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We study a system composed of a quantum dot in contact with ferromagnetic leads held at different
temperatures. Spin analogs to the thermopower and thermoelectric figure of merit are defined and studied as a
function of junction parameters. It is shown that in contrast to bulk ferromagnets, the spin-thermopower
coefficient in a junction can be as large as the Seebeck coefficient, resulting in a large spin figure of merit. In
addition, it is demonstrated that the junction can be tuned to supply only spin current but no charge current. We
also discuss experimental systems where our predictions can be verified.
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I. INTRODUCTION

Thermoelectricity—the relation between a temperature
bias and a voltage bias—is a very old problem of solid-state
physics. It has gained renewed interest in recent years1–3 due
to the prospect of utilizing nanostructures to develop high
efficiency thermoelectric converters.4,5 Theoretical models
have been put forward for the thermoelectric transport
through quantum point contacts,6,7 quantum dots,8–10 mo-
lecular junctions,11 and other strongly correlated
nanostructures.12

Recently, Uchida et al.13 measured the spin equivalent of
the charge-Seebeck coefficient, namely, the spin-Seebeck ef-
fect, in which a temperature difference between the edges of
a bulk ferromagnetic �FM� slab induces a spin-voltage dif-
ference and generates spin current. The authors of Ref. 13
suggested using this effect to construct a spin-current source
for spintronic devices.14 However, the spin-Seebeck coeffi-
cient in this experiment was measured to be 4 orders of mag-
nitude smaller than the charge-Seebeck coefficient. In addi-
tion, the temperature difference unavoidably generates also a
regular voltage bias across the sample, which may preclude
easy applicability in spintronic devices.

Here we study the thermospin effect, i.e., the spin analog
to the Seebeck effect in a nanojunction composed of a quan-
tum dot �either a molecule or a semiconductor quantum dot
structure� placed between two FM leads. The charge trans-
port properties of such systems have been studied both
theoretically15 and experimentally.16,17 We define the spin
analogs of the thermoelectric coefficients and show that in
this particular case the spin- and charge-Seebeck coefficients
are of the same order of magnitude. We also calculate the
thermospin figure of merit �FOM� and show it to be rela-
tively large, indicating high heat-to-spin-voltage conversion
efficiency. Finally, it is demonstrated that the system param-
eters can be tuned such that a large spin current can be gen-
erated without any charge current, thus making this system
ideal for spintronic applications.

II. DEFINITIONS OF SPIN-THERMAL COEFFICIENTS

Consider a system composed of some structure �for in-
stance a quantum dot� placed between two FM leads, which
we assume have the same magnetization alignment. The sys-

tem is held at a temperature TL=TR=T. In linear response,
the thermoelectric Seebeck coefficient is defined as minus
the ratio between the voltage bias �V and the applied tem-
perature bias �T that generates it �in the absence of charge
current�. In a spin system out of equilibrium one can define a
spin-voltage bias as �Vs=��R−��L, where ���=��↑−��↓,
with �s� as the electrochemical potential of the spin s on
either the right or left of the quantum dot. We expect this bias
to be essentially zero when measured in the bulk of the FMs,
but it may acquire a finite �albeit possibly small� value in
proximity to the quantum dot.

To derive the spin-Seebeck coefficient, we consider a sys-
tem in which there is both an infinitesimal temperature bias
and spin-voltage bias. The charge and spin currents are de-
fined as I= I↑+ I↓, Is= I↑− I↓, respectively �note that they have
the same dimensions�. In linear response, the spin current is
given by Is=Gs�Vs+LT�T, where the response coefficient LT
is related to the fact that a temperature gradient can induce
both a spin flow and an energy flow.3,18 Setting Is=0, we find
the spin-Seebeck coefficient

Ss = −
�Vs

�T
=

LT

Gs
. �1�

Once Ss and Gs are defined, one may define a spin FOM,

ZsT= �
GsSs

2

�/T �, where �=�e+�ph is the thermal conductance of
the system, which has an electron contribution and a phonon
contribution. The absolute value is taken because the spin
conductance Gs may be negative. In analogy with charge
transport, one expects that a system with ZsT�1 is a good
heat-to-spin-voltage converter.1

III. MODEL

The model consists of a quantum dot between two FM
leads. The corresponding Hamiltonian of the system is

H = �
k,�=L,R

�
s=↑,↓

��ks − ���c�ks
† c�ks + �

s=↑,↓
�sds

†ds + Un̂↑n̂↓

+ �
k,�=L,R

�
s=↑,↓

�	�ksc�ks
† ds + H.c.� , �2�

where c�ks
† creates an electron in the �=L ,R lead with spin s

and energy �ks �the energy depends on spin due to the FM
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splitting�, ds
† creates an electron in the dot with spin s, n̂s

=ds
†ds is the number operator, U is the Coulomb charging

energy, and �s is the energy level in the dot, which is spin
dependent due to a field-induced Zeeman splitting, �B. The
latter may originate from the magnetic field induced by the
FM leads or by an external field. It may also arise from the
presence of spin dipoles which are dynamically formed
around a nanojunction.3,19 	�ks is the coupling between the
leads and the dot. This is the simplest system that exempli-
fies the physics discussed in this paper but can also be real-
ized

in experiments.16,17

If the temperatures are higher than the Kondo tempera-
ture, in the sequential tunneling approximation �i.e., first or-
der in 	�ks� one can describe the system by using rate
equations,20 which describe the populations of the different
states in the dot. The dot can be either empty �with probabil-
ity P0� or populated by a spin-up electron �P1�, by a spin-
down electron �P2�, or by two electrons �P3�. The corre-
sponding rate equation is

d

dt�
P0

P1

P2

P3

� =�
− W0→1 − W0→2 W1→0 W2→0 0

W0→1 − W1→3 − W1→0 0 W3→1

W0→2 0 − W2→3 − W2→0 W3→2

0 W1→3 W2→3 − W3→1 − W3→1

��
P0

P1

P2

P3

� . �3�

The rates Wn→n� describe the probability per unit time to
transfer from state n to state n�. They are evaluated by noting
that the rate for an electron to hop onto �off� the dot is pro-
portional to the probability p�s��� to find an electron �hole� in
the � lead with spin s at an energy �. We assume that the
coupling between the leads and the dot is energy independent
�wide-band approximation� and for simplicity assume that
the leads are symmetric �it is easy to show that our results,
e.g., Eqs. �6� and �7�, do not depend on junction asymmetry�.
We thus have p�s���=
sf����, where f���� is the Fermi dis-
tribution of lead � �with the corresponding temperature and
chemical potential�. The constant 
s parametrizes both the
dot-lead coupling and the density of states �DOS�, the spin
dependence coming from both the FM band shift and the
tunneling rate.21 We assume that there is a majority of spin
up in the ferromagnets �and that the leads magnetizations are
aligned� and define 	=
↓ /
↑. 	 encodes the difference be-
tween both the DOS and the tunneling rates of the different
spins.

Thus, for example, we have �setting kB=�=1, 
↑=
, and

↓=	
�

W0→1 = 
�f„��↑ − �L�/TL… + f„��↑ − �R�/TR…� ,

W0→2 = 
	�f„��↓ − �L�/TL… + f„��↓ − �R�/TR…� ,

W1→3 = 
	�f„��↓ + U − �L�/TL… + f„��↓ + U − �R�/TR…� ,

W3→2 = 
	�1 − f„��↑ + U − �L�/TL…�

+ �1 − f„��↑ + U − �R�/TR…�
 , �4�

and similarly for the rest of the transition rates. We assume
that phonon-induced spin-relaxation processes in the dot are
inhibited due to the presence of FM leads, and are hence
slower than the spin transfer time scale, and may be ne-

glected. We set the chemical potentials �L and �R as the zero
of energy, and so the dot energies are �↑,↓=��2�B�B ��B is
the Bohr magneton�. We will discuss two limiting cases of
small and large Zeeman fields �B �in the sense that
2�B�B
 or 2�B�B�
�. The dot level � may be tuned,
e.g., by a gate voltage.

The steady-state solution is obtained by equating the
right-hand side of Eq. �3� to zero. From this solution, one can
determine the charge current, spin current, and heat current,
using the continuity equation. For the charge and spin cur-
rents, one has dn

dt = IR− IL and dm
dt = IsR− IsL, where n is the

charge on the dot and m=n↑−n↓ is the magnetization of the
dot. Using the rate equation one thus obtains �setting e=�
=1�

I� = P0�W0→1
��� + W0→2

��� � − P1�W1→0
��� − W1→3

��� �

− P2�W2→0
��� − W2→3

��� � − P3�W3→1
��� + W3→2

��� � ,

Is� = P0�W0→1
��� − W0→2

��� � − P1�W1→0
��� + W1→3

��� �

− P2�W2→0
��� + W2→3

��� � − P3�W3→1
��� − W3→2

��� � , �5�

where Wn→n�
��� are scattering rates of transitions between the

dot and the �=L ,R lead. Once all the currents are obtained, it
is a matter of algebra to obtain the different transport coef-
ficients using the linear response definition of the spin cur-
rent.

IV. RESULTS

The procedure described above allows us to obtain ana-
lytic expressions for all the currents and thermoelectric/spin
coefficients. The first result is that in the limit of �B→0, the
charge-Seebeck coefficient S is independent of 	 and is the
same as was calculated in Ref. 10. The spin-Seebeck coeffi-
cient Ss is found to be proportional to S;
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Ss =
1 − 	

1 + 	
S . �6�

Thus, for normal leads �	=1� we have Ss=0, and for perfect
FM leads �	=0 or 	=�� the spin and charge coefficients are
identical �up to a sign�. Equation �6� shows that even for a
moderate value of 	=0.3 we have Ss�0.5S, as opposed to
the bulk case where it is orders of magnitude smaller.13 In the
case of large �B, the situation is even more interesting since
in fact Ss may become larger than S. In the limit of U→�
and at �=0 �i.e., the leads Fermi energies at the center of the
Zeeman splitting� we find that

Ss

S
=

2

1 − 	 exp�2�B�B

kBT
 − 1. �7�

For a value of �B=1.5 T at T=5 K, a value of 	=0.3 yields
Ss

S �2.6.
Let us now turn our attention to the FOM. We have cal-

culated the FOM �spin and charge� numerically. For this we
take the following parameters. The coupling between the dot
and the leads is taken as 
=10−2 meV �which is typical of
semiconductor quantum dots�. The charging energy is taken
to be 2 orders of magnitude larger, U=2 meV, and we take
	=0.2. We add to the thermal conductance a phonon contri-

bution which is �ph=3�0 ��0= �2

3
kB

2

h T is the quantum of ther-
mal conductance22,23�, a reasonable value for nanoscale
junctions.24 In Fig. 1 we plot the spin FOM �ZsT, solid line,
purple online� and charge FOM �ZT, dashed line, red online�
as a function of the dot energy level � for two temperatures
of 2 and 4 K �left and right columns, respectively� and for
�B=10−3 T �Figs. 1�a� and 1�b�� and �B=1.5 T �Figs. 1�c�
and 1�d��. The first value is a typical field produced by regu-
lar ferromagnets �e.g., iron�, and the second corresponds to a
large field splitting, which may be found in rare-earth ferro-
magnets or be induced by an external magnetic field.

From Fig. 1 one can see that the behavior of the spin and
charge FOMs is similar for small Zeeman splitting and that

ZsT and ZT are of the same order of magnitude. The situation
is different for large �B for which at certain energies close to
�=0 one may obtain small ZT but large ZsT. This is due to
the fact that the Zeeman splitting in that case preserves the
particle-hole transport symmetry �the lack of which is re-
sponsible for charge thermopower� but dramatically changes
the transport properties of different spins and, hence, in-
creases the spin thermopower.

Finally, we study the system at finite currents. In the bulk,
a temperature gradient will inevitably induce both charge and
spin voltages,13 and since the spin-Seebeck effect is much
smaller than the charge-Seebeck effect, inducing large tem-
perature biases �to generate sizeable spin currents� would
result in even larger voltage biases. In the system studied
here, one can instead tune the system parameters such that
there will be a large spin current but a vanishing charge
current.

In Fig. 2 the spin current Is �solid line� and charge current
I �dashed line� are plotted as a function of �. Here the tem-
perature T=5 K, �B=1.5 T, and we have added a constant
temperature gradient �T=10 K �the spin- and charge-voltage
biases are zero�. When the charge current vanishes �indicated
by an arrow in Fig. 2� the spin current remains finite. The
inset of Fig. 2 shows the dependence on the spin current,
evaluated by varying the energy � so that the charge current
vanishes, as a function of the temperature bias �T. The mag-
nitude of the spin current increases with the temperature dif-
ference and attains significant values for realizable tempera-
ture differences until it saturates at large temperatures �note,
however, that the saturation temperature is comparable to the
interaction energy U, and hence one expects that the sequen-
tial tunneling approximation breaks down at these tempera-
tures�. The finite spin current at large temperature difference
stems from the fact that while the right lead is held at a high
temperature, the temperature in the left lead is still low, al-
lowing for differences in the tunneling rates of the different
spins to be substantial. We stress that a situation of finite Is
but vanishing I cannot be achieved by using only a voltage
bias, but a temperature bias is needed.

Our results are valid even if one considers additional
single-particle levels in the dot. In the limit of infinite U, in
fact, Eq. �6� is exact for the case of equidistant levels with no
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FIG. 1. �Color online� Spin FOM �ZsT, solid line, purple online�
and charge FOM �ZT, dashed line, red online� as a function of � at
temperatures T=2 K �left column� and T=4 K �right column� for
two values of Zeeman splitting: �a� and �b� �B=10−3 T and �c� and
�d� �B=1.5 T �see text for other numerical values�. The spin and
charge FOMs are comparable in size, and at certain parameters spin
efficiency may even exceed that of charge.
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FIG. 2. �Color online� Spin current �solid line, purple online�
and charge current �dashed line, red online� as a function of � at a
finite temperature difference �T=10 K �see text for other numerical
parameters�. The arrow indicates the energy at which the charge
current vanishes and the spin current is finite. Inset: spin current as
a function of temperature difference, evaluated at the energy � at
which the charge current vanishes.
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Zeeman splitting. In the case with Zeeman splitting, we have
numerically estimated Ss /S for up to five levels and found
that even in the presence of the additional levels Ss /S�1.

The ability to couple a quantum dot to FM leads16,17 and
to measure a local spin bias13 has been demonstrated experi-
mentally. It is thus reasonable that the results presented here
are accessible by future experiments. Another interesting
candidate for such experiments is graphene for which both
the possibilities to fabricate quantum dots25 and to bond FM
leads to measure spin currents26 have been demonstrated.

We also point out that if the leads are FM, extracting the
spin current �or measuring the spin voltage� has to be done
close to the junction at a distance shorter than the spin-

diffusion length of the FM leads. Possible ways to circum-
vent this difficulty include the use of half-metallic leads �in
which the spin-diffusion length should be very large� or to
use a normal metal in contact with a thin FM layer for each
lead, with the FM thin layers sandwiching the quantum dot.
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