in Eq.
�2.16�.

B. Bulk kinetic coefficients

In the limit of infinite imbalance relaxation, �Q→	 in Eq.
�2.16�, we must slave �e=−�h=� and �I=0 in Eqs. �2.6�,
�2.7�, and �2.15�. Assuming steady-state conditions, Eqs.
�2.7�–�2.9�, �2.15�, and �2.16� allow the computation of the
electric J and heat Jq current densities in the presence of
electrochemical potential and temperature gradients. The
heat current implied by the left-hand side of the entropy bal-
ance �Eq. �2.6�� is

Jq � Tsu − �e�e − �h�h = 3Pu − �IJn −
�

e
J , �2.18�

where we have used Eqs. �2.10� and �2.11�. The linear re-
sponse takes the usual form21

J = �ε + ��	�− �T� , �2.19�

1

T
Jq = ��	ε + 
�	

T
+ ��	

2��− �T� , �2.20�

where

ε � E −
1

e
� �

is the electrochemical potential gradient. The thermoelectric
response in Eqs. �2.19� and �2.20� is characterized by the

bulk dc electrical conductivity � and the infinite imbalance
relaxation limits of the thermopower �	 and thermal conduc-
tivity �	. In terms of the intrinsic kinetic parameters defined
via Eq. �2.16�, one finds that

� = �min +
vFlel�

2

3P
, �2.21�

�	 =
3PvFlel�min

T�
, �2.22�

�	 =
vFlel�

T�
−

�

eT
, �2.23�

where the minimum conductivity at the Dirac point is given
by

�min � �ee + �hh − 2�eh. �2.24�

In these equations, lel�vF
el is the elastic mean free path due
to quenched impurity scattering. In the clean limit, the ther-
mopower in Eq. �2.23� simplifies to �	=s /�, which may be
interpreted as the “transport entropy” per charge.28 The re-
sults of Eqs. �2.21�–�2.23� were originally obtained in Ref.
10.

All three thermoelectric coefficients in Eqs. �2.21�–�2.23�
depend only upon the combination ��ee+�hh−2�eh� for arbi-
trary doping. We will demonstrate below that these same
formulae apply in the presence of finite imbalance relaxation,
in the limit of a sufficiently long graphene sample. In the
opposite limit of a short graphene device, we obtain com-
pletely different results for both � and �, as detailed in Sec.
IV. Combined with particle-hole symmetry �Eq. �2.17��,
measurement of long and short graphene devices should al-
low an experimental determination of all three parameters
�ee, �hh, and �eh.

C. Experimental geometry

We consider an experiment in which a rectangular strip of
graphene is terminated with metallic contacts at opposite
ends of the strip; we take the strip to lie along the x axis
between x=0 and x=L. In a thermal conductivity measure-
ment, the leads are held at different temperatures, T�0��T1
and T�L��T2, and the heat current Jq �Eq. �2.18�� is mea-
sured. For convenience, let us introduce

T̄ �
T1 + T2

2
, �T � T1 − T2. �2.25�

To determine the thermopower, we analyze a gedanken mea-
surement in which the metallic contacts are interconnected
by a highly resistive “wire;” we sketch a schematic setup in
Fig. 2. The wire is taken to be composed of a disordered
metal that is approximately particle-hole symmetric and thus
manifests no thermoelectric voltage of its own. Let V�x� de-
note the electric potential profile within the graphene. The
application of the temperature gradient �T�0 induces a
drop V�L�−V�0� across the graphene slab via its thermoelec-
tric effect. Through local electrochemical quasiequilibration
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at the contacts, the graphene potential drop translates into a
voltage difference �Vw�Vw

L −Vw
0 across the ends of the wire.

Here, Vw
L and Vw

0 denote the electric potentials near the con-
tacts situated at x=L and x=0, respectively, just inside of the
metal wire �outside of the graphene�. �Vw drives an electric
current through the wire linking the contacts. We assume
local electroneutrality throughout the wire; therefore, the dif-
fusion component of the electric current vanishes outside of
the graphene. In the limit of arbitrarily large wire resistance,
the thermopower is then simply the ratio

� �
�Vw

�T
. �2.26�

Knowledge of the wire resistance and a galvanic measure-
ment of the current thus allow experimental determination of
�.

We specialize to the quasi-one-dimensional �1D� strip ge-
ometry discussed above and assume a steady-state linear re-
sponse to the application of unequal temperatures at the con-
tacts. A small �T induces proportional deviations from zero
of u, �I, Jn, and V�x�; we define the graphene electric poten-
tial such that V�x�→0 in the limit �T→0. The temperature
and relative chemical potential are expanded about their av-
erage values:

T�x� = T̄ + ��x�, ��x� = �̄ + ��x� , �2.27�

where � and � are assumed proportional to �T.

D. Boundary conditions

We impose the following boundary conditions relating the
electron and hole electric current densities Je,h to the corre-
sponding electrochemical potential drops across the contacts
of the device shown in Fig. 2:

Je�L� =
1

2r
�V�L� − Vw

L −
1

e
��w − �e�L��� , �2.28a�

Jh�L� =
1

2r
�V�L� − Vw

L +
1

e
�− �w − �h�L��� ,

�2.28b�

Je�0� =
1

2r
�Vw

0 − V�0� −
1

e
��e�0� − �w�� , �2.28c�

Jh�0� =
1

2r
�Vw

0 − V�0� +
1

e
��h�0� + �w�� . �2.28d�

Here, r denotes the contact surface resistivity, i.e., Rc=r /W,
where Rc is the electrical contact resistance and W is the
sample width transverse to the temperature gradient. In Eqs.
�2.28a�, �2.28b�, �2.28c�, and �2.28d�, �w denotes the single
chemical potential level characterizing the particle-hole sym-
metric metal wire. Given the assumption of electroneutrality,
�w remains fixed at its equilibrium value even in the pres-
ence of �T�0.

When no net electric current is permitted to flow, the sur-
face resistivity r characterizes the influence of carrier ex-
change with and recombination-generation �RG� in the con-
tacts. This is one of the factors limiting the extent of the
steady-state population imbalance ��I�0� occurring near the
edges of the graphene sample, in the presence of a thermal
gradient. A more complicated model of the metal-graphene
junctions might incorporate additional RG mechanisms into
the boundary conditions �such as interfacial RG centers�,29

but the presence of these does not introduce new physics
beyond that obtained from the nonzero contact conductance
W /r�0.

In equilibrium, T1=T2= T̄; everywhere within the
graphene slab, we have the conditions

�e�x� = − �h�x� = �̄, V�x� = 0,

Je�x� = Jh�x� = 0.

Generically, the electron chemical potentials in the graphene
slab ��e= �̄� and metal wire ��w� will differ; equivalently,
�h− �−�w�=−�̄+�w�0. The interpretation of �w and −�w
as the “electron” and “hole” chemical potentials in the metal
is elaborated in Fig. 3. Assuming strong bulk screening in
both materials, a dipole layer develops at the contacts, lead-
ing to the contact potential �see Fig. 3�,

Vw
L = Vw

0 =
1

e
��̄ − �w� .

In the nonequilibrium case, we therefore write

Vw
L =

1

e
��̄ − �w� +  Vw

L , Vw
0 =

1

e
��̄ − �w� +  Vw

0 .

�2.29�

FIG. 2. �Color online� Schematic setup for the two terminal
thermopower and thermal conductivity measurements. The
graphene slab of length L is denoted by the dashed gray line. The
contacts at x=0,L are held at temperatures T=T1 ,T2, respectively,
via external thermostats. The two contacts are electrically bridged
by a highly resistive wire represented in the figure by the thick
black interconnect. The development of a thermoelectric response
V�L�−V�0��0 in the graphene induces a voltage drop �Vw�Vw

L

−Vw
0 in the wire, which drives the current J. Measurement of J �via

galvanometer� and knowledge of the wire resistance allows compu-
tation of the graphene thermopower, which is simply the ratio of
�Vw to the temperature drop �T=T1−T2, in the limit of infinite
wire resistance.
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We now take the ideal limit of an infinitely resistive wire
interconnect �Fig. 2�, and thus we require that the electric
current vanish everywhere,

J = 0.

Using Eqs. �2.10�, �2.11�, �2.13�, and �2.29�, the boundary
conditions in Eq. �2.28� may then be recast as

�I�L� = e2rJn�L�, − �I�0� = e2rJn�0� , �2.30a�

 Vw
L = V��L�,  Vw

0 = V��0� , �2.30b�

where we have introduced the electrochemical potential fluc-
tuation,

V��x� � V�x� +
1

e
��x� . �2.31�

Finally, the temperature fluctuation ��x� satisfies

��0� = − ��L� =
�T

2
. �2.32�

�� and � were introduced in Eq. �2.27�.�

E. Solution to the linearized hydrodynamic equations

Employing standard thermodynamic identities and linear-
izing in �T, we rewrite the hydrodynamic Eqs. �2.6�–�2.8�,
�2.15�, and �2.16� as the following set of five first-order dif-
ferential equations valid to the lowest order in u2 /vF

2:

1

T̄

d��x�
dx

=
e2

6PD�

�NIJn�x� − 2uN�
2� −

u

vFlel
, �2.33�

dV��x�
dx

=
�̄

eT̄

d��x�
dx

+
e

2D�
� �!I

e − !I
h�

2
Jn�x� + NIIu ,

�2.34�

d�I�x�
dx

=
e2

2D�
�−

�!I
e + !I

h�
2

Jn�x� + NIu , �2.35�

dJn�x�
dx

= −
2n�Q

�
�I�x� , �2.36�

du

dx
= 0. �2.37�

The various new parameters appearing in Eqs. �2.33�–�2.37�
are defined by

!I
e � �ee − �eh, !I

h � �hh − �eh,

!II
e � �ee + �eh, !II

h � �hh + �eh,

D� � �ee�hh − �eh
2 ,

NI � �ne!I
h + nh!I

e�, NII � �ne!II
h − nh!II

e � ,

N�
2 � �ne

2�hh + nh
2�ee − 2nenh�eh� . �2.38�

We note that the kinetic coefficient sum

!I
e + !I

h = �min, �2.39�

the minimum conductivity at the Dirac point �Eqs. �2.21� and
�2.24��.

When supplemented with Eqs. �2.30a� and �2.32�, Eqs.
�2.33�–�2.37� are easily solved. The results are

FIG. 3. This figure depicts contact �“built-in”� potentials Vbi that
arise through equilibration of graphene and the wire interconnect
�voltmeter� depicted in Fig. 2. �a� and �b� depict the electrochemical
equilibration of electron-doped graphene and the metallic intercon-
nect, while �c� and �d� show the same for the hole-doped case. All
chemical potentials are measured from the position of the Dirac
point; in this figure, we have assumed that �w�0, i.e., the work
function of the metal is less than the electron affinity of the
graphene. The notion of a negative hole chemical potential −�w for
the carriers in the wire is easily understood via �c�: before electro-
chemical equilibration, the chemical potential difference
�h− �−�w� drives holes in the graphene to “float up” toward the
hole Fermi sea in the metal. Given the assumption of local electro-
neutrality throughout both the graphene and metal, the tunneling
holes must recombine with electrons on the surface of the metal,
leading to the accumulation of a dipole charge layer at the bound-
ary. As a result, a static built-in voltage Vbi=− 1

e ��w+�h� develops
between the wire and graphene which precisely offsets the intrinsic
chemical potential difference. Of course, this built-in voltage is not
directly measurable with a voltmeter.
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��x� =
"L�T

2 �r
NI

2

D�

2lQ

L

sinh
L − 2x

2lQ
�

cosh
 L

2lQ
�

+
RL�min

�	

�3P�2

T̄e2

L − 2x

L
�� , �2.40�

V��x� − V��0� =
�̄

eT̄
��x� + 
�T

T̄
�3P"L

2e �RL
�

e
2x − L

L �

+ r
NI�!I

e − !I
h�

2D�

2lQ

L

sinh
L − 2x

2lQ
�

cosh
 L

2lQ
� � ,

�2.41�

�I�x� = − 
�T

T̄
�r�min

3PNI"L

4D�

2lQ

L

sinh
L − 2x

2lQ
�

cosh
 L

2lQ
� ,

�2.42�

Jn�x� = 
�T

T̄
�6PNI"L

e2L �RL − r

cosh
L − 2x

2lQ
�

cosh
 L

2lQ
� � ,

�2.43�

u = 
�T

T̄
�RL�min

3P
Le2"L, �2.44�

where lQ denotes the imbalance relaxation length defined via

1

lQ
2 �

n�Q�min

2D�

e2

�
. �2.45�

In Eq. �2.40�, �	 is the thermal conductivity in the limit of
infinite imbalance relaxation, as given by Eq. �2.22�. �See
also Sec. III, below.� Finally, the parameters RL and "L ap-
pearing in Eqs. �2.40�–�2.44� are defined as

RL � r +
�

2ne2�QlQ
tanh
 L

2lQ
� , �2.46�

"L � �r
NI

2

D�

2lQ

L
tanh
 L

2lQ
� +

RL�min

�	

�3P�2

T̄e2 −1

.

�2.47�

In Sec. III, we specialize to the undoped case and com-
pute the thermal conductivity � in the limit of infinite contact
surface resistivity �r→	�. We will discuss in detail the in-
homogeneity of the temperature and number current density
profiles implied by Eqs. �2.40� and �2.43�. General results for
both � and the thermopower � are obtained and discussed in
Sec. IV.

III. THERMAL CONDUCTIVITY AT THE DIRAC POINT

We turn now to the calculation of the kinetic coefficients
characterizing the thermoelectric transport. In this section,
we concentrate upon the simplest case, that of zero doping.
In equilibrium, the Dirac point is characterized by the con-
ditions,

ne = nh =
n

2
, �̄ = 0,

�ee = �hh. �3.1�

As a result of the particle-hole symmetry implied by Eq.
�3.1�, the thermopower vanishes, �=0. �This result is dem-
onstrated explicitly via Eq. �4.2� in Sec. IV�.

The thermal conductivity � obtains from the heat current
�Eq. �2.18��. Within linear response,

Jq � �
�T

L
= 3Pu + O��T�2. �3.2�

In this section, we assume an ideal measurement of �, in
which the contact electrical resistivity becomes arbitrarily
large,

r → 	 �3.3�

�See Eqs. �2.28a�, �2.28b�, �2.28c�, and �2.28d�.� Then, we
use Eq. �2.44� and impose in addition the conditions listed in
Eq. �3.1� upon all equilibrium thermodynamic variables, ar-
riving at the result

� =


3P
n
�2 �T

T̄e2

L

2lQ
coth
 L

2lQ
�

1 +
3P�T

e2vFn2lel

L

2lQ
coth
 L

2lQ
� , �3.4�

where we have introduced

�T � �ee + �hh + 2�eh = 2��ee + �eh� . �3.5�

As the so-defined � depends upon the sample length L, it is
sometimes more natural to introduce the thermal conduc-
tance Gth,

Gth �
W

L
� , �3.6�

where W is the width of the graphene slab perpendicular to
the applied thermal gradient.
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The thermal conductance in Eqs. �3.6� and �3.4� consti-
tutes a primary result of this paper. The imbalance relaxation
due to non-electron and hole number-conserving inelastic
collisions enters through the ratio L / lQ, where the length lQ
was defined by Eq. �2.45�. At the Dirac point, the latter sim-
plifies to

1

lQ
2 =

2n�Q

�T

e2

�
. �3.7�

The effects of quenched disorder are encoded in Eq. �3.4�
through the elastic mean free path lel.

Let us interpret our results. Consider first the clean limit
with lel→	. In this case, the physics is determined by the
ratio of the system size L to the length scale lQ �Eq. �3.7��.
For a short device, L� lQ, the thermal conductivity given by
Eq. �3.4� asymptotes to

� = �� + O
 L

lQ
�2

,

�� � �33��3�
#2 2kB

2 T̄

e2 �T. �3.8�

The prefactor in Eq. �3.8� obtains from the equilibrium pres-
sure and density in Eq. �3.4� evaluated for the ideal relativ-
istic quantum gas at zero doping, taking into account valley
and spin degeneracies in graphene. In this short device limit,
the temperature profile ��x� �Eq. �2.40�� falls approximately
linearly across the entire sample, while the number current
density Jn is small everywhere along the strip.

In the opposite limit of a long device, L� lQ, the thermal
conductance defined via Eq. �3.6� approaches the
L-independent constant,

Gth =
W

2lQ
�� + O�exp
−

L

lQ
� . �3.9�

The temperature profile T�x�= T̄+��x� now consists of three
regions: within a distance lQ of the sample boundaries, the
temperature drops approximately linearly; in between these

boundary regions, T� T̄. A large carrier number current Jn�x�
�Eq. �2.43�� flows through the bulk of the sample but pinches
off to zero at x=0 and x=L where, for �T�0, generation
and recombination processes, respectively, relax the accumu-
lating population imbalance. As indicated by Eqs. �2.43� and
�2.46�, if we relax the condition stipulating ideal contacts
�Eq. �3.3�� by assuming a nonzero contact conductance den-
sity 1 /r�0, then Jn�x� adopts a nonzero value at the sample
edges; in this situation, electrons and holes that penetrate
�escape� the graphene are generated �recombined� in the con-
tacts.

For a long device �L� lQ� possessing, in addition, weak
quenched disorder, the graphene sample behaves as three
thermal resistors in series. The boundary resistance is domi-
nated by the imbalance relaxation processes as in Eq. �3.9�,
but there is now a finite temperature drop through the bulk.
Disorder also introduces a second length scale l	� lQ into
the denominator of Eq. �3.4�, defined as

l	 � lel� e2

��T�Q
. �3.10�

The scale l	 emerges from Eq. �3.4� when all thermodynamic
variables in that equation are evaluated for the ideal quantum
relativistic gas with zero charge density. For a graphene slab
with L� l	, the bulk thermal resistance dominates and the
thermal conductivity � asymptotes to the infinite imbalance
relaxation value given by Eq. �2.22�, which simplifies at the
Dirac point to

�	 =
3PvFlel

T̄
. �3.11�

For an appropriate definition of lel, Eq. �3.11� is the same
result obtained in previous work,10 which effectively as-
sumed infinite imbalance relaxation. In Fig. 4, we sketch our
results for the L dependence of the temperature and number
current profiles T�x� and Jn�x�, as well as the thermal con-
ductivity �=LGth /W, for a sample satisfying l	� lQ.

Note that in the clean limit lel→	, the result in Eq. �3.11�
appears to suggest that the thermal conductivity at zero dop-
ing diverges for any L. For any finite imbalance relaxation
lQ�0, we have seen that this conclusion is incorrect; instead,
the response is inhomogeneous �Fig. 4�, yielding a finite Gth

FIG. 4. The top graph �a log-log plot� depicts the qualitative
form of the thermal “conductivity” ��LGth /W �Eq. �3.4�� versus
sample length L for an undoped graphene strip possessing both
slow imbalance relaxation and weak quenched disorder. Three man-
ners of functional behavior for � are demarcated with dotted, solid,
and dashed line segments; for each of these, the bottom plots show

representative spatial profiles of the temperature T�x�− T̄=��x�
�Eq. �2.40�� and number current density Jn�x� �Eq. �2.43��. For sys-
tem sizes lQ�L� l	 �solid curves�, � grows linearly with L, while
the temperature profile is inhomogeneous; this regime is also char-
acterized by the maximal particle flux Jn, as measured at the device
center x=L /2. By contrast, in the short �L� lQ� and long �L� l	�
sample size limits, respectively designated by dotted and dashed
curves in the figure, � saturates to �� and �	, respectively; here, the
temperature profile asymptotes to a linear gradient. The assumption
of infinite contact resistivity �Eq. �3.3�� ensures that Jn�x� vanishes
at x=0,L.
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for all L �Eqs. �3.6� and �3.4��. We observe that � in Eq. �3.4�
depends only upon the combination �T �Eq. �3.5�� of intrin-
sic kinetic coefficients; this is different from the combination
that enters into the minimum conductivity at the Dirac point
�min �Eqs. �2.21� and �2.24��. Finally, it is important to stress
that the limit given by Eq. �3.11� is appropriate only to the
hydrodynamic transport regime, 
el
in; in the opposite
case, � is constrained by the generalized Wiedemann-Franz
law,20 and a different result can be obtained.

IV. THERMOELECTRIC TRANSPORT COEFFICIENTS:
ARBITRARY DOPING

In this section, we compute the thermoelectric response of
graphene at nonzero doping. Combining Eqs. �3.2� and
�2.44�, the general expression for the thermal conductivity is

� = RL�min

�3P�2

T̄e2
"L. �4.1�

The thermoelectric power � was identified in Sec. II as
the ratio expressed in Eq. �2.26�, where �Vw= Vw

L − Vw
0 is

the voltage drop across the wire interconnect serving as our
voltmeter in the experiment sketched in Fig. 2. The boundary
conditions in Eq. �2.30� demonstrate that � is determined by
the electrochemical potential drop �V�=V��L�−V��0�
across the graphene. Equation �2.41� then implies that

� =
�V�

�T
= −

�̄

T̄e
+ RL

3P"L

T̄e2
�

− r
3P"L

T̄e

NI�!I
e − !I

h�
2D�

2lQ

L
tanh
 L

2lQ
� . �4.2�

The parameters RL, "L, NI, !I
e,h, and D� appearing in Eqs.

�4.1� and �4.2� were defined in Eqs. �2.38�, �2.46�, and �2.47�
above.

The general expressions in Eqs. �4.1� and �4.2� constitute
the primary results of this paper. We now specialize these
results to the short �L� lQ� and long �L� lQ� device limits.

A. Short device L™ lQ

For a device shorter than the imbalance relaxation length
lQ �Eq. �2.45��, Eqs. �4.1� and �4.2� asymptote to

� =
�3P�2

T̄e2 � 8rD� + L�min

8r
N�
2 +

3PD�

e2vFlel
� + L

�3P�2�min

T̄e2�	

� + O
 lQ

L
� ,

�4.3�

� =
3P

T̄e2� 4reNII + L�

8r
N�
2 +

3PD�

e2vFlel
� + L

�3P�2�min

T̄e2�	

� −
�̄

T̄e
+ O
 lQ

L
� .

�4.4�

These results indicate that the limit L� lQ gives not one but
several regimes for the thermoelectric response in the general

case; the demarcation lines between these depend upon L and
the contact surface resistivity r, as well as the doping and the
extent of disorder in the sample.

We analyze Eqs. �4.3� and �4.4�, neglecting the influence
of disorder for simplicity �lel→	�. We focus upon the non-

degenerate case of high temperatures and low doping, kBT̄
� ��̄�. A maximum of three behavioral regimes are possible
for both � and �, and these are accessed sequentially with
increasing L. We define two length scales mediated by the
contact resistivity r,

lr
��� � r�min, lr

��� � r�min
 en

�
�2

, �4.5�

where n and � are the total number and charge densities,
respectively �Eq. �2.12��. In Eq. �4.5�, �min denotes the mini-
mum dc conductivity at the Dirac point in the hydrodynamic
regime, as defined by Eqs. �2.21� and �2.24�. Clearly we have
lr
���� lr

��� in the nondegenerate regime. The interpretation of
lr
��,�� is as follows. At the scale lr

���, the electrical conduc-
tance of the graphene sample at zero doping is of order the
contact conductance since

W�min

lr
��� �

1

Rc
�4.6�

where Rc=r /W and W is the sample width transverse to the
current flow. By contrast, lr

��� is the scale at which the ther-
mal conductance Gth for clean nondegenerate graphene in the
infinite imbalance relaxation limit becomes of order the elec-
trical contact resistance:

Gth,	�L = lr
���� �

W�	

lr
��� � 
 kB

2 T̄

e2 � 1

Rc
, �4.7�

where �	 is given by Eqs. �2.22� and �2.21� in the limit
lel→	.

For a device with L� lr
���, we can set L=0 everywhere in

both Eqs. �4.3� and �4.4�. The resulting expressions for � and
� are exactly those obtained for graphene possessing zero
imbalance relaxation, �Q=0 in Eqs. �2.16� and �2.45�, as
measured through ideal �electrically insulating, thermally
conducting� contacts. These zero imbalance relaxation
�shortest device� expressions for � and � are completely dif-
ferent from the infinite imbalance relaxation �longest device�
results �	 and �	 given by Eqs. �2.22� and �2.23� above. For
example, using the definitions of NII and N�

2 from Eq. �2.38�,
it is clear from Eq. �4.4� that the thermopower in this regime
vanishes smoothly as the sample charge density is tuned
through the Dirac point even for a perfectly clean sample. By
contrast, Eq. �2.23� gives �	=s /� in the limit lel→	, which
exhibits a simple pole at �=0 �s is the entropy density�.
Measurements of the thermoelectric response in both the
short and long device limits for graphene in the hydrody-
namic regime should allow extraction of the independent di-
agonal ��ee� and off-diagonal ��eh� tensor coefficients de-
fined by Eq. �2.16�.

In a longer device with intermediate L, lr
����L� lr

���, the
terms proportional to L in the numerators of both Eqs. �4.3�
and �4.4� dominate the response. Similar to the intermediate
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regime of the thermal conductivity of undoped disordered
graphene discussed in Sec. III and illustrated in Fig. 4, both
� and � rise linearly with L. For much longer devices with
L� lr

���, the term proportional to L in the denominator of both
Eqs. �4.3� and �4.4� dominates so that � and � plateau to
their infinite imbalance relaxation limits ��	 ,�	�, transcribed
above in Eqs. �2.22� and �2.23�. In other words, when the
contact electrical conductance becomes larger than the infi-
nite imbalance relaxation limit of the graphene thermal con-

ductance Gth,	 �times e2 /kB
2 T̄� �Eq. �4.7��, we find that �

→�	.
Observation of the described crossovers requires that the

imbalance relaxation length lQ exceeds one or both of lr
���

� lr
���. In the nondegenerate regime of the carrier plasma, we

obtain an order of magnitude estimate for lQ by approximat-
ing Eq. �2.45� as

lQ ����min

e2�Q

�vF

kBT̄
. �4.8�

�see also Eq. �3.7�, Sec. III�. For a fixed sample size L, we
can determine the temperatures T�Tr

��,�� below which the
crossovers at L� lr

��� and L� lr
��� become observable within

the short device �L� lQ� regime. As it is expected to vary
only weakly with decreasing temperature, the smaller scale
lr
��� may be approximated as a constant. Equation �4.8� then

implies that the crossover at L� lr
��� occurs for temperatures

T̄ � Tr
��� �

�vF

kB

1

r
� �

e2�min�Q
. �4.9�

By contrast, the T̄ dependence of lr
��� is partially determined

by the conditions of the experiment. If for example the
charge density �=e�ne−nh� is held constant as the tempera-
ture is varied, then Eq. �4.8� suggests that the crossover at
L� lr

��� should be observable in the short device regime only
for temperatures

T̄ � Tr
��� �

�vF

kB

 �2

e2r
� �

e2�min�Q
�1/5

. �4.10�

These equations hold only for relatively clean nondegenerate
graphene; the average chemical potential and temperature

must satisfy ��̄� /kB� T̄. In addition, if we take �Q�1 and
�min�4e2 /h �see the discussion in Sec. IVB, below�, then
Eq. �4.10� holds only for lel� lQ�en /��2. By contrast, for lel
� lQ, only one crossover within the L� lQ regime is possible
at L� lr

���.

B. Numbers for the short device (L™ lQ) regime

Experimentally, vF�106 m /s, while �min�4e2 /h.1,30 We
have not calculated the imbalance relaxation parameter �Q in
Eqs. �4.8�–�4.10�, which requires a quantum kinetic equation
treatment that incorporates three-particle collisions and/or
impurity-assisted recombination. We have argued that, due to
the absence of two-particle mechanisms �see Fig. 1 and the
concomitant discussion in Sec. I�, imbalance relaxation
should be a slow process in the hydrodynamic regime. In
what follows, we take the conservative estimate �Q�1.

We consider first the crossover at L� lr
���. The assumed

sample width is W=1 �m. For a contact resistance of Rc
=100 $ and a relative carrier density of � /e=1010 /cm2, Eq.
�4.9� gives Tr

����400 K. The average �relative� chemical po-
tential is �̄ /kB�20 K for the assumed density,31 while lr

���

� lQ�Tr
�����0.02 �m. Longer crossover lengths lr

��� and
lower temperatures Tr

��� can be obtained for larger contact
resistances Rc, but lower carrier densities are required to pre-
serve the condition of nondegeneracy for the carrier plasma.
A contact resistance of Rc=10 k$ and a relative carrier den-
sity of � /e=106 /cm2 gives Tr

����4 K, with lr
���� lQ�Tr

����
�2 �m. In this case, �̄ /kB�0.2 K.

We now turn to the crossover at L� lr
���. For a contact

resistance Rc=1 $ and a relative density � /e=1011 /cm2,
Eq. �4.10� gives Tr

����700 K. The chemical potential is
�̄ /kB�100 K for the assumed density,31 while lr

���

� lQ�Tr
�����0.01 �m. In order to observe deviations from

the infinite imbalance relaxation limit �Eqs. �2.21�–�2.23�� in
the short device regime, the sample length L� lr

���; so these
conditions would seem to require an impractically short de-
vice. Longer devices meeting the required constraints are
possible for more resistive contacts and lower carrier densi-
ties. For a contact resistance of Rc=100 $ and a relative
density � /e=107 /cm2, one finds Tr

����7 K, �̄ /kB�1 K,
and lr

���� lQ�Tr
�����1 �m. Contact resistance can be con-

trolled in principle through the incorporation of a highly in-
sulating spacer layer of varying thickness between the
graphene and the contact metal.

C. Long device Lš lQ

In the opposite limit where the sample length L exceeds
the imbalance relaxation length lQ, Eqs. �4.1� and �4.2� sim-
plify as follows:

� =
�	

1 + 
 lQ

L
� 8r�	T̄e2NI

2

�3P�2�min�4D�r + lQ�min�

+ O�exp�− L/lQ�� ,

�4.11�

� =
��

3P�min
−

�̄

T̄e
− 
 lQ

L
� e�

3P�min

4rNI�!I
e − !I

h�
�4D�r + lQ�min�

+ O�exp�− L/lQ�� . �4.12�

The denominator of Eq. �4.11� introduces yet another
length scale into the problem,

l	 � lQ

8r�	T̄e2NI
2

�3P�2�min�4D�r + lQ�min�
�

lQlr
���

lQ + lr
��� , �4.13�

where lr
��,�� were introduced in Eq. �4.5�. On the right-hand

side of Eq. �4.13�, we have used Eq. �2.22�, neglected the
effects of disorder for simplicity, approximated !I

e�!I
h

��min and D���min
2 , and assigned to all thermodynamic

variables their values at the Dirac point. In the limit L� l	,
Eqs. �4.11� and �4.12� show that the thermal transport coef-
ficients asymptote toward their infinite imbalance relaxation
limits, �→�	 and ����→���	�=�	.
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The criterion for the existence of a length-dependent
crossover in the behavior of � and � within the L� lQ regime
is as follows. For lQ� lr

���, Eq. �4.13� gives

l	 � lr
���. �4.14�

The scale lr
��� is also the crossover scale to the same �effec-

tive� infinite imbalance relaxation limit, as obtained in the
opposite regime L� lQ. Thus, the location of the crossover to
infinite imbalance relaxation behavior relative to L= lQ de-
pends upon the unspecified ratio lQ / lr

���, consistent with the
previous discussion.

In the opposite limit lQ� lr
���, a crossover in the L� lQ

regime definitely occurs at

l	 � lQ
 en

�
�2

� lr
���, �4.15�

with n ��� as the total number �charge� density. In this case,
an intermediate regime exists for lQ�L� l	, in which � and
� grow linearly with L. Only for L� l	 do the infinite im-
balance relaxation limits for these kinetic coefficients
emerge.

We stress once again that Eqs. �4.3�, �4.4�, �4.11�, and
�4.12� hold only for the case of hydrodynamic interparticle
collision-mediated transport. In the opposite case of disorder-
limited transport, where the elastic scattering rate exceeds
the inelastic rate due to interparticle collisions �
el�
in�, �
and � are slaved to the electrical conductivity through the
generalized Wiedemann-Franz law and Mott relation,
respectively.20 Further discussion on the distinction between
interaction and disorder-limited transport in graphene can be
found in Ref. 11.

Finally, we comment upon the physics of the thermoelec-
tric transport within the L� l	 regime. From Eq. �2.42�, we
note that, in the long device limit, the imbalance chemical
potential �I�x� �introduced in Eq. �2.13�� is exponentially
suppressed between boundary layers of size lQ. The electron-
hole population imbalance is therefore confined to the
boundary regions. By contrast, Eq. �2.43� shows that the
number current Jn that flows through the bulk of the sample
decays only linearly with increasing L for fixed �T,

Jn�L/2� �
L�l	

�	�T
2NI

3PL�min
�

�	

L

�T

kBT̄
, �4.16�

where we have used Eq. �4.1� and approximated !I
e�!I

h. For
L� lQ, ��L at the Dirac point for clean graphene �Eq. �3.4�
with lel→	�; at zero doping Jn therefore saturates to a finite
nonzero value as the system size diverges, consistent with
the picture of the central region as a perfectly conducting
thermal wire. By contrast, the 1 /L decay of Eq. �4.16� away
from the Dirac point is consistent with the finite thermal drop
implied by �	 in Eqs. �2.22� and �4.11�.

V. CONCLUSION

In summary, we have demonstrated that thermoelectric
transport in graphene within the hydrodynamic regime ex-
hibits a range of behaviors when the finite rate of carrier

imbalance relaxation is taken into account. Since the relativ-
istic spectrum of clean graphene is nondecaying, the lowest-
order two-particle recombination and generation processes
are kinematically forbidden, suggesting that the imbalance
relaxation lifetime 
Q might significantly exceed other intrin-
sic graphene timescales.

The essential transport physics in the hydrodynamic re-
gime is encoded by four intrinsic parameters: these are the
minimum conductivity at the Dirac point �min, the off-
diagonal �or drag� conductivity �eh, the imbalance relaxation
length lQ, and the elastic mean free path lel. Of these, �min,
�eh, and lQ are mediated entirely by intercarrier collisions.
The parameters �min and lel can be obtained from measure-
ment of the bulk conductivity �at variable doping� or the
combined measurement of the electronic thermal conductiv-
ity ��L� and the thermopower ��L� in the limit of a long
device with L� lQ. The drag conductivity �eh can be ex-
tracted from a measurement of either � or � in the opposite
short device limit L� lQ. For a sample with L lQ, a local
probe of either the electronic temperature or electrochemical
potential profiles should allow determination of lQ since
these are predicted to be inhomogeneous, with boundary lay-
ers of size lQ confined near the device terminals.

We have given general formulas for both � and � at arbi-
trary doping and device size L, incorporating the effects of
nonideal contacts. Nonideal contacts allow exchange of car-
riers with the graphene, providing an alternate route for im-
balance relaxation. We have explicated the various crossover
regimes that separate the zero imbalance relaxation �short
device� and infinite relaxation �long device� limiting behav-
iors.

In this paper, we have neglected the effects of phonons in
graphene. Both acoustic and optical phonons can influence
the electronic thermal conductivity contribution � and the
thermopower �, through inelastic electron-phonon scattering.
Specifically, real electron-phonon collisions may modify �i�
the imbalance relaxation rate due to electron-hole pair to
phonon conversion processes, �ii� the inhomogeneous elec-
tronic temperature profile due to energy exchange with the
phonon bath, and �iii� the thermoelectric power through pho-
non drag. By contrast, virtual electron-phonon interactions
are strongly irrelevant, and the concomitant renormalization
effects may be typically neglected.

For temperatures less than �%ph /kB�700 K, all optical
modes are frozen out.32 Untethered �“free floating”�
graphene supports linearly dispersing acoustic phonons
within the transverse �TA� and longitudinal �LA� in-plane
modes, as well as quadratically dispersing phonons in an
out-of-plane �ZA� mode. Under tension imposed by external
contacts or surface adhesion to a substrate, however, the ZA
dispersion also becomes linear.1

Because the acoustic phonon velocities33 vph�104 m /s
�vF, the electron-hole pair creation and annihilation pro-
cesses,

e− + h+ ↔ ph ,

are kinematically forbidden. Therefore the electron-phonon
scattering does not contribute to the imbalance relaxation, at
least to lowest order. For graphene in the nondegenerate re-
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gime with kBT��%ph, the in-plane acoustic phonon contri-
bution to the inelastic electron lifetime �due to electron and
hole number-conserving processes� 
e-ph� �kBT�−2 by dimen-
sional analysis. The associated electron-phonon relaxation
length le-ph�vF
e-ph can be estimated with the Boltzmann
transport result,34

le-ph �
4��vF�3�mvph

2

�kBTD�2 , �5.1�

where �m�7.6�10−7 kg /m2 denotes the two-dimensional
�2D� mass density of graphene, vph�2�104 m /s is the
phonon velocity for the LA mode, and D�19 eV is the
deformation potential.33 Using these parameters, le-ph
�80 �m at T=100 K and 0.8 cm at T=10 K. For devices
with sample dimensions L ,W� le-ph, phonons may be ne-
glected. In larger devices, the loss of carrier energy to the

phonon bath on scales longer than le-ph becomes important so
that the parameter le-ph will enter, e.g., into the temperature
profile across the device. In addition, phonon drag effects
can become important in sufficiently clean samples with
L� le-ph.

ACKNOWLEDGMENTS

We thank Yuri Zuev, Philip Kim, and Nadia Pervez for
helpful discussions, and Leonid Glazman and Leon Balents
for reading the paper. This work was supported in part by the
Nanoscale Science and Engineering Initiative of the National
Science Foundation under NSF Award No. CHE-06-41523
and by the New York State Office of Science, Technology,
and Academic Research �NYSTAR� �M.S.F.�. I.A. was
supported by the U.S. DOE Contract No. DE-AC02-
06CH11357.

*foster@phys.columbia.edu
1 For a recent review, see, e.g., A. H. Castro Neto, F. Guinea, N.

M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys.
81, 109 �2009�.

2 K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602
�2006�; Phys. Rev. Lett. 98, 076602 �2007�.

3 I. L. Aleiner and K. B. Efetov, Phys. Rev. Lett. 97, 236801
�2006�; J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I.
Fal’ko, ibid. 101, 196803 �2008�.

4 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B
74, 235443 �2006�.

5 E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98,
186806 �2007�; S. Adam, E. H. Hwang, V. M. Galitski, and S.
Das Sarma, Proc. Natl. Acad. Sci. U.S.A. 104, 18392 �2007�.

6 P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. Lett.
98, 256801 �2007�; J. H. Bardarson, J. Tworzydlo, P. W. Brou-
wer, and C. W. J. Beenakker, ibid. 99, 106801 �2007�; S. Ryu,
C. Mudry, H. Obuse, and A. Furusaki, ibid. 99, 116601 �2007�;
K. Nomura, M. Koshino, and S. Ryu, ibid. 99, 146806 �2007�;
K. Nomura, S. Ryu, M. Koshino, C. Mudry, and A. Furusaki,
ibid. 100, 246806 �2008�.

7 V. V. Cheianov, V. I. Fal’ko, B. L. Altshuler, and I. L. Aleiner,
Phys. Rev. Lett. 99, 176801 �2007�.

8 A. Kashuba, Phys. Rev. B 78, 085415 �2008�.
9 L. Fritz, J. Schmalian, M. Müller, and S. Sachdev, Phys. Rev. B

78, 085416 �2008�.
10 M. Müller, L. Fritz, and S. Sachdev, Phys. Rev. B 78, 115406

�2008�; M. Müller and S. Sachdev, ibid. 78, 115419 �2008�.
11 M. S. Foster and I. L. Aleiner, Phys. Rev. B 77, 195413 �2008�.
12 The bulk electrical dc conductivity of clean graphene at the

Dirac point �min �Eqs. �2.21� and �2.24�� has been calculated in
Refs. 8 and 9 to the lowest order in the effective electron-
electron interaction strength, while large-N work11 suggests the
possibility of a universal conductivity for moderate to large in-
teraction strengths, appropriate to high temperatures.

13 A. A. Abrikosov and S. D. Beneslavskii, Sov. Phys. JETP 32,
699 �1971�.

14 T. Stauber, F. Guinea, and M. A. H. Vozmediano, Phys. Rev. B

71, 041406�R� �2005�.
15 D. T. Son, Phys. Rev. B 75, 235423 �2007�.
16 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics �Pergamon,

London, 1981�.
17 F. G. Bass and I. M. Tzidilkovski, Zh. Eksp. Teor. Fiz. 28, 312

�1955� �Sov. Phys. JETP 1, 267 �1955��; G. E. Pikus, Zh. Tekh.
Fiz. 26, 22 �1956� �Sov. Phys. Tech. Phys. 1, 17 �1956��; for a
review, see E. I. Rashba, Z. S. Gribnikov, and V. Ya.
Kravchenko, Usp. Fiziol. Nauk 119, 3 �1976� �Sov. Phys. Usp.
19, 361 �1976��.

18 T. Löfwander and M. Fogelström, Phys. Rev. B 76, 193401
�2007�.

19 N. M. R. Peres, J. M. B. Lopes dos Santos, and T. Stauber, Phys.
Rev. B 76, 073412 �2007�.

20 We employ the terms generalized Wiedemann-Franz law and
generalized Mott relation to refer to the integral expressions21

respectively relating the thermal conductivity � and ther-
mopower � to the bulk dc electrical conductivity �, in the
disorder-limited transport regime �
el�
in�. In this regime, �, �,
and � can be computed via the Kubo formula within the single-
particle �noninteracting� approximation although crucial renor-
malization effects must in general be included in the energy

dependence of �.11 In the degenerate limit with kBT̄� ��̄�, the
integral expression21 relating � ��� to � reduces to the algebraic
�differential� relation conventionally termed the Wiedemann-
Franz law �Mott relation�. Our primary interest in this paper is

the opposite nondegenerate limit �kBT̄� ��̄��, where the latter
expressions �and the Sommerfeld expansion� break down.18 The
generalized integral relations hold throughout the regime of
disorder-limited transport, and it is to these expressions to which
we refer.

21 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Saunders
College, Fort Worth, 1976�.

22 A. Satou, F. T. Vasko, and V. Ryzhii, Phys. Rev. B 78, 115431
�2008�; P. N. Romanets, F. T. Vasko, and M. V. Strikha, ibid. 79,
033406 �2009�.

23 For a review, see, e.g., A. G. Rojo, J. Phys.: Condens. Matter 11,
R31 �1999�.

SLOW IMBALANCE RELAXATION AND THERMOELECTRIC… PHYSICAL REVIEW B 79, 085415 �2009�

085415-13



24 L. D. Landau and E. M. Lifshitz, Fluid Mechanics �Pergamon,
London, 1959�.

25 In our conventions, gij→diag�1,−1,−1� and UiU
i=vF

2 .
26 S. R. de Groot, Thermodynamics of Irreversible Processes

�North-Holland, Amsterdam, 1963�.
27 For a very clear discussion of the systematic extraction of hy-

drodynamic equations order by order in 
in from the kinetic
equation and the connection to the Chapman-Enskog expansion,
see chapters IV and VI in G. E. Uhlenbeck, G. W. Ford, and E.
W. Montroll, Lectures in Statistical Mechanics �American Math-
ematical Society, Providence, 1963�.

28 C. A. Domenicali, Rev. Mod. Phys. 26, 237 �1954�.
29 A. Konin, Lith. J. Phys. 46, 233 �2006�.
30 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.

Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Sci-
ence 306, 666 �2004�; K. S. Novoselov, A. K. Geim, S. V.
Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V.
Dubonos, and A. A. Firsov, Nature �London� 438, 197 �2005�;

Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, ibid. 438, 201
�2005�; Y.-W. Tan, Y. Zhang, H. L. Stormer, and P. Kim, Eur.
Phys. J. Spec. Top. 148, 15 �2007�.

31 The relative chemical potential �̄ �Eq. �2.13�� is completely de-
termined by the relative carrier density � /e=ne−nh and the tem-

perature T̄. For the estimates given in Sec. IV B, we have used
formulas appropriate to the ideal quantum relativistic gas, taking
into account valley and spin degeneracies in graphene.

32 See, e.g., N. Mounet and N. Marzari, Phys. Rev. B 71, 205214
�2005� and references therein.

33 S. Ono and K. Sugihara, J. Phys. Soc. Jpn. 21, 861 �1966�; K.
Sugihara, Phys. Rev. B 28, 2157 �1983�.

34 T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76,
205423 �2007�; F. T. Vasko and V. Ryzhii, ibid. 76, 233404
�2007�; E. H. Hwang and S. Das Sarma, ibid. 77, 115449
�2008�.

MATTHEW S. FOSTER AND IGOR L. ALEINER PHYSICAL REVIEW B 79, 085415 �2009�

085415-14


