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We consider quantum transport and tunneling magnetoresistance �TMR� through an interacting quantum dot
in the Coulomb blockade regime, attached to ferromagnetic leads. We show that there exist two kinds of
anomalies of TMR, which have different origins. One type, associated with the TMR sign change and appear-
ing at conductance resonances, is of a single-particle origin. The second type, inducing a pronounced increase
in TMR value far beyond 100%, is caused by electron correlations. It is manifested in between Coulomb
blockade conductance peaks. Both types of anomalies are discussed for zero and finite biases, and their
robustness to the temperature increase is also demonstrated. The results are presented in the context of recent
experiments on semiconductor quantum dots in which similar features of TMR have been observed.
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I. INTRODUCTION

Spin dependent tunneling phenomena have attracted much
scientific attention recently mostly due to the promising po-
tential applications for magnetic sensors and magnetic ran-
dom access memories. Early work of Moodera et al.,1 show-
ing large reproducible tunneling magnetoresistance �TMR�
effect of ferromagnetic tunnel junctions with Al2O3 spacer
measured at room temperature, was one of the first steps
initiating an avalanche of both theoretical and experimental
investigations. The results were well understood within Jul-
liere’s model.2 Within this model the TMR effect is described
in terms of the density-of-states polarizations at Fermi en-
ergy of left �L� and right �R� ferromagnetic electrodes:
TMR=2PLPR / �1−PLPR�. The electronic structure of the
spacer is assumed to be featureless. It appeared that this
model was too simple to understand the experimental results
that further arose. The interface resonant states appearing as
a result of energy structure mismatch of the ferromagnetic
lead and insulating spacer have considerable influence on the
TMR value.3,4 In particular, symmetry of these states can
select spin-polarized bands in ferromagnetic electrode and
enhance tunneling through the insulating barrier. Moreover, a
modification of the energy structure of the spacer and its
bonding to the ferromagnetic leads can switch the polariza-
tion of the current and also change the sign of tunneling
magnetoresistance. These features can be controlled by a
proper modification of the spacer composition.3 It was also
shown that the defect states, present in the insulating spacer
separating two ferromagnetic leads, can dramatically change
the exchange interaction between the leads5 and affects TMR
in the way not understood within Julliere’s model. Recently
it has also been derived that the scattering of electrons on
nonmagnetic impurities present in the nanojunction barrier
can cause the switching of TMR sign.6

In recent years, due to rapid development of nanotechnol-
ogy, a new kind of “spacer” became available to be put be-
tween ferromagnetic leads. Importantly, the electronic prop-
erties of these spacers are well controllable. These are
semiconductor quantum dots7 �QDs�. They have well defined
discrete energy spectrum, whose position with respect to the
chemical potential of the leads can easily be capacitatively

tuned by electric field of a nearby gate. This in turn gives the
possibility of electrical control of the TMR effect for such a
device, which opens new possibilities of applications. Ma-
nipulation of the spin by electric field is one of the central
issues of spintronics, which is regarded as a promising alter-
native for traditional charge-based electronics. Electron inter-
actions inside the dots cause dramatic effects in their conduc-
tance, displaying quantum Coulomb blockade8 and Kondo
effect.9 Recently TMR measurements have been performed
for such designed devices: InAs quantum dots coupled to
nickel or cobalt electrodes.10–13 These experiments show a
rich TMR behavior, including the changes in the TMR sign
and appearance of its maximum far exceeding 100%. Spin
transport and gate control of the tunneling magnetoresistance
has also been realized in carbon nanotubes.14,15 The variety
of TMR anomalies observed in those systems is also ascribed
to the discreetness of the nanotube energy structure.

Tunneling magnetoresistance oscillations caused by the
classical Coulomb blockade at a small metallic droplet
coupled to ferromagnetic electrodes had already been pre-
dicted long ago.16 The TMR value can also change its sign
due to strong electron correlations inside the dot in Kondo
regime, as was shown theoretically.17,18 It is a result of the
current enhancement by the Kondo resonance when the dot
is coupled to the leads of antiparallel �AP� spin configura-
tion.

In the present paper we make an attempt to describe ex-
perimentally encountered anomalies of TMR �Refs. 10–12�
for the InAs quantum dots in Coulomb blockade regime. We
utilize the model of an interacting quantum dot with one
level active in transport, coupled to ferromagnetic leads. We
show that TMR sign switching is caused by the resonances
of the dot level with one of the lead chemical potential in
presence of the large asymmetry of the dot-lead coupling. We
also predict that electron-electron interactions inside the dot
have a decisive role in the formation of the TMR maximum,
which exceeds 100 %. Recently, within the similar model
device, we also introduced a proposal of the electrical control
of the spin polarization of the current.19 We will show that
the correlation induced switching of the spin direction of the
current is closely related to the TMR sign change at Cou-
lomb blockade.
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II. THEORETICAL APPROACH

The device is described by Anderson Hamiltonian,20

where the dot takes the role of magnetic impurity and the
�polarized� leads are analogs of host metal:

H = �dd�
+d� + Un�n�̄ + �

k,�,�=L,R
�t�ck�,�

+ d� + H.c.�

+ �
k,�,�=L,R

�k�,�ck�,�
+ ck�,�. �1�

The first two terms describe the dot with the presence of
Coulomb interactions U. The bare dot level is shifted by the
gate voltage acting on the dot capacitatively: �d��d−Vg, and
its initial position for Vg=0 is assumed to coincide with
Fermi level �d=�F=0. The third term describes the tunneling
between the dot and the leads, represented by the last term in
Eq. �1�. The electron energy in the leads is spin dependent,
�= ↑ ,↓, because the leads are assumed to be spin polarized.
We neglect the spin dependence of the tunneling matrix ele-
ments t���=L ,R� which are rather dependent on the poten-
tial barrier between the dot and a given lead. Thus, the spin
dependence of the QD level width ��� /2�= �1 /2������;
���=2��t��2��� is caused by the coupling to the leads with
different spectral densities ��↑���↓, which are assumed to
be featureless and constant.

Let us define the polarization of the quantity X, PX= �X↑
−X↓� / �X↑+X↓�. For the lead � it is: P�= ���↑−��↓� / ���↑
+��↓�, which can be expressed by the spin-dependent QD
widths:

P� = ���↑ − ��↓�/���↑ + ��↓� . �2�

To calculate TMR we will consider parallel �P�, PR=PL, and
AP, PR=−PL, lead polarization arrangements. The asymmetry
of the dot-lead coupling is described by � parameter. Be-
cause of validity of Eq. �2�, the relations between dot level
width components from left and right leads follow for P and
AP configurations:

�R�
P = ��L�

P , �R�
AP = ��L�̄

AP, �,�̄ = ↑,↓ . �3�

Tunneling magnetoresistance is calculated from the formula:
TMR= �GP−GAP� /GAP, where G are appropriate conduc-
tances calculated for parallel and antiparallel configurations.

The retarded dot Green’s function G�
r �t− t��=−i��t

− t���d��t�d�
†�t��+d�

†�t��d��t�	 is obtained by solving the set
of equations of motion of the Green’s functions in the Hub-
bard I approximation.21 Within this approximation the two-
particle Green’s functions describing spin-flip processes
�generating Kondo effect� on the localized level are ne-
glected. The Green’s functions that describe the normal scat-
tering of band electrons on an impurity are approximated by
decoupling of band electrons from impurity electrons. The
Hubbard approximation is valid for large U /� ratio, when
the Hubbard subbands are well separated in energy scale. For
numerical calculations we assumed �L↑=0.3U, in which the
other width components are calculated from Eqs. �2� and �3�
for given lead polarization and asymmetry �.

The Hubbard approximation is the simplest scheme which
describes correlated electrons, placed on the approximation
scale between Hartree-Fock approximation for interacting

but uncorrelated electrons, and the schemes for strongly cor-
related electrons, leading to Kondo physics. Thus, it is most
suitable for the description of a spin-degenerate QD level in
the Coulomb blockade regime of the lead-dot coupling, the
limit realized in recent experiments.10–12

The Fourier-transformed expression for QD Green’s func-
tion with the spin �= ↑ ,↓ for given 	=P or AP arrangement
has the form:

G�
r,	�
� = 
 
 − �d

1 +
�n�̄		U


 − �d − U

+
i��

	

2 �
−1

�
1 − �n�̄		


 − �d +
i��

	

2

+
�n�̄		


 − �d − U +
i��

	

2

. �4�

Equation �4� has been written as the sum of two Hubbard
resonances, �d

I =�d and �d
II=�d+U, whose spectral weights are

controlled by the dot level occupancy with the opposite spin
�̄. This feature directly reflects Coulomb interactions be-
tween electrons with opposite spins.

The spin components of the dot occupancy have been
calculated self-consistently from the set of coupled equa-
tions:

�n�		 = −
i

2�
 G�

�,	�
,�n�̄		�d
 ,

�n�̄		 = −
i

2�
 G�̄

�,	�
,�n�		�d
 . �5�

The “lesser” dot Green’s function G�,	 can be expressed by
the spectral density of the dot,22 ��

	�
�=−�1 /��JG�
r,	�
�,

G�
�,	�
�=2i� f̄�
���

	�
�. Nonequilibrium distribution func-

tion f̄ = ��L�
	 fL+�R�

	 fR� / ��L�
	 +�R�

	 � has a two-step profile de-
fined by the chemical potential in the leads: fL/R
� f�
�eV�, and collapses into equilibrium Fermi-Dirac dis-
tribution function f � fL= fR in the limit of zero bias between
the leads, eV→0. The current is calculated within Landauer
formalism from the relation:22

J	 =
e

2
�
�
 d
�fL − fR�

�L�
	 �R�

	

�L�
	 + �R�

	 ��
	�
� . �6�

In the limit of zero bias the conductance has the form:

G	 =
�J	

�V
=

e2


�
�
 d
�−

� f

�

� �L�

	 �R�
	

�L�
	 + �R�

	 ��
	�
� . �7�

III. BEHAVIOR OF THE SYSTEM AT ZERO BIAS

For all numerical results presented we have chosen the
left lead polarization PL=0.5 and temperature T=0.01U. This
range is typical for experiments;10–12 it gives the temperature
of 174 mK for U=15 meV.11

In Fig. 1 calculated TMR evolution with the change in
gate voltage for different � asymmetry parameter is demon-
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strated. In order to understand various TMR anomalies
shown in Fig. 1, it is instructive to analyze analytically TMR
expression at T=0. The conductance for a given spin and
lead configuration 	 has the following form in this limit:

G�
	 =

e2

h

�L�
	 �R�

	

� �d��d + U�
�d + U�1 − �n�̄		��2

+
1

4
��L�

	 + �R�
	 �2

. �8�

Consider the situation when �d
I or �d

II Hubbard level crosses
Fermi level �at Vg=0 or Vg=U�. In this case Eq. �8� takes the
form:

G�
	 =

e2

h

�L�
	 �R�

	

1

4
��L�

	 + �R�
	 �2

. �9�

The conductance has exactly the same form as for noninter-
acting dot level of Green’s function: G�

r = �
−�d
+ i���

	 /2��−1 crossing Fermi level, �d=�F. Thus, these TMR
features are of the single-particle origin and can be described
in the limit of noninteracting electrons. In Fig. 1 also the
TMR curve for noninteracting dot level, calculated for �
=0.1, is shown. The minimum at Vg=0 coincides with one of
interacting case for first Hubbard level in resonance with
Fermi level �d

I =�F.
Taking into account the relations between the level widths

�Eq. �3��, it can be shown by straightforward calculation that,
for �d

I =0 or �d
II=0, the spin components of conductance for

parallel and antiparallel configurations are �in units of e2 /h�:

G↑
P = G↓

P =
4�

�1 + ��2 , �10�

and

G↑/↓
AP = −

4��PL
2 − 1�

�PL�1 − �� � �1 + ���2 , �11�

where also the relation between spin-dependent widths from
Eq. �2�: �L↓=−�L↑�PL−1� / �PL+1�, has been applied.

For symmetric coupling ��=1�, the conductance for par-
allel configuration GP=G↑

P+G↓
P reaches its maximum value of

2e2 /h. It is reflected in the TMR curve in Fig. 1, which also
displays a local maximum at the conductance resonances at
Vg=0 and Vg=U. The conductances for antiparallel configu-
ration and �=1 are G↑

AP=G↓
AP=−�PL

2 −1�, which yields
TMR=PL

2 / �1−PL
2��0. Thus, for symmetric dot-lead cou-

pling, the TMR has positive sign at the conductance reso-
nances. The situation changes for asymmetric coupling, �
�1. In this case TMR at resonances takes the form:

TMR =
− �PL

2�1 − ��2 − �1 + ��2�2

�1 + ��2�PL
2 − 1��PL

2�1 − ��2 + �1 + ��2�
− 1,

�12�

and for ��1, it changes the sign to negative: TMR=
−2PL

2 / �PL
2 +1��0, as shown in Fig. 1.

Let us summarize the above discussed single-particle
TMR sign changes within a simple physical picture. For the
perfect symmetric coupling, �=1, the transmission through
the dot in parallel configuration reaches the conductance
quantum in both spin channels, G↑

P=G↓
P=e2 /h. This is caused

by the perfect matching of the spectral densities of spin up
and spin down of the left lead to the corresponding spectral
densities of the right lead at the Fermi level. It also results
that the spin-dependent level widths due to the coupling to
the left lead and to the right lead are equal �see Eq. �3��. In
antiparallel configuration and �=1, this is not the case; the
number of states of spin up and spin down in the left lead at
the Fermi level are different as compared to the right lead
and also the corresponding level widths are not equal. Thus,
the conductance in antiparallel configuration is less than con-
ductance quantum, G↑

AP=G↓
AP= �3 /4��e2 /h� for PL=0.5 and

TMR�0. Note that, for unpolarized leads, PL=0, the match-
ing of the spectral densities is retained, and the conductances
G↑

AP=G↓
AP=e2 /h reach conductance quantum. When the

asymmetry of the dot-lead coupling is increased, ��1, the
tunneling between the dot and the right lead is reduced,
which destroys the perfect matching of the widths in P con-
figuration: �R↑

P ��L↑
P and �R↓

P ��L↓
P . It results in a gradual

decrease in both spin conductance components in P configu-
ration with the increase in �. More interesting situation takes
place in AP configuration. The G↑

AP conductance component,
which describes the tunneling of spin-up excess electrons
�PL�0� from the left lead via resonant dot state into minor-
ity up-spin subband of the right lead �PR�0� decreases with
the increase in the coupling asymmetry because the width
�R↑

AP which is less than �L↑
AP even for �=1 is further decreased

by lowering �. It increases the mismatch between the widths
in this spin sector. Different relation is encountered between
the widths in the AP spin-down channel. Initially, for �=1
we have �R↓

AP��L↓
AP and, by the decrease in �, the value of

�R↓
AP is lowered. When it reaches the value �R↓

AP=�L↓
AP, we have

a perfect symmetric coupling in this channel. Thus, the de-

FIG. 1. TMR dependence on gate voltage calculated for T
=0.01U, PL=0.5, and zero bias for various asymmetry parameters:
�=0.1—solid, �=1—dotted, and �=0.2—dash-dotted curves. The
dashed line is for noninteracting dot and �=0.1.

TUNNELING MAGNETORESISTANCE ANOMALIES IN A… PHYSICAL REVIEW B 79, 085312 �2009�

085312-3



crease in the dot-lead coupling symmetry causes an increase
in the coupling symmetry in the spin-down sector when the
system in AP configuration. The component G↓

AP increases
and starts to dominate over other conductance components
causing TMR�0 for small �. It can be checked from Eq.
�11� that G↓

AP reaches full transmission limit for �=1 /3 when
PL=0.5. This enhancement of one of the conductance spin
components in AP configuration can easily be generalized to
other AP arrangements. For instance, if the polarization of
the left lead were assumed to be negative, the G↑

AP would be
enhanced by the decrease in �.

Similarly, as discussed, TMR sign changes have been ob-
served in quantum dots11,12 and in carbon nanotubes14

coupled to ferromagnetic electrodes. They are also inter-
preted in terms of the asymmetry of the coupling to the
leads.

Consider now the region in which the dot is in Coulomb
blockade. In this case for �d=−U /2 exactly one electron is
present at the dot �n↑		+ �n↓		=1. There are considerable
TMR anomalies near this point �see Fig. 1�; TMR can
change its sign or can be greatly enhanced to exceed 100%.
These anomalies are caused by electron-electron interactions.
The peculiar behavior of TMR in this region is caused by
interplay of the two factors. The first is caused by the cou-
pling �and its asymmetry� of the dot to the spin-polarized
leads. It determines the widths of the conductance peaks for
parallel and antiparallel configurations. The second factor is
electron correlations which are the strongest in this region.23

They cause the spin components of the occupancies to be
close to one-half at Coulomb blockade. The TMR anomalies
here can be understood by analyzing the spin components of
the conductance for given lead polarization arrangement �Eq.
�8��. For �d�−U /2 and �n�̄		�0.5, the denominator �d

+U�1− �n�̄	� is very small, causing G�
	 to be small. Depend-

ing on the lead polarizations and the strength of the Coulomb
interactions, the components of the conductances defining
TMR get their minimal values for different positions of the
dot level. The same mechanism causes sudden current polar-
ization switching in the region of �d�−U /2 as discussed in
Ref. 19. Indeed, it is shown in Fig. 2 that for P and AP
configurations the value of conductance polarization PG

	 per-
forms a rapid oscillation and additionally it changes sign for
AP configuration.

TMR value in this region is very sensitive to the change
in the conductance in AP configuration. Consider first the
perfect symmetric coupling, �=1. For PR=−PL the total
widths of the dot level are equal �↑=�↓ because of relation
�L↑=�R↓ and �L↓=�R↑ �Eq. �3��. Thus, in the symmetric AP
arrangement, the dot behaves as if it were coupled to unpo-
larized leads. In such a case spin components of the conduc-
tance are equal, G↑

AP=G↓
AP, in the whole range of gate volt-

ages and also the occupancies �n↑	AP= �n↓	AP are equal. The
QD occupancy curve displays a plateau at �n↑	= �n↓	�0.5
due to Coulomb blockade.19 Moreover, for particle-hole
symmetric case, �d=−U /2, the occupancies are �n↑	AP

= �n↓	AP=0.5, giving G↑
AP=G↓

AP=0. This feature causes an in-
finite TMR value for �=1 at T=0. For asymmetric coupling,
��1, and finite temperature, the relation G↑

AP=G↓
AP is still

fulfilled at the gate voltage of TMR maximum but the con-
ductances have small finite value. From the condition of

G↑
AP=G↓

AP follows also the equality �n↑	AP= �n↓	AP at gate
voltage of TMR maximum, independently on �. It can easily
be derived utilizing Eq. �8�. At Coulomb blockade, the first
term in the denominator is much larger than the second one
and the relation �Eq. �3�� for AP configuration have to be
used. Thus, at TMR maximum the conductance in AP con-
figuration is unpolarized �the conductance polarization PG

AP

=0 as shown in Fig. 2� and also the dot occupancy polariza-
tion is zero.

Strong enhancement of TMR at classical Coulomb block-
ade has also been predicted for ferromagnetic double tunnel
junctions24 as a result of cotunneling of electrons through
metallic island. It has also been observed experimentally.25,26

Our result provides an explanation of corresponding TMR
maximum at quantum Coulomb blockade for semiconductor
quantum dot. It is in relation with the recent TMR measure-
ments for InAs quantum dot coupled to the Ni leads,12 where
the TMR enhancement above 300% has been observed at
Coulomb blockade.

At the gate voltages for which TMR=0, following equali-
ties apply G↑

AP=G↓
P and G↓

AP=G↑
P. It implies that the conduc-

tance spin polarizations are opposite for parallel and antipar-
allel configurations: PG

P =−PG
AP �compare corresponding

curves in Fig. 2�.
Let us now discuss the TMR sign change encountered at

Coulomb blockade. It is shown in Fig. 2 that this TMR mini-
mum coincides with the sharp minima of conductance polar-
izations; moreover PG

AP�0 here. The TMR minimum is
caused by sharp polarization switching of the conductance in
AP configuration. It is in contrast to P configuration, for
which the conductance polarization does not change its sign.
In P configuration the dot is coupled to the leads both having
excess of electrons of the same spin �in our case spin up�,
and conductance of this spin dominates in the whole range of
gate voltages, PG

P �0 �Fig. 2�. In AP configuration, on the
average, there is no such excess of electrons of particular
spin coming from the leads. Thus, G↑

AP and G↓
AP are compa-

rable in magnitude, and the interactions between spin-up and
spin-down electrons cause more dramatic changes in the con-

FIG. 2. TMR �solid curve� vs gate voltage calculated for �
=0.1 at T=0.01U and zero bias. The corresponding conductance
polarizations PG

P �dashed curve� and PG
AP �dotted curve� are also

shown. Dash-dotted curve is for −PG
AP.
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ductance polarization. Apart from electron-electron interac-
tions, which cause the conductance polarization switching in
AP configuration, the mechanism of enhancement of the con-
ductance component G↓

AP for small � works also here, simi-
larly as discussed for single-particle origin TMR sign
change. The transmission in the spin-down channel of AP
configuration dominates here over other conductance compo-
nents and causes TMR�0. There is no unique condition for
negative TMR minimum to appear at Coulomb blockade and
it depends on the value of initial lead polarization. For higher
P�, the conductance in P configuration will dominate �PG

P

curve then is shifted upward� and TMR will not change sign
in spite of conductance polarization switching in AP configu-
ration �not shown�. The polarization PG

AP behaves similarly as
in the case of configuration with one lead polarized.19 The
TMR sign change here also fades out rapidly with increase in
temperature �Fig. 3� because the PG

AP is very sensitive to the
temperature change in this region. At higher temperatures
PG

AP switching decays quickly. This sensitivity in the region
of Vg�U /2 has been shown in Ref. 19 for one of the leads
polarized.

It could be counterintuitive that the conductance polariza-
tion PG

P reaches values larger than the leads polarizations
P�=0.5 for �Vg���F, as displayed in Fig. 2. We demonstrate
that it is the case. In this limit the dot level is placed far from
Fermi level; thus the dot is either unoccupied or fully occu-
pied. Consider the unoccupied dot for configuration 	, which
is realized for large negative gate voltage. Inserting �n�̄		

=0 into Eq. �8� and noting that ��d�2� ��� /2�2, the conduc-
tance polarization can be written as

PG
	 =

�L↑
	 �R↑	 − �L↓

	 �R↓
	

�L↑
	 �R↑

	 + �L↓
	 �R↓

	 . �13�

For 	=P the relations of Eq. �3� are further utilized to give

PG
P =

�L↑
2 − �L↓

2

�L↑
2 + �L↓

2 =
2PL

PL
2 + 1

. �14�

The last right-hand side expression has been obtained by
substituting �L↓ calculated from Eq. �2�. Note that the result

is independent on �. Thus, for PL=PR=0.5 the conductance
polarization PG

P =0.8. The same expression �Eq. �14�� is ob-
tained for fully occupied dot �n�̄	P=1 and noting that ��d
+U�2� ��� /2�2. For antiparallel configuration, the conduc-
tance polarization PG

AP=0 in the limit of �Vg���F, as shown
in Fig. 2. It can straightforwardly be derived from Eq. �13�
for 	=AP when Eq. �3� is utilized. Note that TMR in the
discussed limit of ��d���F reaches value of 2/3 as predicted
by Jullière’s model2 for two polarized leads separated by
featureless tunnel barrier.

Temperature dependence of the TMR for asymmetric cou-
pling �=0.1 is shown in Fig. 3. TMR anomalies in the re-
gions of Vg�0 and Vg�U caused by the resonances of QD
Hubbard levels �d

I and �d
II with the Fermi level are robust to

the increase in temperature. The anomalies due to electron
correlations situated in the range of Coulomb blockade Vg
�U /2, in turn, are sensitive to these changes. It is caused by
a temperature increase in the conductance spin components
at the Coulomb blockade valley. However, the pronounced
TMR maximum reaching 100% survives for T=0.03U
��0.5 K for U=15 meV �Ref. 11��. Contrarily, the negative
TMR minimum rapidly disappears at higher temperature, as
pointed out previously.

IV. BEHAVIOR OF THE SYSTEM AT FINITE BIAS

If the finite bias is applied to the system, an electron trans-
port through excited states of the QD can be activated. In the
Hubbard approximation, used for description of the device,
these processes are not taken into account.

We consider two limits of the value of the bias applied as
compared to the width of the QD level: small bias limit:
�eV����, and large bias limit when �eV����. In the large
bias limit the chemical potentials of the leads are well sepa-
rated in energy scale. It implies also a good separation of the
differential conductance resonance peaks which appear when
any of the Hubbard QD levels crosses given chemical poten-
tial. Thus, the maxima and minima of TMR are also well
separated. In the small bias limit the conductance resonances
overlap each other which causes splitting of TMR minima
and diminishing of TMR maximum at Coulomb blockade. In
both the limits, a correspondence can be found between
TMR features with those appearing at zero bias.

A. Small bias regime

The TMR behavior for eV=0.1U is shown in Fig. 4 for
asymmetric coupling to the leads �=0.1 and temperature T
=0.01U. One notices that the pronounced TMR minima
present for Vg=0 and Vg=U are split when a finite bias is
applied. For positive bias the left lead chemical potential �L
is shifted upward by eV and right lead chemical potential �R
is shifted downward by eV on energy scale. When gate volt-
age increases from negative values, it shifts the dot level
from empty state regime toward Fermi bathes inside the
leads. At first the �d

I level comes into resonance with �L and
then with �R chemical potential. It causes the appearance of
two peaks in conductance with the distance of doubled bias
value between them �shown in Fig. 4� and consequently two

FIG. 3. Temperature dependence of the zero-bias TMR calcu-
lated for �=0.1 and PL=0.5: T=0—dotted, T=0.01U—solid, T
=0.02U—dashed, and T=0.03U—dash-dotted curves.
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minima of TMR are produced, labeled by �1� and �2�. Simi-
larly, in the range of Vg�U the second Hubbard level �d

II

comes into resonance with �L and then with �R and minima
�3� and �4� appear.

The maximum of TMR at Vg�U /2, distinct in case of
zero bias, is diminished when the bias is finite. This maxi-
mum has been associated with the equality of G↑

AP=G↓
AP and

subsequently �n↑	AP= �n↓	AP as discussed for eV=0. For fi-
nite bias this relation is still fulfilled. It can be checked by
analyzing spin components of the differential conductance in
Coulomb blockade region. However, the conductance for an-
tiparallel configuration is enhanced by finite bias, and the
splitting and shifting of the conductance peaks also appears.
It causes a gradual diminishing of TMR maximum. The
negative TMR minimum present for zero bias and associated
with the rapid change in the conductance polarization PG

AP

has disappeared at finite bias. It has been shown in Ref. 19
that this sudden conductance polarization switching also rap-
idly diminishes when finite bias is applied.

B. Large bias regime

Consider the case of eV=U for which the left �right�
chemical potential �L��R� is shifted upward �downward� by
U on energy scale. The TMR vs gate voltage for such a bias
and �=0.1 is presented in Fig. 5 along with corresponding
differential conductances.

Let us discuss various anomalies appearing in the TMR
curve labeled by Arabic numbers. The TMR minima placed
at the differential conductance resonances have single-
particle origin. For instance, in point �1� at Vg=−U the first
Hubbard level �d

I coincides with �L and the second �d
II lying

above is empty. At this point TMR has a �negative� mini-
mum. This kind of minimum has appeared already for zero
and small bias each time when the QD Hubbard level crossed
chemical potential of the leads: for eV=0 it corresponds to
the minimum at Vg=0 �see Fig. 1�, and to the minimum �1�
for small bias �Fig. 4�. Similar correspondence is for mini-

mum �5� at Vg=2U where the second Hubbard level �d
II co-

incides with �R and �d
I is fully occupied. This minimum is

analogous to the minimum at Vg=U for zero bias and mini-
mum �4� for small bias in Fig. 4. The minimum �4� at Vg
=0 where �d

II in resonance with �L corresponds to the mini-
mum �3� for small bias. One can also note series of maxima
and minima appearing in between conductance resonances;
for instance minimum �2� and maximum �3�. These anoma-
lies are caused by electron correlations and correspond to
similar features of TMR at zero bias �Fig. 1� at Vg�U /2. For
large bias, eV���, when the conductance resonances are
well separated in energy scale, the Coulomb blockade TMR
anomalies can be identified and their correspondence with
zero-bias TMR features can also be established. In the small
bias regime �Fig. 4�, they are considerably diminished.

The TMR minima of single-particle origin, for instance,
those numbered by �1�, �4�, and �5�, transform into local
maxima for symmetric dot-lead coupling, �=1 �dotted
curve�. Similar feature was present for zero-bias case �Fig.
1�. Thus, by experimentally tuning the coupling asymmetry
one can resolve the mechanism causing a given TMR
anomaly. Note that the TMR curve for �=1 is symmetric
with respect to Vg=U /2. At this point the Hubbard levels lay
in the middle of the transport window of the width 2U. For
instance, when Vg is set to zero �to U�, the �d

II��d
I � comes into

resonance with �L��R� and the other Hubbard level is shifted
to the center of the transport window. It gives the same TMR
feature for �Vg.

Consider now the bias dependence of TMR for the set
gate voltage. In Fig. 6 the TMR bias dependencies for �
=0.1 and �=1 calculated for Vg=0 are shown. Again, the
TMR minima labeled by �1�–�3�, present for large coupling
asymmetry �=0.1, can be identified as of single-particle ori-
gin. For minimum �2� at zero bias �d

I is in resonance with
both �L and �R. For minimum �1� at eV=−U, the �d

II Hub-
bard level is in resonance with �L chemical potential, and for
minimum �1� at eV=U, the �d

II Hubbard level is in resonance

FIG. 4. TMR dependence on gate voltage �solid curve� for finite
bias eV=0.1U calculated at T=0.01U, PL=0.5, and asymmetric
coupling to the leads �=0.1. The corresponding differential con-
ductances ��J /�V�P �dotted curve� and ��J /�V�AP �dashed curve�
are also shown.

FIG. 5. TMR dependence on gate voltage �solid curve� for finite
bias eV=U calculated at T=0.01U, PL=0.5, and asymmetric cou-
pling to the leads �=0.1. The corresponding differential conduc-
tances ��J /�V�P �dash-dotted curve� and ��J /�V�AP �dashed curve�
are also shown. The dotted TMR curve is for symmetric coupling
�=1.
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with �R chemical potential. These three minima disappear
for symmetric coupling �=1 and the local maxima develop
instead as discussed before. The minima and maxima in the
regions of eV� �U /2 correspond to electron correlations
induced TMR anomalies discussed previously for zero bias
�Fig. 1�. These anomalies appear close to particle-hole sym-
metric case, when the Fermi level is situated in between dot
Hubbard levels. In the present case, at eV=−U /2 the �L
chemical potential is placed in between Hubbard levels in the
sequence: �R��d

I ��L��d
II. At eV=U /2 the �R is in be-

tween Hubbard levels in sequence: �L��d
I ��R��d

II in en-
ergy scale. From comparison of the TMR curves for �=1
and T=0.01U, and at a higher temperature T=0.06U, one
notes that the minima caused by electron correlations are
much more sensitive to the temperature increase than
maxima, similarly as in the case of zero bias �Fig. 3�. Thus,
by the increase in temperature one can distinguish the TMR
minima of single-particle origin which are robust to the tem-
perature change from those caused by electron interactions,
sensitive to temperature.

For symmetric coupling to the leads, the TMR curve be-
comes symmetric with respect to eV=0. It is understood
when one notices that the change in the bias direction is
equivalent to the simultaneous exchange in �L↔�R and
�d

I ↔�d
II. It gives for symmetric coupling, �=1, the same

value of TMR for �eV.

V. INFLUENCE OF EFFECTIVE MAGNETIC FIELDS

The dot attached to spin-polarized leads is influenced by
two effective magnetic fields, which have different origin. �i�
The hopping of electrons from the leads, which have an ex-
cess of one of the spin components, produces an occupancy
polarization of the dot. Thus, the dot acquires magnetic mo-
ment mQD

	 = ��n↑		− �n↓		���s�, where �s=g�Bsz is the mag-
netic moment associated with spin-dependent �but degener-
ate� sublevels of �d and sz= �1 /2. This effect can be

regarded as if the dot were under influence of an external
magnetic field and the Zeeman splitting of the dot energy
level is produced. However, the value of the resultant dot’s
magnetic moment at given temperature is regulated by the
relative position of the dot level with respect to the lead
chemical potentials and electron-electron interactions. It has
nonmonotonic behavior as shown in Fig. 7. It is in contrast to
the usual Zeeman splitting of the level by external field Hext,
for which the magnetic moment m=tanh���s�Hext /kBT� in-
creases monotonically with increase in the field. Let us dis-
cuss the general features of the dot magnetic moment for
parallel and antiparallel configuration �Fig. 7�. Because PL
�0 the spin sublevels of each dot Hubbard level �d↑

� and
�d↓

� ��=I , II� have different widths �↑��↓. For large, nega-
tive gate voltage �d

II is empty, and both the �d↑
I and �d↓

I are
barely populated; the magnetic moment is small. The value
of mQD is positive because �↑��↓ and �d↑

I is being populated
earlier than �d↓

I . When Vg increases, mQD also increases,
reaching the maximum. Further increase in Vg causes faster
filling of �d↓

I sublevel because it is sharper than �d↑
I . Thus,

mQD decreases toward zero at Vg=0, where ��
I is in reso-

nance with Fermi energy �F. Further shift of ��
I causes fur-

ther increase in �n↓	 until a minimum of mQD is reached.
Note that the sequence of the filling of the first Hubbard level
��

I , caused by inequality of the �↑ and �↓, is additionally
enhanced by electron-electron interactions, manifested by the
spectral weight dependence ��1− �n�̄	� of ��

I �Eq. �4��. After

FIG. 6. TMR dependence on applied bias for the set gate volt-
age Vg=0 and PL=0.5, calculated at T=0.01U, and �=0.1—solid
curve, and �=1—dotted curve; dashed curve—TMR for �=1 and
T=0.06U.

FIG. 7. Dot magnetic moment vs gate voltage for �a� parallel
and �b� antiparallel configurations for various asymmetry �. Panels
�a� and �b�: �=0.1—solid line, �=0.5—dashed. Dotted line in
panel �a� for �=1 and in panel �b� for �=0.9 �mQD=0 for �=1 in
antiparallel configuration�. Calculated for zero bias at T=0.01U and
PL=0.5.
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reaching mQD minimum, the second Hubbard level ��
II starts

to be filled and mQD increases toward zero due to the same
mechanism ��↑��↓� as in the region of Vg�0. The mQD
=0 at Coulomb blockade corresponds to the particle-hole
symmetry case of �d=−U /2 and �n↑	= �n↓	=0.5 for unpolar-
ized leads. Further increase in Vg causes a maximum of mQD
to appear, followed by mQD=0, when �d

II is in resonance with
�F for Vg=U, and then minimum. Note that the mQD maxi-
mum is weakened, as compared to one at Vg�0, and the
minimum is enhanced. It is due to electron interactions: the
spectral weight of the second Hubbard level ��

II is ��n�̄	 �see
Eq. �4��. It also causes the dot magnetic moment to remain
negative for large positive Vg �compare to mQD�0 for large
negative Vg�.

An increase in the � symmetry of the dot-lead coupling
causes a gradual decrease in the dot magnetic moment for
AP configuration �panel �b� of Fig. 7�. For symmetric case of
�=1, the magnetic moment is zero in whole range of gate
voltages, as has been pointed out in the discussion of TMR
maximum at zero bias. For ��1 the mQD=0 line collapses
into one Vg point at which the TMR maximum appears.

�ii� The second field is an effective magnetic field, Heff,
produced by magnetized electrodes. Its value is not depen-
dent on gate voltage but rather on the relative leads polariza-
tions. While TMR measurement is performed, the external
magnetic field is applied to the system, which changes rela-
tive leads polarizations. Due to the intentionally different
shape anisotropy of the left and right leads, the magnetiza-
tion of each lead responds differently to the external field. It
enables antiparallel lead polarization for small field and par-
allel configuration for higher field. The dot itself is in turn
subjected to an effective magnetic field produced by the
magnetic electrodes nearby. This field is the largest for par-
allel configuration.

For InAs quantum dots gyromagnetic ratio is negative,
g�0 �Ref. 27�; thus the spin moments of �d↑ and �d↓ point in
the same direction as the corresponding magnetic moments.
The dot level subjected to the field Heff produced by the
polarized leads �of direction opposite to the leads spin polar-
ization� is Zeeman split:�d↓=�d−� and �d↑=�d+�, �
= �g�BHeff /2�. The Zeeman energy splitting for �g�=3.8 �Ref.
13� gives 2�=0.22 meV /T �=0.015U per tesla�. We consid-
ered the influence of Heff on the TMR features, assuming Heff

P

of the order of �0.1T, taken from experiments.10,11 For an-
tiparallel configuration the cancellation of the fields originat-

ing from the leads has been assumed Heff
AP=0. We have found

that the possible Zeeman splitting of the dot level has negli-
gible effect on TMR in this field range.

VI. CONCLUSIONS

We have discussed the TMR anomalies encountered for
the quantum dot coupled to spin-polarized leads in the re-
gime of Coulomb blockade. We have shown that there are
two kinds of such anomalies. One kind has the single-
particle origin and can be interpreted in the frame of nonin-
teracting electron model. The second kind of anomalies is
caused by electron interactions. The TMR minima �and its
sign change� of single-particle origin appear at the conduc-
tance resonances for asymmetric dot-lead coupling. They are
robust to the temperature increase and gradually transform
into local maxima when the symmetry of the dot-lead cou-
pling increases. The anomalies associated with electron in-
teractions appear at Coulomb blockade in between conduc-
tance resonances. The TMR maximum at Coulomb blockade,
far exceeding 100%, is of this origin. It appears when, in
antiparallel configuration, both the current and the dot occu-
pancy are spin unpolarized. This maximum survives at typi-
cal temperatures of experiment. We also predict the TMR
sign change at Coulomb blockade. It appears due to the rapid
polarization switching of the current in AP configuration and
the enhancement of the conductance in one of the AP spin
channels by the dot-lead coupling asymmetry. It is very sen-
sitive to the increase in temperature and depends on the ini-
tial polarization of the current coming from the leads. We
have shown that the nature of the discussed anomalies can be
experimentally resolved by the change in the dot-lead cou-
pling asymmetry and/or temperature. Finally, we have ana-
lyzed the dot polarization, as induced by the coupling to the
polarized leads, and shown that it also depends on electron
interactions present inside the dot. The estimated Zeeman
field splitting, produced by the leads, has negligible effect on
TMR for experimental range of the fields.
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