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An analytical model for Fano resonances in two-channel systems is presented. By developing a two-
potential formula, we find that the line-shape parameter q factors into a background contribution qb that
depends only on the uncoupled channels and an interaction contribution qi that is affected by the coupling
between the channels, revealing how the overall line-shape parameter q may be controlled. In particular, we
show how conical intersections of the background phase shifts have an important role in the interplay between
qb and qi. Finally, control of Fano transmission profiles through qb and qi is demonstrated for quantum
billiards.
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I. INTRODUCTION

Fano resonances are ubiquitous whenever discrete levels
interact with a continuum. They have been observed in many
areas of physics: atomic and molecular systems,1,2 quantum
dots,3 carbon nanotubes,4 microwave billiards,5 molecular
electronic transport,6 optical ring resonators,7 and quantum
wires.8 When probed, Fano resonances yield their signature
scattering cross-section profile:1

� �
�� + q�2

1 + �2 . �1�

Here � is the dimensionless reduced energy �which is mea-
sured in units of the resonance half width and shifted so that
it vanishes at the position of the resonance�, while q is the
Fano line-shape asymmetry parameter. The latter is propor-
tional to the ratio between the resonant and nonresonant tran-
sition amplitudes.1

Often the Fano profile is observed in experiments without
any theoretical model that explains the sign and magnitude
of q. Instead, the value of q is extracted by fitting Eq. �1� to
existing data. This has also been the case in many theoretical
studies.

Generally, there have been two approaches to calculating
the Fano profile. The first gives a heuristic treatment of the
Fano model based on Eq. �1� without going into the micro-
scopic details of the interaction between the bound states and
the continuum and how it relates to the Fano resonances.8,9

The second approach uses microscopic models to describe
the scattering process. However, these are usually too sim-
plistic and specific10–12 or overly complex so that they resort
to numerical solutions.13 In either type of microscopic model
the Fano mechanism is usually obscured by the details so
that a heuristic approach is needed after all.14,15 The treat-
ment in Ref. 16 is more complete in this respect, showing
how in several scenarios the Fano profiles may be explicitly
calculated. However, these approaches do not give a com-
plete and general understanding of the Fano q-reversal
phenomenon17,18 nor do they suggest any means of profile
control.

Recently, it has been conjectured that the sign of the Fano
parameter q might change due to both background reso-
nances and symmetry breaking of the bound-continuum
coupling.19 This has been shown to be plausible.17 The exact
interplay between these two factors remained hidden in pre-
vious theoretical studies.16,18 This turns out to be a crucial
point as will be shown below.

The purpose of this work is to provide a detailed micro-
scopic analysis of scattering in a multichannel system with
bound states which is on one hand generic, and on the other
hand transparent enough so that analytical expressions for
the Fano line shapes are within reach. We suggest how to
manipulate the asymmetry parameter q by factorizing the S
matrix into the product of the background and coupling S
matrices. This contrasts with previous treatments,16 where
the total scattering matrix was decomposed into a sum of
background and coupling contributions. Once the S matrix is
factored into a product, the resulting line-shape parameter q
also factors into

q = qb · qi. �2�

Here qb is responsible for the contribution of the uncoupled
continuum �background�, whereas qi reflects the effect of the
interaction between the continuum and the bound state. Our
results show the important role played by the background
transmission unity peaks, which correspond to conical inter-
sections of the background phase shifts, see Fig. 1. This
opens the door to resonance profile control.

This paper is organized as follows. First we show how the
S matrix of a general Hamiltonian of the form H=H0+VI

+VII may be factorized into the product of two S matrices
S=SI ·SII. We call SI the “first-stage” S matrix, which is re-
lated to VI, while VII gives rise to the “second-stage” S ma-
trix. This general result is then applied to the present context
of Fano model scattering—VI serves as the background scat-
tering potential and VII is the coupling term between the
bound state and continuum. We also find how time-reversal
invariance �TRI� manifests itself as a constraint on the form
of the coupling term VII. Next we derive general analytical
expressions for the full two-stage S matrix and describe the
interesting geometrical relationship between the background
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transmission amplitude and the full two-stage transmission
amplitude. Finally, we arrive at our main result and explain
how conical intersections of the first-stage �background scat-
tering� phase shifts play an important role in Fano scattering.
Control of the Fano q parameter is then demonstrated in a
numerical simulation of scattering in an open quantum bil-
liard �QB�.

II. FACTORIZATION OF THE SCATTERING MATRIX

In this section we describe the two-stage scattering for-
malism in general. Assume that the Hamiltonian is of the
form H=H0+VI+VII. We denote the H0 states as �E��, where
E is the scattering energy and � describes additional degen-
eracies �usually indicating directionality�. In the present mul-
tichannel context, these states are just plane waves,

�x�E�� =
e�ikx

�2�k
, �3�

where �=� and k is the wave number corresponding to the
scattering energy E= 1

2k2�0. Here we are working with a
Schrödinger equation with units chosen so that 	=m=1 and
assume unbiased leads. Given an arbitrary unit of length, the
corresponding unit of energy is �length−2�. Note, however,
that the rest of the derivation in this section is general and
does not depend on the explicit form of these states.

The first scattering stage is due to VI with Møller wave
operators 
�

I resulting in the outgoing

�E�+�
� � � 
+

I �E�� �4a�

and incoming

�E�−�
� � � 
−

I �E�� �4b�

first-stage scattering states. The first-stage scattering operator
SI�
−

I†
+
I has matrix elements in the basis of H0’s states

given by

�E��SI�E���� = �E�−�
� �E�+����� = S���

I �E���E − E�� . �5�

Now assume that the addition of the coupling VII is de-
scribed by the second-stage wave operators 
�

II acting on the

first-stage states. This scattering process is schematically de-
scribed in Fig. 2. It is clear that H’s total S matrix with
respect to H0’s states is

S = 
−
I†
−

II†
+
II
+

I . �6�

However, in the present context this approach is inconve-
nient for the following reason. Note that the first-stage wave
operators 
�

I act on the same states �E��, whereas the
second-stage wave operator 
+

II acts on �E�+�
� �, but 
−

II acts on
�E�−�

� �. In this sense the operator 
−
II†
+

II does not have the
usual interpretation as a scattering operator, while the first-
stage scattering operator SI does not explicitly appear in Eq.
�6�.

When using the Lippmann-Schwinger equation �LSE� or
the Fano model to describe the second-stage interaction, it is
easier to describe the second-stage scattering process in
terms of only one set of first-stage states, usually taken to be
the outgoing states �E�+�

� �. Therefore assume that the action of

VII is embodied in the scattering operator S̃II with matrix
elements

�E�+�
� �S̃II�E�+����� = S̃���

II �E���E − E�� . �7�

Note that we are using the tilde ��� to emphasize that this
scattering operator’s relation to the previous wave operators
is as of yet not established. The same holds for the second-
stage states and wave operators in Fig. 3 which describe the
total scattering process.

Now let us see how this relates to the total S matrix de-
scribed in Fig. 2. The two-stage S-matrix elements are given
by

S�����E − E�� = �E��S�E���� = �E�−�
� �
−

II†
+
II�E�+����� . �8�

Next, expressing the first-stage continuum projector using
either set of first-stage states in conjunction with the overlap
relation in Eq. �5� allows one to write

FIG. 1. Parameter space for controlling q near a conical inter-
section of the background phase shifts. The upper cone corresponds
to the state �ES� and its phase shift �S �measured relative to 1

2�F�. To
leading order, this state is an azimuth-dependent linear combination
of the vertex states �E0

S/A�. Changing the coupling VII corresponds to
rotating the qi compass wheel.

FIG. 2. Two-stage scattering schema in terms of wave operators.
Note the overlap relations.
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1�+�
I = 1�−�

I =	 dE 

�,��

�E�−�
� �S���

I �E�+�
�� � .

Note that this is a passive change in basis transformation in
the first-stage continuum subspace that just seems to have the
same matrix elements as the operator SI, but of course it is
not the first-stage scattering operator, SI�1���

I . Inserting the
above projection operator to the right-hand side �RHS� of
Eq. �8� yields

S�����E − E�� = 

��

S���
I �E�+�

�� �
−
II†
+

II�E�+����� ,

which is just the definition of S̃II. Therefore we find that

S��� = 

��

S���
I S����

II , �9�

where we have now removed the tildes ��� since these turn
out to be the same second-stage wave operators. To clarify
this last point, note that the matrix elements of SII are defined
as

S���
II �E���E − E�� = �E�+�

� �
−
II†
+

II�E�+����� ,

while the total S matrix has elements

S����E���E − E�� = �E�−�
� �
−

II†
+
II�E�+����� .

Finally, observe that if we had defined SII relative to the
incoming first-stage states �E�−�

� �, then the order of matrix
multiplication in Eq. �9� would be reversed.

III. GENERAL TWO-CHANNEL MODEL

Although, in general there might be an infinite number of
channels involved in the scattering process, the essential
physics resulting in a Fano profile is often captured by a
two-channel description of the scattering process—this was
also the underlying assumption in the original analysis of
Fano.1 We assume a single-particle TRI multichannel system
where only the lowest channel is open and the scattering
energy is in the vicinity of an isolated bound state in the

second channel with other bound states energetically sepa-
rate so that we may disregard them.

The next step is to combine the results of Sec. II and
obtain the full two-stage scattering matrix. The two-channel
Hamiltonian is partitioned as H=H0+VI+VII, which treats
scattering as a conceptual two-stage process. The first scat-
tering stage, with S matrix SI, describes scattering due to VI

relative to the H0 states in the first uncoupled channel. The
potential VI also accounts for the bound state �� at energy
E in the second channel. The second scattering stage SII

describes the scattering of the H0+VI states under the influ-
ence of interchannel interaction VII, which turns the bound
state into a resonance. The second stage is accounted for by
the Fano model. The latter is used to give an approximate
description of the coupling of the first-stage scattering states
to the bound state in the closed second channel, all the while
taking the TRI constraint into account.

To be more specific, the quasi-one-dimensional multi-
channel formalism is based on expanding the wave function
as �=
n�n�x��nx�, where ��nx�� is the local x-dependent
transverse basis �assumed nondegenerate� and �n�x� are the
channel wave functions. When the channel wave functions
are written in vectorial notation, the Schrödinger equation
assumes the form20

−
1

2
��x + A�x��2 + Vt�x����x� = E��x� . �10�

The covariant gauge connection is the anti-Hermitian matrix
Amn�x���mx ��xn

x�, while Vmn
t �x���mx�H�x�+ 1

2�x
2�nx� are the

transverse Hamiltonian matrix elements. Since the underly-
ing parameter space is just the real line, the fiber bundle is
trivial, and we may set the gauge condition Ann=0.

There are two common approaches to choosing the local
transverse basis. The simplest is to use a constant transverse
basis, usually taken to be that of the leads.21 This gives a
vanishing gauge connection, but in most cases the resulting
Vt is pretty complicated. The Born-Oppenheimer �BO� ex-
pansion is a more refined approach, where the ��nx�� are
transverse eigenstates giving a diagonal Vt with eigenvalues
that define the adiabatic potential surfaces. This formulation
naturally lends itself to the partitioning H=H0+VI+VII,
where VI=Vt embodies the BO adiabatic surface potentials
and VII are the nonadiabatic coupling terms.22 The latter are
given by what is called the “derivative coupling,” obtained
by expanding the covariant kinetic term to − 1

2 �mx ��x
2nx�

− �mx ��xn
x��x. Of course, any other partitioning scheme may

also be acceptable as long as VI pertains to the uncoupled
channels and VII to the interchannel coupling.

We begin the analysis of the two coupled channels by
analyzing the scattering matrix of the open one-dimensional
�1D� channel, i.e., the first-stage scattering matrix SI. In the
presence of TRI, SI is of the form

SI = � t r−

r+ t
� = � t re−i�r

re+i�r t
� . �11�

Here we have used the slightly unconventional notation
where no scattering corresponds to the unit matrix.23 The
ambiguity in the above decomposition may be removed by

FIG. 3. Two-stage scattering schema in terms of S matrices.
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the constraint −� /2��r�� /2.24 Note that this matrix may
be parametrized by

t = ei�F cos �� , �12a�

r = iei�F sin �� , �12b�

where the angles �F and �� will be fully defined shortly. The
S matrix in Eq. �11� may be diagonalized by

SI = U�e2i�S 0

0 e2i�A
�U†, �13�

where we have made a specific choice of phases in the ei-
genvector matrix

U =
1
�2

�e−i�S−�i/2��r − ie−i�A−�i/2��r

e−i�S+�i/2��r ie−i�A+�i/2��r
� . �14�

We also define the eigenstates of SI,

�ES� =
e−i�S

�2
�e−�i/2��r�E+� + e+�i/2��r�E−�� �15a�

�EA� =
e−i�A

i�2
�e−�i/2��r�E+� − e+�i/2��r�E−�� , �15b�

which are H0 eigenstates, and their first-stage relatives

�E�+�
S � = 
+

I �ES� =
e−i�S

�2
�e−�i/2��r�E�+�

+ � + e+�i/2��r�E�+�
− �� ,

�16a�

�E�+�
A � = 
+

I �EA� =
e−i�A

i�2
�e−�i/2��r�E�+�

+ � − e+�i/2��r�E�+�
− �� .

�16b�

The eigenvalues also satisfy

e2i�S = t + r �17a�

e2i�A = t − r , �17b�

hence the notations �S/A refer to the symmetric/
antisymmetric combinations of t and r. Finally,

�F = �S + �A, �18a�

�� = �S − �A, �18b�

where �F is the Friedel angle.25 Also, the first-stage transmis-
sion and reflection coefficients are

TI = cos2��S − �A� , �19a�

RI = sin2��S − �A� . �19b�

For brevity, the discussion of the above parametrization,
the asymptotic behavior of the states �E�+�

S/A�, and the proper
gauge conventions is postponed to Appendix A.

We now turn to treat the coupling between the first-stage
and the second-stage scatterings. Assume that the first-stage

outgoing scattering states are coupled by VII to the bound
state in the second channel with matrix elements

��VII�E�+�
� � = vE

�. �20�

It is more convenient to use the bound-state couplings to the
states �E�+�

S/A� given in Eqs. �16a� and �16b�. Using TRI, see
Appendix B, one can show that the different couplings are
connected in the following way:

�vE
S

vE
A � = Ut�vE

+

vE
− � ,

where we have defined the couplings to �E�+�
S/A� as

vE
S = ��VII�E�+�

S � ,

vE
A = ��VII�E�+�

A � ,

and the matrix U is given in Eq. �14�.
According to the Fano model, the second-stage S matrix

SII has elements

�SII�F = �e2i�E 0

0 1
� , �21�

where the subscript “F” indicates that the elements are taken
relative to the “Fano” basis F= ��E�+�

� � , �E�+�
� ��. These ortho-

normal basis states are the linear combinations of the first-
stage scattering states �E�+�

� � such that �E�+�
� � does not couple

via VII to the second channel bound state ��. In other words,
the states ��E�+�

� � , �E�+�
� �� are chosen so that

vE = ��VII�E�+�
� � , �22a�

0 = ��VII�E�+�
� � , �22b�

with vE���vE
+�2+ �vE

−�2. The Fano phase shift is given as

tan��E� = −

1

2
��E�

E − E − ��E�
. �23�

Here we have used the usual definitions

��E� = 2��vE�2, �24a�

��E� =
1

2�
P	 dE�

��E��
E − E�

. �24b�

If vE varies slowly enough as a function of E then it is
reasonable to approximate ��E� and ��E� using their values
at the bound-state energy E,26 i.e., we assume a constant
scattering background.

Thus, in order to get the total S-matrix elements S
=SI ·SII, all that is left is to express the change in basis trans-
formation from the first-stage scattering state basis �E�+�

� � to
the Fano basis. Since the interchannel couplings vE

� need to
adhere to the TRI constraint Eq. �B3�, it is easiest if we work
according to the vE

S/A parametrization, which only requires
the latter to be real. Therefore, in terms of the states �E�+�

S/A�,
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�E�+�
� � =

1

vE
�vE

S �E�+�
S � + vE

A�E�+�
A �� ,

�E�+�
� � =

1

vE
�− vE

A�E�+�
S � + vE

S �E�+�
A �� .

By defining the rotation matrix

R��� �
1

vE
�vE

S − vE
A

vE
A vE

S � � �cos � − sin �

sin � cos �
� , �25�

we find that in the first-stage scattering state basis S
= ��E�+�

+ � , �E�+�
− �� the second-stage S matrix has elements

�SII�S = UR�SII�FR†U†.

Finally, the total two-stage S matrix, which we implicitly
express in the H0 scattering basis, is

S = SISII = ei��S+�A+�E�� � ie−i�r�−

ie+i�r�+ �
� , �26�

with

� = cos2 � cos��S − �A + �E� + sin2 � cos��S − �A − �E� ,

�27a�

�� = cos2 � sin��S − �A + �E� + sin2 � sin��S − �A − �E�

� 2i sin � cos � sin �E. �27b�

By defining

��� = arg��+� ,

we see that the two-stage S-matrix parameters are related to
the first-stage matrix by

�F � �F = �F + �E,

�r � �� = �r + ���,

�� � �� = arccos�1

�
� .

These last results have important implications. First note
that magnitude of the transmission amplitude � looks like the
linear interpolation with ratio cos2 � : sin2 � between the
magnitude of transmission amplitudes corresponding to a �E
change in either �S or �A. This linear interpolation picture
also applies to the real part Re����, but it does not carry over
to the magnitude of the reflection amplitude due to the non-
linear relation �2+ ����2=1. The “extra slack” is taken up by
the imaginary part Im����. As we shall see next, the “linear
interpolation” of the transmission amplitudes is what always
ensures the transmission zeros in the Fano line shapes, while
the extra slack term is what inhibits the reflection zeros.

The full two-stage S-matrix elements have an interesting
geometric representation. We defer, however, the discussion
of these properties to Appendix C.

Next, let us look at the Fano line shapes. The ratio of the
full two-stage transmission amplitude to that of the first stage
assumes the almost familiar form

T

TI =
�� + qb · qi�2

1 + �2 , �28a�

with the usual dimensionless Fano parameters

� = − cot �E =
E − E − �E

1

2
�E

,

qb = tan��S − �A� = ��RI

TI ,

and the additional factor

qi = cos�2�� .

The subscript on qb emphasizes that this is only the back-
ground contribution—this distinction is important when dis-
cussing the q-reversal phenomenon since the overall line-
shape asymmetry factor is a product of the background
contribution qb and the coupling contribution qi.

We assume that the coupling vE is weak with �E changing
rapidly enough so that the first-stage scattering process may
be considered as a static background. In this case one takes
the parameter qb as an energy-independent constant where
the phase shifts �S and �A are evaluated at a scattering energy
matching that of the bound state E. Similarly we find that
the ratio of reflection amplitudes is

R

RI =
�� − qb

−1 cos�2���2 + �1 + qb
−2�sin2�2��

1 + �2 . �28b�

In terms of the above dimensionless parameters, the ac-
tual two-stage transmission and reflection coefficients are

T =
�� + qb cos�2���2

�1 + �2��1 + qb
2�

, �29a�

R =
�� − qb

−1 cos�2���2

�1 + �2��1 + qb
−2�

+
sin2�2��

1 + �2 . �29b�

From here it is clear that there will always be transmission
zeros, regardless of the asymmetry parameter qb or the cou-
pling ratio angle �, yet reflection zeros are obtained only if
the bound state �� couples exclusively to either �E�+�

S � or
�E�+�

A �. The general form of the Fano line shape is described
in Fig. 4.

The transmission �reflection� coefficient assumes the sym-
metric Breit-Wigner Lorentzian form if the first-stage trans-
mission �reflection� coefficient is zero. Note, however, that
when TI=0 the transmission Lorentzian has a maximal value
of cos2�2��, while the reflection Lorentzian reaches unity in
the RI=0 case. Finally, the reflection coefficient also as-
sumes the Lorentzian form if the bound state �� is coupled
with equal strength to the �E�+�

S/A� states but the Lorentzian
range only covers the interval from RI to one, i.e., full trans-
mission is not possible unless qb=0 in such a case. These
results are summarized in Fig. 5. All of these special cases
may be directly inferred from Fig. 11.
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IV. CONICAL INTERSECTION

The line-shape asymmetry parameter q factors into a
background contribution qb that solely depends on VI and a
coupling interaction contribution qi, which may be controlled
using VII. However, neither qb nor qi is gauge invariant when
taken alone—only their product is. This subtlety will be
treated in detail in what follows. Understanding how VII con-
trols qi is a simple affair—the decoupled first-stage surfaces
VI are not affected, so that qb and the states �ES/A� remain
constant regardless of the specific gauge used to define them
�here we have dropped the �+� subscript to keep the notation
uncluttered�. On the other hand, modifying VI may affect
both qb and qi, an effect that is predominant in the vicinity of
background unity transmission peaks, as we now show.

Suppose that at a scattering energy E=E0 the background
transmission reaches a unity peak, implying that �S

0=�A
0 . Here

we accent values at the transmission peak by a 0 so that S0
I

=ei�F
0
1. Assume throughout that �S approaches �A with a

leading order linear in E−E0. Since the background S matrix
is degenerate at this energy, there are no preferred eigenvec-
tors. However, we may choose to use the states in Eqs. �16a�
and �16b� that evolve smoothly from those obtained for val-
ues E�E0, which we denote as �E0

S/A�. These limiting states
are associated with an angle �r

0, which is just the limit of �r
as E0 is approached from below. Note that by a suitable
choice of gauge �i.e., choosing which point to label x=0�, it
is possible to set �r

0=0.
Now we modify VI near the background transmission

unity at E0, leading to three types of infinitesimal deforma-
tions of the background S matrix,

dSI = iS0
I �1d� + �r

0��xd� + �yd��� ,

where �r
0=exp�−i�z�r

0�. Note the absence of a �z generator
which breaks TRI. The � deformation affects only �F, keep-
ing the degeneracy intact, and it does not change the eigen-
vectors nor does it change the position of the transmission
peak that still reaches unity. The � deformation acts through
the �x generator and affects ��. This removes the degen-
eracy, but to leading order �E0

S/A� are still its eigenstates since
this is how we defined them for E�E0. It also shifts the
position of the unity peak in the transmission spectrum away
from E0. Finally, the � deformations change the height of the
peak while keeping its position. More importantly, � defor-
mations are orthogonal to the � deformations in the sense
that the degeneracy is removed so that to leading order the
eigenvectors are proportional to �E0

S�� �E0
A�.

The effect of these deformations on the first-stage S ma-
trix may be described as a conical intersection of the phase
shifts �S/A in the �� plane, schematically depicted in Fig. 1.
Here the actual eigenstates �ES/A� are defined according to the
���0 gauge, i.e., �ES� is on the upper cone. The leading-
order behavior of this state depends on the position in the
parameter space. On one side of the � axis �ES���E0

S�, while
on the other it crosses over to �ES���E0

A�. Similarly, along
the � axis it crosses over from �E0

S�+ �E0
A� to �E0

S�− �E0
A�.27

The interplay between qb and qi can now be understood in
terms of such conical intersections. The ���0 gauge choice
ensures that qb�0 on the conical surface �equaling zero at
the vertex�, so that up to appropriate parametrization-
dependent scale factors, qb corresponds to the radial distance
from the vertex in parameter space. In many cases it is also
reasonable to assume that the bound-state coupling to the
�E0

S/A� states remains �relatively� constant near the intersec-
tion. However, due to the behavior of �ES/A� that changes
according to the position in parameter space, the actual cou-
plings to the bound state also change so that qi depends on
the azimuthal angle cosine. The initial coupling to the �E0

S/A�
states may be modified through VII, and in effect this rotates
the “compass wheel” in Fig. 1, i.e., qi�1 points in a differ-
ent direction in the �� plane.

V. QUANTUM BILLIARD EXAMPLE

The above analysis of the Fano profile can be applied to
any system where the scattering can be accurately described
by an effective two coupled-channel model. Recently, Fano
resonances have been studied extensively in connection with
QBs, see e.g., Refs. 5 and 28. We therefore choose to exem-
plify the above factorization of the Fano q parameter on such

FIG. 4. �Color online� The general form of the transmission
Fano line shape. The transmission zero is obtained at �0

=qb cos�2��, while the maximal transmission value
1+qb

2 cos2�2��
1+qb

2 is
attained at �max= 1

qb cos�2�� . The transmission approaches the
asymptotic value TI as ���→�.

FIG. 5. �Color online� The special cases where Lorentzian line shapes are obtained.
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a QB. The application to other physical systems is straight-
forward.

Usually, the QB is composed of an access lead from
which the electrons impinge upon the main billiard, typically
the part associated with a quantum dot, and an exit lead. The
electron-scattering problem in QBs can be cast into a one-
dimensional coupled-channel problem,17 where the channels
are taken to be the energies of the modes in the transverse
direction, and the interchannel interactions are due to the
nonadiabatic couplings.29

Control of q will be demonstrated on the QB depicted in
Fig. 6�a�. It consists of a rectangular cavity connected to
leads that have two-potential barriers of constant heights V0,
with widths wL/R and distances from the cavity �L/R. The
leads are offset from the cavity centerline by �L/R. In this
specific example, the barriers are used to modify the first-
stage S matrix SII, while the nonadiabatic couplings that de-
fine SII are controlled by the lead offsets. The first two adia-
batic potential surfaces �channels� are depicted in Fig. 6�b�.

The significance of a conical intersection is demonstrated
near the unity transmission peak at E0=27.35 for a parity
symmetric VI obtained by setting wL/R=0.1 and �L/R=0.295.
This is convenient since the symmetry ensures that the states
�E0

S/A� have respective even and odd parities in the �r�0
gauge. The background VI is modified to control the line-
shape parameter q near the conical intersection. Taking

�L/R=0.01 ensures that VII couples �� exclusively to �E0
S� by

symmetry. We choose �=�L=�R, which preserves parity and
� deformations that break this symmetry. Removing the par-
ity symmetry from the QB can be achieved by changing the
ratios �L /�R and wL /wR.

Figure 7 depicts the Fano profiles resulting from the nu-
merically exact multichannel calculation,30 our analytical
model, and the background contributions for several sets of
QB parameters, see Table I. In all cases note the excellent fit
between the actual multichannel calculations and the line
shapes predicted by our model. This series of calculations
corresponds to two q-reversal paths in parameter space de-
picted in Fig. 8. The first path along the � axis goes from
points 1, with q�0, to 3 �q�0� by passing exactly through
the background unity transmission peak at point 2, where
qb=0. Note that for point 1 the transmission peak energy has
moved to the right of the resonance, while the opposite hap-
pens at point 3. The second path goes from points 1 to 3
through 2� which breaks parity symmetry. This point has a
subunity background transmission peak, corresponding to a
pure � deformation. As expected from the conical intersec-
tion, at this point in parameter space the states �ES/A� are
similar to �E0

S�� �EA
S�. This implies equal coupling to the

bound state, so that qi=0, giving a symmetric dip with the
novelty of a less than unity background.

The above control of the Fano q parameter was accom-
plished by varying the value of the background factor, qb.
This was achieved through the modification of the transmis-
sion unities of the background channel by changing the po-
sitions and widths of the potential barriers in the leads. Note,
however, that similar control could have been achieved had
we placed potential wells in the leads instead of potential

FIG. 7. Multichannel, background, and analytical line shapes
obtained for various VI configurations of the potential barrier pa-
rameters �see Table I�. Note the excellent fit between the numeri-
cally exact transmission profiles and those calculated according to
our analytical model.

FIG. 6. �a� Geometry of the quantum billiard with leads used to
demonstrate control of Fano q reversal. Length is measured in ar-
bitrary units, while the energy scale is in units of �length−2� �b� The
first two adiabatic surfaces V1,2

I �x� and the second surface bound
state ��.

TABLE I. QB potential barrier parameters for various configu-
rations in the �� parameter space. Note that they only affect the
background channel.

Configuration no. wL �L �R wR

1 0.1 0.250 0.250 0.1

2 0.1 0.295 0.295 0.1

3 0.1 0.350 0.350 0.1

2� 0.1 0.295 0.255 0.3

FIG. 8. The configurations in Table I correspond to two paths in
parameter space where q-reversal occurs: 1→2→3 and 1→2�
→3. The overall line-shape parameter q vanishes at the intermedi-
ate points; qb=0 at point 2 while qi=0 at 2�.
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barriers. In fact, one could use any variation in the back-
ground channel that controls the positions of the transmis-
sion unities to modify the Fano q parameter.

Control of q may also be affected through VII, which di-
rectly controls qi, while qb�0 remains constant. In the lan-
guage of conical intersections the VI parameters remain con-
stant, so that q reversal is achieved through a rotation of the
compass wheel. This type of control works irrespective of
the position in parameter space relative to conical intersec-
tions. For simplicity, again we choose a parity symmetric VI,
this time with �L/R=0.4125 and wL/R=0.1 so that qb=0.544
throughout. Now we vary �L=−0.03�0.03 while holding
�R=0.03. The results of the numerically exact multichannel
calculations are depicted in Fig. 9.

VI. CONCLUSIONS

The Fano resonance profile greatly facilitates the analysis
of a scattering cross section. The simple line-shape formula
allows the characterization of a resonance in the cross sec-
tion via a single parameter, i.e., the Fano q parameter. The
greatest strength of the Fano profile is in its applicability to a
myriad of physical systems. Although it is well known that
the parameter q serves as a measure of the ratio between the
resonant and nonresonant pathways, its exact connection
with the microscopic details of the scattering process re-
mained rather obscure. By developing a two-potential for-
mula the precise contribution of the different microscopic
pathways to the Fano parameter q was made clear.

We have presented an analytical model for Fano reso-
nances in coupled two-channel systems, where we found that
the Fano line-shape parameter q factors into background and
interaction contributions. The model gives accurate predic-
tions for the actual transmission line shapes in the local ap-
proximation. Even when this assumption must be dropped,
as is the case in many experiments, our model still allows for
a qualitative understanding of the resulting line-shape
parameter.17 Moreover, it also provides insight to the relation
between conical intersections of the background phase shifts,
the coupling interaction, and the overall line-shape parameter
q. The full control of q, although specifically demonstrated
for a quantum billiard example, is applicable to other sys-
tems where a Fano profile is observed.
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APPENDIX A: ADDITIONAL PROPERTIES OF THE
FIRST-STAGE SCATTERING MATRIX

The parametrization of the 1D S matrix, see Eqs. �12a�
and �12b�, is a generalization of the analysis for a parity-
symmetric 1D TRI potential.31,32 There �r�0 and e2i�S/A had
parity-symmetric/antisymmetric eigenvector wave functions,
while here �r is a function of the scattering energy. Addition-
ally, one may easily verify that in the present case the eigen-
vectors have symmetric/antisymmetric boundary conditions
relative to the point

x0�E� =
�r

2k
,

where k is the lead wave number associated with the scatter-
ing energy E= 1

2k2. The choice of phases in the definitions of
the scattering states in Eqs. �16a� and �16b� ensures that the
wave functions E�+�

S/A�x� are real. Finally, relative to the point
x0 one obtains the phase shifts �S/A induced by the scattering
operator SI on either eigenvector. All of the above relations
between the S-matrix parameters are summarized in Fig.
10�a�. Figure 10�b� shows the E�+�

S/A scattering state boundary
conditions and phase shifts.

From this parametrization it is clear that the transmission
amplitude is a gauge-invariant property, as well as the com-
binations �S+�A and ��S−�A�. On the other hand, the phase
controlled by �r depends on the choice of origin for the x
axis as well as picking one of the possible parametrization
choices �r. The latter is equivalent to deciding which of the
S-matrix eigenvalues is e2i�S. The gauge-fixing constraint
−� /2��r�� /2 picks one of the possible choices �r such
that symmetry point in a parity-symmetric potential is x0
�0 and the parity-symmetric states correspond to �S. An-
other convenient gauge choice is ���0, which is useful for
describing the conical intersection of the eigenvalues.

APPENDIX B: TIME-REVERSAL INVARIANCE
CONSTRAINTS

This appendix shows how TRI finds its expression as a
constraint on the coupling of the first-stage scattering states

FIG. 9. Variation in the nonadiabatic couplings VII gives q re-
versal due to the change in the coupling angle �, and hence qi. The
inset table summarizes analytical values calculated from the model.

FIG. 10. �Color online� �a� Parametrization of the 1D TRI S
matrix on the unit circle. �b� First-stage scattering state phase shifts
and asymptotics.
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to the bound state in the second channel. The S matrix for a
multichannel TRI problem satisfies

�xS�x = St, �B1�

with “t” denoting transpose and �x being the block form of
the Pauli matrix �x.

21,33 Assume that the first-stage outgoing
scattering states are coupled by VII to the bound state in the
second channel with matrix elements

��VII�E�+�
� � = vE

�. �B2�

Next note that since VI is a TRI potential, the first-stage
scattering wave functions are related by complex conjugation

E�+�
+ �x� = �E�−�

− �x���,

E�+�
− �x� = �E�−�

+ �x���.

Since we assume that VII is also TRI, while the 1D bound
state �� may be chosen to be represented by a real wave
function, we find that

�vE
+�� = ��VII�E�−�

− � ,

�vE
−�� = ��VII�E�−�

+ � .

Finally, using the overlap relations in Eq. �5� to express the
incoming states, using the outgoing states yields the TRI
constraint on the coupling elements

�vE
−

vE
+ � = SI��vE

+��

�vE
−�� � . �B3�

Using the unitarity of SI gives that up to an indeterminate
phase ei�,

ei��− �vE
+��

�vE
−�� � = SI�− vE

−

vE
+ � .

By combining the above two equations and taking the deter-
minant

det�vE
− − ei��vE

+��

vE
+ ei��vE

−�� � = det�SI��vE
+�� − vE

−

�vE
−�� vE

+ �� ,

we find that the phase is just det�SI� so that we get an alter-
nate form for the TRI constraint

det�SI��− �vE
+��

�vE
−�� � = SI�− vE

−

vE
+ � . �B4�

Next we will find a suitable parametrization of vE
+ and vE

−

so that the constraint equation is satisfied. There are several
ways of doing this. First, since Eq. �B3� is reminiscent of an
eigenvalue equation, it is easy to guess that the couplings
may be parametrized as

�vE
+

vE
− � =

e+i�S

�2
�e+�i/2��r

e−�i/2��r
�vE

S +
ie+i�A

�2
�− e+�i/2��r

e−�i/2��r
�vE

A, �B5�

where vE
S and vE

A are real. Let us verify this formally. Define
the matrices

�SI = U�ei�S 0

0 ei�A
�U†,

��x =
1

2
�1 + i 1 − i

1 − i 1 + i
� ,

so that we may rewrite Eq. �B3� as

�x��SI�†�x�vE
+

vE
− � = �x

�SI��vE
+��

�vE
−�� � .

Next, using the fact that �SI is TRI so that it satisfies the
relation in Eq. �B1� and also ���x�†= ���x�� gives

���x����SI���vE
+

vE
− � = ��x

�SI��vE
+��

�vE
−�� � ,

i.e., the above combination is real. This means that for real
parameters vE

S/A we may write

�vE
+

vE
− � = ���x�t��SI�tA�vE

S

vE
A � ,

where for convenience we have inserted the real matrix

A =
1
�2�cos

1

2
�r + sin

1

2
�r − cos

1

2
�r + sin

1

2
�r

cos
1

2
�r − sin

1

2
�r cos

1

2
�r + sin

1

2
�r
� .

This replicates the parametrization given in Eq. �B5�.

FIG. 11. �Color online� Geometry of the full two-stage scatter-
ing transmission amplitude. The transmission amplitude �̃ is the
linear interpolation with ratio cos2 � : sin2 � between the amplitudes
�̃S and �̃A. For �E=0 these coincide with the background transmis-
sion t̃= t exp�i��S+�A��. Assuming a constant background as �E in-
creases to �, �̃S and �̃A move on circles with unit diameter centered
at S and A. High-school geometry shows that �̃ moves on a circle
centered at F. This point is on the line connecting S to A such that
the segment lengths �SF� and �FA� also have the ratio cos2 � : sin2 �.
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Finally, another way of approaching the TRI coupling
constraint is to look at the bound-state couplings to the states
�E�+�

S/A�. For the moment let us call these couplings

vE
S = ��VII�E�+�

S � ,

vE
A = ��VII�E�+�

A � ,

and as we shall next show, these definitions coincide with the
previous ones. According to Eqs. �16� and �B2�,

�vE
S

vE
A � = Ut�vE

+

vE
− � ,

or in other words

�vE
+

vE
− � = U��vE

S

vE
A � ,

bringing us back to the parametrization in Eq. �B5�.

APPENDIX C: GEOMETRIC PROPERTIES OF THE FULL
TWO-STAGE S MATRIX

The full two-stage S-matrix elements have an interesting
geometric representation. For example, Fig. 11 shows the
complex plane path that the transmission amplitude �̃
=� exp�i��S+�A+�E�� traces out as the Fano phase shift �E

increases from 0 to � when the scattering energy passes the
shifted bound-state energy E+�. Assuming a constant scat-
tering background, simple geometry shows that �̃ traces a
circle that passes through the origin, hence the transmission
is zero. However, unless � is a multiple of � /2 �implying
that �� couples exclusively to either �E�+�

S � or �E�+�
A ��, this

circle diameter is less than unity, so that reflection zeros are
not attained. If the background is not constant, then the
circles get distorted, but as long as the resonance is fairly
isolated, the path still passes through the origin, demonstrat-
ing that transmission zeros are generic.
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