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We present a systematic performance analysis of first-principles basin-hopping (BH) runs, with the target to
identify all low-energy isomers of small Si and Cu clusters described within density-functional theory. As
representative and widely employed move classes we focus on single-particle and collective moves, in which
one or all atoms in the cluster at once are displaced in a random direction by some prescribed move distance,
respectively. The analysis provides detailed insights into the bottlenecks and governing factors for the sampling
efficiency, as well as simple rules of thumb for near-optimum move settings that are intriguingly independent
of the distinctly different chemistry of Si and Cu. At corresponding settings, the observed performance of the
BH algorithm employing two simple general-purpose move classes is already very good and for the small
systems studied essentially limited by frequent revisits to a few dominant isomers.
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I. INTRODUCTION

Research on small particles containing up to a few tens of
atoms is largely driven by their novel properties that are
significantly affected by (quantum) size effects, particularly
in the interplay between structural and electronic degrees of
freedom.! Such clusters, thus, carry the potential of major
technological advances for applications exploiting their al-
ready exemplified unique optical, magnetic, and chemical
properties. Atomically resolved structural information is a
key prerequisite toward employing these envisioned func-
tionalities, considering that the latter will be tailored to the
atomic scale. In this respect not only the ground-state isomer
will be of importance but potentially all energetically low-
lying metastable isomers.

A materials modeling targeting the identification of such
relevant cluster isomers involves the global and local explo-
ration of the corresponding vast configuration space, suitably
represented by the high-dimensional potential-energy surface
(PES) (Ref. 2) E({R,,}), where R,, is the position of atom m
in the cluster. The rapid growth of the number of local PES
minima, i.e., metastable isomers, with increasing cluster size
quickly limits approaches focusing only on structural motifs
provided by chemical intuition. Required instead are more
systematic unbiased sampling techniques and, among those
(see, e.g., Refs. 3-8), approaches based on the basin-hopping
(BH) (Refs. 9—13) idea are widespread. In this idea the con-
figuration space is explored by performing consecutive
jumps from one local PES minimum to another. To achieve
this, positions of atom(s) in the cluster are randomly per-
turbed in the so-called trial move followed by a local geom-
etry optimization which brings the system again into a local
PES minimum.

Rather than exploring E({R,,}), BH approaches concen-

trate therefore on the transformed PES E({R,}), where the
energy at any point in configuration space is assigned to that
of the local minimum obtained by the given geometry opti-
mization technique. This maps the PES onto a set of inter-
penetrating staircases with plateaus, or basins of attraction,
corresponding to the set of configurations which lead to a
given minimum after optimization. As apparent from Fig. 1
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the resulting PES topography significantly facilitates interba-
sin transitions, which constitutes already part of the reason
for the success and efficiency of the BH method.

In its classical form, BH employs a metropolis criterion
based on an effective temperature T,z to either accept or
reject the jump into the PES minimum reached by the trial
move. This introduces therewith both the desired importance
sampling of the energetically lowest-lying isomers and the
possibility to surmount barriers on multiple-funnel-type
PESs.!! Obvious ramifications of this basic acceptance rule
are, e.g., to either further promote the downhill driving force
to the global minimum by applying a simulated annealing-
type sequential reduction in Ty during the run, or to extend
the importance sampling to all isomers in an energy window
above the ground state by unconditionally accepting all trial
isomers with energies in a range above the lowest-energy
isomer identified at any given moment in the run.

When envisioning a predictive and material-specific mod-
eling the accuracy of the PES underlying the sampling is of
central importance. Due to the already mentioned intricate
coupling of structural and electronic degrees of freedom in
small clusters, the nature of the PES must be quantum me-
chanical. Compared to simple analytical model potentials,
corresponding first-principles electronic structure calcula-
tions come at a high computational cost, even when describ-
ing electronic exchange and correlation only on the level of
density-functional theory (DFT) with semilocal functionals.
This dictates utmost efficiency of the employed sampling to
reduce the number of required energy and force evaluations
to the absolute minimum. Apart from the acceptance crite-
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FIG. 1. (Color online) Schematic representation of the original

and transformed potential-energy surfaces E({R,}) and E({R,}),
respectively, as well as of a basin-hopping trial move (see text).
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rion, the efficiency of the BH method is predominantly gov-
erned by the recipe with which trial moves are generated.
Among the plethora of move types suggested in the litera-
ture, many contain technical parameters that are unspecified
and which one would correspondingly seek to optimize to
reduce the computational cost of a first-principles sampling
run. Moreover, rather than revealing inefficient settings only
a posteriori, this optimization would best be carried out by
monitoring on-the-fly analyzable performance indicators that
allow us to adapt an ongoing run.

Unfortunately, there are few to none general prescriptions
of how to set technical move parameters that do not require
detailed system-specific insight. With respect to on-the-fly
performance indicators there exists at best the rule of thumb
to aim at an overall acceptance of new trial structures of
roughly 1/2.'%1% However, this rule emerges from the empiri-
cal observation that a factor of 1/2 ensures an efficient sam-
pling of canonic ensemble averages and thus must not nec-
essarily carry over to the intended goal of searching for the
energetically lowest-lying isomers with the least possible
number of energy and force evaluations. A second complica-
tion arises from the stochastic nature of the BH algorithm.
Any analysis measuring the efficiency of technical BH set-
tings or the reliability of suggested on-the-fly performance
indicators therefore necessarily needs involving an averaging
over a sufficiently large number of different BH runs starting
from different initial structures and using different random
number seeds. This would not be too much of a problem
when using numerically undemanding model potentials, but
then it would be unclear whether the obtained findings are
meaningful for proper quantum-mechanical PESs. A straight-
forward evaluation based on first-principles energetics, on
the other hand, is hitherto computationally involved even
when only considering smaller clusters up to say ten atoms.

In this situation, the aim of the present study is to estab-
lish a corresponding framework for a systematic perfor-
mance analysis of first-principles BH sampling runs. An im-
portant ingredient herein is the use of a hopping-matrix-type
concept that provides not only a valuable analysis tool but
also helps to bring down the computational cost for the
manifold of first-principles BH runs required in the averag-
ing procedure. Using DFT within the generalized gradient
approximation to describe the PES, we illustrate the scheme
for Si clusters as a system with more directional covalent
type of bonding and for Cu clusters as representative of a
metallic system. As a typical example of move classes in-
volving technical parameters we concentrate on the so-called
single-particle and collective moves, in which either a single
randomly chosen atom or all atoms in the cluster at once are
displaced in a random direction by some prescribed move
distance, respectively. For small clusters up to ten atoms, our
analysis indicates that these moves still enable efficient
jumps anywhere in configuration space, i.e., between any
PES minima, so that the actual BH acceptance criterion be-
comes less important. The thereby disentangled influence of
move class and acceptance criterion allows us to separately
assess the algorithm performance solely with respect to the
technical move parameters, which are here the move dis-
tances. The analysis of the obtained results clearly identifies
the governing factors and bottlenecks for the sampling effi-
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ciency of the investigated small systems and gives indica-
tions on how they scale with increasing cluster size. Apart
from providing detailed insights for the specific move classes
studied, this stimulates ideas with respect to on-the-fly adap-
tive settings and establishes a protocol to benchmark more
specialized move types.

II. THEORY
A. Density-functional theory

The underlying PESs are obtained from DFT calculations
within the generalized gradient approximation'® as imple-
mented in the all-electron full-potential code FHI-AIMS.!® In
order to suppress a potential complication in the performance
analysis due to the spin degrees of freedom all calculations
were consistently carried out in a non-spin-polarized way. In
FHI-AIMS the Kohn-Sham orbitals are expanded in basis sets
consisting of numerical atom-centered orbitals. All calcula-
tions reported here were conducted with the so-called
minimal+spd basis set. For each considered system we re-
computed all stable cluster isomers within an energy range
up to 1 eV above the ground state, namely, those listed in
Figs. 4-6 below, also with hierarchically constructed larger
basis sets available in FHI-AIMS. From these calculations we
deduce that the relative energies between these isomers are
converged to within 10 meV at the minimal+spd basis set
level, which is fully sufficient for the arguments and conclu-
sions put forward below. We also ran several test BH runs
with larger basis sets but never obtained isomers other than
those already revealed at the minimal+spd level. This sug-
gests that not only the local minima but also the other parts
of the PES are sufficiently described with the employed
minimal +spd basis.

Local structural optimization is done using the Broyden-
Fletcher-Goldfarb-Shanno method,'” relaxing all force com-
ponents to smaller than 1072 eV/A. While this tight force
criterion typically ensures structural convergence to below
1073 A, it is virtually impossible to converge the DFT total
energies up to the number of digits required to uniquely dis-
tinguish different isomers from each other. We therefore use
the difference norm of all interatomic distances in the cluster
as additional tool for the comparison of isomer structures.
Two isomers A and B are considered to be equivalent if

E (da gy —dp )’

<5 5 < A (1)
2 (dA,{i} + dB,{i})

where dy (3 and dp g are the sorted interatomic distances of
the two isomers to compare. The denominator serves as nor-
malization which yields a dimensionless quantity that is fur-
thermore species and cluster size independent. A can be
tuned such that all isomers in the energy range of interest are
unambiguously distinguished and was taken as 10~*. In order
to check whether the thus identified different isomers are true
local minima and not saddle points, they were subjected after
the BH run to a vibrational analysis based on a Hessian ma-
trix obtained by finite differences of the analytical atomic
forces when displacing all atoms by 107> A.
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B. Basin-hopping

The BH runs explore the configuration space through a
sequence of jumps from one PES minimum to another. For
this, an initially random-cluster structure (created in the spirit
of the big-bang method'®!°) is subjected to the so-called trial
moves, which correspond to a random structural modifica-
tion, followed by a local relaxation as depicted in Fig. 1. As
representative and widely used move classes we focus in this
work on single-particle and collective moves, in which either
a single randomly chosen atom or all atoms in the cluster are
randomly displaced, respectively. The corresponding dis-
placement vector of atom m is suitably expressed in spherical
coordinates as

AR, = r,e(0,¢), (2)

where e(0, ¢) is a unit vector in the displacement direction
defined by the angles 6 and ¢ with respect to an arbitrary but
fixed axis. For an unbiased sampling 6e[0,7] and ¢
€ [0,27] must be obtained as uniformly distributed random
numbers. On the contrary, the move distance r,, is a priori
not specified but will sensitively determine the jumps in con-
figuration space and therewith the algorithmic performance.
It provides therefore a nice example of a technical parameter
that one would like to optimize for a first-principles sampling
run, yet without introducing bias or system-specific insight.
It is furthermore a priori not clear whether it is preferable to
focus on one optimum move distance or whether it is possi-
bly advantageous for the overall sampling to include partly
shorter and partly longer moves. We study this by drawing
the move distances as random numbers distributed around
some average value r,a, where a is the computed dimer bond
length and r, is correspondingly a less system-dependent
unitless quantity. A preference for one optimum distance can
then be evaluated by considering a peaked distribution cen-
tered around r,, whereas the effect of a wide variation in
move distances can be tested with a distribution that allows
for a broader range of values. Specifically, we use either a
normal distribution (of width 0.07r,) around r, for the prior
and a uniform distribution (of width r,) centered around r,
for the latter. The goal is therefore to assess the dependence
of the sampling efficiency on r, and the form of the distri-
bution around it. In all of these cases an additional important
factor is to prevent an entropy-driven dissociation of the
cluster during the BH run. We achieve this by disregarding
trial moves as well as local relaxations that generate loosely
connected or partly dissociated structures characterized by an
atom having a nearest-neighbor distance larger than twice the
dimer bond length. Similarly discarded are moves that place
atoms at distances of less than 0.5 A from each other. We
also stress again that the present study focuses on assessing
trial moves in geometric space, which is why we deliberately
suppress varying spin degrees of freedom in the underlying
DFT calculations. In order to address the intricate magnetic
properties of small clusters, trial moves must in general also
sample the spin dimensions of the full Hilbert space. A pos-
sible procedure that we have found useful in this respect is to
initialize the DFT calculation of a newly created candidate
structure each time with a random magnetic moment.”’ As
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this may lead to numerical problems in reaching self-
consistency an alternative could be to perform the local ge-
ometry relaxation ensuing the geometric trial move for a
number of fixed spin moments and to take only the resulting
most stable structure as the actual candidate.

Apart from the move class the second fundamental ingre-
dient that needs to be specified in a BH run is the acceptance
criterion according to which a generated trial structure is
accepted and then replaces the current cluster structure as
starting point for the following trial move. In order to
introduce a downhill driving force toward the energetically
low-lying (and ultimately ground-state) isomers, it is clear
that a more stable trial structure should be unconditionally
accepted. In its classical form, the BH scheme also accepts
less stable trial structures according to a metropolis rule

exp(—AE/kzT.¢), where kp is the Boltzmann constant, AE
>0 is the energy difference to the new trial structure, and
introducing another unspecified technical parameter, which
may crucially affect the algorithmic performance, the effec-
tive temperature 7. The original motivation behind this me-
tropolis rule is that the finite possibility to climb uphill en-
ables the algorithm to effectively surmount high-energy
barrier regions on multiple-funnel-type-transformed PESs

E({Rm}) However, as long as the employed move class en-
ables efficient jumps between all parts of configuration
space, this acceptance criterion is only of subordinate impor-
tance. As we will see below this is still the case for the small
cluster sizes studied here, and we therefore simply accept all
generated cluster structures within a predefined energy range
of interest above the ground-state isomer.

C. Sampling efficiency

The intended performance analysis requires a well-
defined measure for the success of a sampling run. A com-
mon choice for this in the literature is the number of trial
moves until the global minimum has been found for the first
time. Here, we adapt this criterion to the stated goal of iden-
tifying not only the global minimum but also all relevant
energetically lowest-lying isomers. Correspondingly, the
considered indicator of sampling efficiency which we aim to
optimize is the number of moves N until all relevant isomers
have been found at least once, where of course one needs to
define what a relevant isomer is (vide infra). While certainly
a useful measure for the performance of the employed BH
moves, it should still be stressed that, due to the slightly
varying number of geometry steps for the local relaxation of
each trial structure, N is only roughly proportional to the
total computational cost of the first-principles BH run.

Due to the stochastic nature of the BH method, both with
respect to the generation of the initial starting structure and
the generation of trial structures, N is only a statistically
meaningful quantity after averaging over sufficiently many
runs. Even for the small cluster sizes considered here, this
implies having to run on the order of 100 different first-
principles BH runs to obtain a N, that is converged to within
*+1, and this for each BH setting (e.g., move distance or
distribution) one wants to analyze. Since this straightforward
approach quickly becomes computationally involved, we in-
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FIG. 2. (Color online) Schematic illustration of successful, un-
successful, and high-energy trial moves in the BH scheme. The
horizontal dashed (red) lines indicate the targeted energy window
entering the acceptance criterion.

stead resort to the concept of a “hopping matrix” h, which
summarizes the transition probabilities between all isomers
under the chosen BH settings. Specifically, the matrix ele-
ment A;; is then the normalized probability to jump from the
local minimum i to the local minimum j. If all local minima
are explicitly accounted for, one obviously has the condition

> hy=1. (3)

Assuming that the matrix h;; is completely known, a suffi-
ciently large number of sampling runs starting in random
isomers can be readily simulated entirely on the basis of
these transition probabilities without the need for further
first-principles calculations. Let alone that the individual ma-
trix elements also known as transition probabilities provide
valuable insight into the sampling process and efficiency.
Notwithstanding, with a rapidly growing number of isomers
with cluster size, this approach merely shifts the computa-
tional burden of an increasing number of direct BH runs to
the equally expensive computation of an exploding number
of hopping matrix elements, i.e., converged transition prob-
abilities. Yet, below we will show that an approximate, but
for our purposes sufficient determination of N,,, is possible
by restricting the explicit calculations to a limited number of
hopping matrix elements.

In order to further analyze the obtained performance data,
it is useful to disentangle the different possible outcomes of a
trial move. First of all, the system might relax back into the
structure from which the trial move has been performed, so
that in terms of isomer information nothing has been gained.
Correspondingly, we denote such a move as unsuccessful (cf.
Fig. 2) and define the fraction of hitherto unsuccessful moves

aunsucc as

NLIHSUCC
a’un%ucc = > 4
s = @

where N e <N is the number of unsuccessful moves dur-
ing the run. Even if the trial move leads to a different local
minimum, the move might still be rejected due to the accep-
tance criterion if the new minimum is higher up in energy.
The fraction of moves rejected on this basis is defined as
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Nhigh £

Qhigh £ = , (5)
N

where Npign <N is the corresponding number of rejected

moves. Only the remaining fraction

suce = 1 = Qypguee — Qnigh E (6)

are successful moves at least in the sense that they bring the
algorithm to a different minimum out of which the next trial
move is performed, albeit not necessarily leading to a mini-
mum that had hitherto not yet been sampled. Just as in the
case of N,,, it only makes sense to analyze the fractions
Qunsucc,avs Ohigh Eavs A0d Qguecay ONCE averaged over suffi-
ciently many different BH runs.

III. PERFORMANCE ANALYSIS FOR SMALL CLUSTER
SIZES

Our performance analysis concentrates on small clusters
formed by Si and small clusters formed by Cu atoms. Both
systems have already been subjected to extensive theoretical
studies and are therefore natural choices for the intended
benchmarking. Extensive work on small silicon clusters has
both been carried out wusing wave-function-based
techniques?'-?> and DFT.?*?* Databases for small silicon iso-
mers can, e.g., be found in Refs. 25 and 26. Recent works on
small copper clusters using ab initio methods are, e.g., Refs.
19 and 27-30. The choice of these two materials is further
motivated by their different chemistry, which can be charac-
terized as more covalent and directional in the case of Si and
more metallic in the case of Cu. We therefore expect the
direct comparison of results obtained for Si; and Cu; to re-
flect a possible material specificity of the findings, while an
additional comparison of the results obtained for Si; and Si;
aims at assessing the variation with cluster size in the range
where due to the limited dimensionality of the configuration
space the BH acceptance criterion does not play much of a
role (vide infra).

A. Existence of dominant isomers

As a prelude to the actual performance analysis we
present in Fig. 3 the histograms of the number of times with
which low-energy isomers were identified in long BH runs
for the three systems addressed, i.e., Siy, Sij(, and Cu,. Each
run consisted of several hundred unconditionally accepted
moves and was carried out until the shape of the histogram,
i.e., the normalized probability with which the different low-
energy isomers are identified, was fully converged. In all
cases the evolution toward convergence was rather uniform
as demonstrated by Fig. 4 for Si;, which presents the histo-
gram entries binned over consecutive sampling periods con-
taining 50 moves each. Apparently, the ratios of the histo-
gram entries for each sampling period are roughly the same.
In view of the overall still limited system dimensionality and
concomitant small number of low-energy isomers, a natural
interpretation for this is that the employed moves enable
jumps between any parts of the PES. In this situation, a
simple acceptance criterion that unconditionally accepts
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FIG. 3. (Color online) Histograms of the probability with which trial moves end up in the lowest-energy isomers of Si;, Si;o, and Cus.
The identified isomers are numbered with decreasing stability, with isomer 1 corresponding to the identified ground state and those isomers
shown with bracketed numbers revealed as unstable by an a posteriori vibrational analysis (see text). The histograms comprise all isomers
found in an energy range up to 2 eV above the ground state isomer, as obtained from long BH hopping runs using single-particle moves and
normally distributed move distances around the average values r,=1.5, 2.0, and 2.5. The geometric structures behind the truly stable isomers
in an energy range up to 1 eV above the identified ground state are summarized in Figs. 5-7.

moves within a predefined energy range and rejects all others
is then sufficient to separately assess the dependence of the
algorithm efficiency on the move parameters.

Even though Fig. 3 comprises the data obtained using
single-particle moves with three quite different move dis-
tances, it is interesting to observe that some isomers are al-
ways sampled much more often than others. For Si;, for
example, more than 1/3 of all executed moves in the BH runs
ended up in the isomer structure, labeled 4, regardless of the
actual move distance employed. In the case of collective
moves, the corresponding histograms look qualitatively the
same, so that the existence of such “preferred” isomers,
which we will henceforth term dominant isomers, seems
even independent of the specific move class employed. In
this respect, one should mention that some of the isomers
listed in Fig. 3 turned out to be unstable in the concluding
vibrational analysis and are correspondingly not further con-
sidered below. Distinguishing and discarding these struc-
tures, which correspond either to flat or saddle-point PES
region, directly in the BH run are unfortunately impossible
as it would imply a prohibitive computational cost when per-
forming a vibrational analysis immediately after each trial
move. As apparent from Fig. 3 the total number of times in
which the BH runs end up in such unstable structures is at
least not too large, so that the actual computational time
wasted is small. The one notable exception is isomer 4 of

50 100 150 200 250
BH-move

FIG. 4. (Color online) Probabilities for the lowest-energy iso-
mers of Si; as in Fig. 3. Shown is the evolution when binning the
histogram entries over consecutive sampling periods containing 50
moves each using single-particle moves and normally distributed
move distances around the average value r,=2.5. Entries for all
isomers higher in energy than isomer 4 are bundled into one entry
labeled “>#4.”

Cu;, which exhibits small imaginary eigenmodes but is
sampled about as frequently as the truly stable isomer 5.
Since the algorithm thus spends some appreciable time in
this basin, we retained isomer 4 in the ensuing performance
analysis despite its instability.

One immediate rationalization for the existence of domi-
nant isomers is that their corresponding basin of attraction on
the PES is huge and thus hit by the trial moves many times.
Inspection of the geometric structures of the lowest-energy
isomers for the three systems as summarized in Figs. 5-7
points, however, at a second potential reason. Many of the
dominant isomers correspond to rather low-symmetry struc-
tures, e.g., isomer 4 for Siy, isomer 6 for Sij,, or isomer 10
for Cu. In terms of the PES, these low-symmetry structures
possess a larger number of local minima than the symmetric
ones'® and it is this multiplicity and not necessarily only the
size of the basin of attraction of each individual minimum

P A

#1 D5h #2 C3V
0.00 eV 0.78 eV
#3 sz #4 02
0.96 eV 0.97 eV

FIG. 5. (Color online) Identified stable Si; isomers in the energy
range up to 1 eV above the ground state. The isomer numbering
follows the one of Fig. 3 and reflects the decreasing cluster stability
as indicated by the stated energies relative to the ground-state iso-
mer 1.
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#1G, #3 T,
0.00 eV 0.57 eV

#4 Cav
0.73 eV

#5C, #6 G,
0.74 eV 0.81eV

FIG. 6. (Color online) Identified stable Sij, isomers in the en-
ergy range up to 1 eV above the ground state. The isomer number-
ing follows the one of Fig. 3 and reflects the decreasing cluster
stability as indicated by the stated energies relative to the ground-
state isomer 1.

that is responsible for the large number of times with which
the BH algorithm yields the corresponding isomer. This re-
lation to the underlying PES shape also motivates why cer-
tain isomers are dominant irrespective of the employed move
class. Any general-purpose move class that enables unbiased
jumps to anywhere on the PES should be similarly affected
by a varying size or multiplicity of the different basins of
attraction. This is an important point as an at first glance
appealing approach to improve the efficiency of BH sam-
pling would be to reduce the number of times that the algo-
rithm gets stuck in always the same dominant isomers and
instead aim to increase jumps into the rare minima. Within

#5C,
0.60 eV

#9D,
1.03 eV

#10 C,
1.10 eV

FIG. 7. (Color online) Identified stable Cu; isomers in the en-
ergy range up to 1.1 eV above the ground state. The isomer num-
bering follows the one of Fig. 3 and reflects the decreasing cluster
stability as indicated by the stated energies relative to the ground-
state isomer 1. Note that isomer 4 exhibits small imaginary eigen-
modes but is nevertheless retained in the performance analysis (see
text).
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the understanding of the relation to the PES topology it
seems unlikely that this can be realized without either resort-
ing to moves that are specifically tailored to the system at
hand or make use of local PES information. At least for the
limited isomer number of the small cluster sizes studied here,
the main bottleneck of purely stochastic moves is thus that
the algorithm will often revisit the same dominant isomers.
In this situation, the overall performance is then dictated by
the way it can deal with these dominant isomers, e.g., how
efficiently it can hop out of them.

B. Approximate hopping matrix

On the basis of the histograms presented in Fig. 3 we can
now specify which of the energetically lowest-lying isomers
the target of the sampling runs is. In the general case, this
would be dictated by the physics of the problem at hand, e.g.,
prescribing that the sampling should yield the ground-state
isomer, as well as all isomers in a certain energy range above
it. In view of the discussion above, it is clear that the overall
sampling performance will in any case be governed by the
dominant isomers involved since the algorithm spends most
of its time jumping out of these minima. For the intended
performance analysis we therefore choose as the sampling
target the identification of all dominant isomers determined
in the histogram BH runs. As indicator of the sampling effi-
ciency we correspondingly focus on the number of moves N
until all of these dominant isomers are found at least once. In
the case of Si; and Si;( the dominant isomers are included in
an energy range up to 1 eV above the ground state as appar-
ent from Figs. 3, 5, and 6. In the case of Cu,, this energy
range is slightly extended to 1.1 eV above the ground state to
also include the dominant isomer 10 (cf. Figs. 3 and 7).

With a thus defined sampling target the BH acceptance
criterion employed is to unconditionally accept trial moves
that lead into any isomer in the corresponding energy win-
dow and to unconditionally reject any trial move that leads
into an isomer that is higher in energy. It would only be
necessary to change the latter to some, e.g., Boltzmann
weighted conditional acceptance rule if a multiple-funnel-
type PES would necessitate passages via such higher-energy
isomers. However, as discussed above this is not the case for
the systems studied here. In terms of the hopping matrix
corresponding energy-window BH runs require only the
knowledge of a limited number of hopping matrix elements.
Definitely required are the transition probabilities between
any of the targeted low-energy isomers. Since trial moves
into higher-energy isomers are rejected, it suffices in addition
to know the overall probability to jump from each one of the
low-energy isomers into any of the higher-energy ones with-
out the need of further resolving the latter. For the example
of Si; the targeted energy window comprises four different
isomers, and energy-window BH runs can therefore be simu-
lated on the basis of 20 hopping matrix elements: 16 transi-
tion probabilities between any of the four different low-
energy isomers, as well as one hopping matrix element per
low-energy isomer that describes the subsummed transition
probability to jump out of the isomer into any of the higher-
energy ones.
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FIG. 8. (Color online) Performance analysis of BH runs for Si;, Si;o, and Cu; using collective moves and a normal distribution for the
atomic displacements. Upper panel: variation in the average number of moves N,, required to determine the low-energy dominant isomers
with the average move distance r, (see text). Lower panel: corresponding variation in the fraction of unsuccessful moves @ygyce oy Of moves
into high-energy isomers @pigh gy and of successful moves agyecqy [cf. Egs. (4)—(6)]. The error bars reflect the uncertainty due to the

employed approximate hopping matrix procedure (see text).

For a specified BH setting (i.e., fixed-move-type and
fixed-technical-move parameters) we obtain the required
hopping matrix elements by performing a fixed number of
trial moves out of each of the low-energy isomers, recording
the probabilities with which the moves led into each of the
other low-energy isomers or any of the higher-energy ones.
After 100 moves these probabilities are converged to within
*0.1 at a confidence interval at the level of 95%, which we
found to be sufficient for the conclusions put forward below.
With the thus determined hopping matrix, a large number of
energy-window BH runs from different starting isomers and
with different random number sequences can be quickly
simulated without the need for further first-principles calcu-
lations. This allows us to arrive at a properly averaged num-
ber N,, of moves required to determine all low-energy iso-
mers at least once, albeit with the disadvantage that the
transition probabilities are only known within the confidence
interval of =0.1. To account for the latter, we therefore ran-
domly varied the individual hopping matrix elements within
this uncertainty range and under the constraint of Eq. (3).
Determining N,, for several thousands of correspondingly
created hopping matrices, we finally quote below the average
value together with error bars given by the standard devia-
tion.

This remaining uncertainty incurred from the approximate
hopping matrix procedure does not affect any of the trend
conclusions made below, yet on the other hand leads to quite
some reduction in the computational effort. Determining a
converged N, for the systems studied here typically required
an averaging over some hundred BH runs starting from dif-
ferent initial isomers and with different random number se-
quences. As shown below in the range of settings studied N,,
is on the order of 10-40, so that a straightforward determi-
nation of N,, by averaging over individual first-principles
BH runs would require a few thousand trial moves, with a

corresponding number of first-principles energy and force
evaluations. For the described hopping-matrix-based ap-
proach, however, only 100 moves out of each of the few
low-energy isomers need to be done on the basis of first-
principles calculations. Since the ensuing hopping-matrix-
based simulations are computationally undemanding, this
significantly reduces the overall computational cost and pro-
vides furthermore detailed data on the sampling process in
form of the individual hopping matrix elements.

C. Dependence on move parameters

We begin the analysis with the performance data obtained
for collective moves and a normal distribution for the atomic
displacements. Figure 8 compiles the corresponding results
and reveals a similar dependence of N,, on the average move
distance for the three systems. In all cases, a too small value
of r, leads to a large move number required to determine the
low-energy isomers. With increasing r, the performance gets
better and goes through an optimum that is more pronounced
for Sij, than for the two smaller systems. This overall depen-
dence is well rationalized by analyzing the move fractions
defined in Egs. (4)—(6) above. Not surprisingly, the bad per-
formance at too small move distances results from the inabil-
ity of the algorithm to escape from the present basin of at-
traction, as reflected by a fraction cgycc oy @pproaching unity
(cf. Fig. 8). With increasing move distances, this fraction of
unsuccessful moves decreases and the overall performance
improves. Interestingly, within the studied range of move
distances apgcc.ay Only quickly decays to around zero for
Sijp, whereas for the two smaller systems it seems to level
off at a finite value. This behavior arises from the aforedis-
cussed multiplicity of some of the dominant isomers. In
terms of the hopping matriX, aypsycc.ay 18 just the average of
the diagonal elements #;; for the different isomers i weighted
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by the corresponding histogram entries, where h;; gives the
probability that a hop out of isomer i has unsuccessfully
relaxed back into it. Inspecting these diagonal elements for
the different isomers separately, we find only the elements of
the most symmetric isomers to vanish with increasing move
distance. On the contrary, for the least symmetric isomers the
corresponding hopping matrix elements stay almost constant
over the range of move distances studied. The rationale is
that by choosing a sufficiently large move distance, the sys-
tem can be prevented from relaxing back into the previous
PES minimum but not from jumping into another symmetry-
equivalent basin of attraction. The value at which a,gcc.ay
saturates is therefore system dependent and governed by the
symmetry properties of the dominant isomers in the targeted
energy range.

This finite-energy range of interest, and the correspond-
ingly applied acceptance criterion, introduces a second ruling
factor for the overall efficiency of the algorithm. As apparent
from Fig. 8, the fraction of rejected moves that has led to
isomers outside the targeted energy window rises monotoni-
cally with increasing move distance. Naively equating the
move distance with the perturbation induced by the trial
move, this is somehow intuitive. In view of the rapidly in-
creasing total number of isomers with system size one may
further consider the steeper increase in aygh ay for Sijg as
reflecting the increasing fraction of isomers that fall outside
the defined low-energy window in this larger system. Even
when for instance only focusing on the energy range up to 2
eV above the identified ground-state isomer, the long BH
runs behind the histograms shown in Fig. 3 found only two
and four stable isomers outside the presently targeted low-
energy window for Si; and Cus, respectively, but already
found 12 in the case of Si;y. While the fraction of unsuccess-
ful moves is thus the bottleneck at short move distances, so
is the fraction of moves outside the energy window at large
distances, and this will become more severe with increasing
system size or when reducing the targeted energy range.

The variation in the fraction of successful moves agycc ay
with move distance is determined by the opposing trends of
Qunsuce,av AN high £y [f. Eq. (6)] and exhibits a clear cor-
relation with the obtained performance. As obvious from Fig.
8, the average number of moves N,, required to find all low-
energy isomers is least when the fraction of successful
moves is maximized. This is the case where the move dis-
tance is large enough to efficiently lead the system out of the
present basin of attraction but not too large to yield a high-
energy isomer outside the targeted energy window. With the
much more pronounced increase in @yigh gay for Sijg this
gives rise to a narrowly defined range of optimum move
distances, which is concomitantly also shifted to smaller val-
ues compared to the two smaller systems. As apparent from
the error bars in Fig. 8 this overall performance behavior and
its analysis in terms of the different move fractions @,ngcc av»
Qhigh Eavs A0d Qgyec oy 18 TODUSE against the uncertainty intro-
duced by the approximate hopping matrix procedure. It is
furthermore equivalently obtained for the other move
schemes investigated, i.e., single-particle vs collective moves
involving atomic displacements following a uniform or nor-
mal distribution around the average distance r,,.

Table I summarizes for the different schemes the obtained
lowest values for N,, at the move distance that within the
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TABLE 1. Lowest obtained average number of moves N,, to
identify the targeted low-energy isomers of Si;, Cus, and Si;( using
different trial move schemes. Quoted are the values and the corre-
sponding average move distance r, that within the finite resolution
computed comes closest to the optimum settings. Within the under-
standing gained from the two smaller systems, the run for Si;( using
single-particle moves with a uniform distribution was not
performed.

Normal distribution  Uniform distribution

rO Nav rO Nav
Single-particle ~ Si; 1.5 20 1.5 31
Cuy 2.0 9 1.5 20
Siqg 1.5 10
Collective Si; 0.75 21 0.75 18
Cuy 0.75 9 0.75 8
Sijg 0.5 10 0.5 15

finite resolution computed comes closest to the optimum set-
ting. Starting with single-particle moves we observe a sig-
nificantly better performance for displacements that are
drawn from a normal distribution peaked around the average
value r,. This demonstrates that for the systems studied the
wide range of move distances featured by the uniform distri-
bution is not advantageous for the sampling. Instead, there is
indeed an optimum atomic displacement on which the em-
ployed moves should focus. This is consistent with the un-
derstanding of the limiting factors at too small and too large
displacements developed above, and in this respect we be-
lieve this result to be more generally valid. Our interpretation
for the much less pronounced performance difference be-
tween uniform and normal distribution in case of collective
moves (cf. Table I) is that correspondingly even when dis-
placing all atoms by random distances that are uniformly
distributed over a wide range there is a certain probability
that at least one of these distances comes close to the opti-
mum value. Regardless of the other displacements, for the
small systems studied, this one near-optimum displacement
is then sufficient for an efficient sampling as also indicated
by the essentially identical performance of single-particle
and collective moves obeying a normal distribution. Having
this said, we nevertheless note that another factor entering
here is that the optimum r, in case of collective moves is
much shorter, with a concomitant reduction in the width of
the employed uniform distribution and therewith of the dif-
ference between the two distributions studied.

The shorter values for the optimum displacement in the
case of collective moves are intuitive considering that in or-
der to change the geometric configuration significantly more
atoms should be involved, so that each atomic position that
needs to be disturbed would be less. It is, however, intriguing
to see that in terms of the dimensionless quantity r, the op-
timum values obtained for the three investigated systems are
rather similar both in case of single-particle moves and in
case of collective moves. In view of the different chemistry
of Si and Cu, this suggests that employing the computed
dimer bond length a as natural unit for the move distance is
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useful for these monatomic systems. While the general phi-
losophy of the present work aims at an optimization of the
sampling efficiency, a tentative generalization of our findings
would be therefore nevertheless that setting the move dis-
tance shorter than the dimer bond length in the case of col-
lective moves or at around 1.5 times the dimer bond length
in the case of single-particle moves is not a bad strategy to
achieve already quite decent sampling. In this respect, we
also note that the performance variation with r, is in all cases
similar to the one illustrated for collective moves with nor-
mal distribution in Fig. 8. Over the distance range studied,
which was a—2.5a for single-particle and a/3—a for collec-
tive moves, the efficiency of the BH scheme is thus quite
robust and varies in most cases much less than 1 order of
magnitude. In light of the discussion concerning the fraction
of moves apig g4y that lead to isomers outside the targeted
energy window, we expect this variation to become much
more pronounced for larger systems or a reduced energy
range of interest. In this situation optimization of the move
settings will be crucial and the observed and intuitive corre-
lation of the overall performance with the fraction of suc-
cessful moves may then suitably be exploited to analyze and
possibly even adapt the settings of an ongoing run. However,
as illustrated by the data in Fig. 8 aiming at an absolute value
for the ratio of accepted trial structures, such as the empirical
factor of 1/2 to achieve good sampling of canonic ensemble
averages,'®!* seems not the right approach. Even though in
Fig. 8 gy 15 at optimum move distance, indeed about
50% for Si; and Sij, it is about 70% in the case of Cus.
Aiming at about 50% in the latter case would instead result
in a move distance that is too short (0.5a) at a performance
that is by a factor of 2-3 worse than at optimum settings (cf.
Fig. 8). On the contrary we consistently observe for all stud-
ied systems, move types, and displacement distributions that
the best performance is reached when the ratio of accepted
trial structures is largest. This suggests that algorithms aim-
ing to maximize ag,,y instead of achieving a preset target
value are the right way when thinking about adapting move
settings on the fly.

IV. CONCLUSIONS

In conclusion we have presented a systematic perfor-
mance analysis of first-principles basin-hopping runs, with
the target to identify all low-energy isomers of small atomic
clusters within a defined energy range. As representative and
widely employed general-purpose move classes we have fo-
cused on single-particle and collective moves, in which one
or all atoms in the cluster at once are displaced in a random
direction by some prescribed move distance, respectively.
For the systems Si;, Cuy, and Sij, studied, our analysis
shows that there is indeed an optimum move distance and
that it is not advantageous for the overall sampling to include
partly shorter and partly longer moves. The governing fac-
tors leading to this optimum move distance are the inability
to escape from the basin of attraction of the present configu-
ration at too short distances and the increased probability to
end up in high-energy isomers at too large distances. Despite
the distinctly different chemistry of Si and Cu, the obtained
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optimum move distance is similarly roughly 0.75 times the
dimer bond length in the case of collective moves or at
around 1.5 times the dimer bond length in the case of single-
particle moves. This suggests the dimer bond length as a
useful natural unit for these monatomic systems and as a
simple rule of thumb that setting the move distance to the
mentioned values should enable relatively decent sampling.
This is furthermore supported by the observation of only
moderate variations in the overall efficiency over quite a
range of move distances away from the optimum values.

From our analysis we expect this variation to become
more pronounced with increasing system size or when reduc-
ing the targeted energy window. With the then increased ne-
cessity to optimize the move settings, a possibility to adapt
the latter already during an ongoing run would be to exploit
the confirmed correlation between sampling performance
and fraction of accepted trial structures. The latter quantity is
an on-the-fly measurable performance indicator, which ac-
cording to our data devised algorithms adapting the move
settings should strive to maximize rather than aiming for a
prescribed target value. However, for larger systems these
ideas require further scrutiny. For the small cluster sizes
studied here, the sampling problem is still very modest and
the employed single-particle or collective move enable effi-
cient jumps anywhere in configuration space, as also re-
flected by the essentially identical performance of the two
move classes at optimized settings. With increasing system
size this is unlikely to hold, and the actual BH acceptance
criterion above the targeted energy window will start to play
a role to tackle concomitantly developing multiple-funnel
potential-energy surfaces.

While here the investigated size ranges up to ten (or
slightly more) atoms might not yet be too challenging from a
sampling point of view, it is certainly a range that can no
longer be reliably covered by resorting to chemical intuition
and testing for usual-suspect structures. This holds in par-
ticular for systems exhibiting strong Jahn-Teller distortions?’
and when aiming to identify not only the ground state but
also all low-energy isomers. The in this size range further-
more delicate quantum interplay between structural and elec-
tronic degrees of freedom dictates an energetics that is based
on computationally intense first-principles calculations. In
this respect, the observed performance of the BH algorithm
employing two simple general-purpose move classes is reas-
suring. For all three systems studied, the low-energy isomers
in the range up to about 1 eV above the ground state are at
near-optimum settings identified with a number of trial
moves that is perfectly manageable on present-day capacity
computing infrastructures. With the still limited number of
metastable structures even for the Si;, cluster, this algorith-
mic performance is bound by frequent revisits to a few domi-
nant isomers. Tracing the latter back to the size or multiplic-
ity of the corresponding basins of attraction on the potential-
energy surface, it seems unlikely that the performance may
be significantly improved by other move classes, unless spe-
cifically tailoring the latter to the system at hand or making
use of local PES information. Nevertheless, when assessing
such more specialized move types (also in view of the much
more demanding size range beyond ten atoms) the evaluation
should be based on a performance analysis protocol as pre-
sented in this work.
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