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The quantum conductance in a submicron T-junction structure is reconsidered here, within a single-particle
linear-response scattering approach. We find that when a new conduction channel opens to conduction in a side
terminal, the main source-drain conductance acquires a singularity that can be traced back to the so called
“Wigner cusp,” first encountered in nuclear cross sections. The shape of the singularity can be changed by
tuning the gate voltages and can justify structures of the conductance measured in recent experiments involving
nanodevices with similar geometry.
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I. INTRODUCTION

Present lithography allows the fabrication of adjacent
nanostructures with a spatial separation on the order of 100
nm. Quantum point contacts �QPCs� are used for detecting a
flow of current through a device or for sensing the charge in
a quantum dot �QD� nearby.1 When used as a detector of the
charge in a QD, the QPC is capacitively coupled to the QD,
but it is not uncommon to couple it capacitively to a quantum
wire �QW�, e.g., to study Coulomb drag2 or to allow for
multiterminal nanostructures.3 In these cases it is important
to take care of the back action of the detector on the system
that one wants to measure.4 When using a QPC as a detector,
it is common to polarize its conductance by means of gates
close to the pinch-off point to exploit the strong nonlinearity
in the current across the QPC at the opening of the conduc-
tion channel. Conductance in neighboring terminals may
show intriguing behavior when one of them is polarized with
gates close to the pinch-off voltage. Recent experiments5,6

show an enhancement of the conductance in one wire when
side gate voltages drive another terminal across a conduc-
tance threshold. This also happens in simple cases when
charging effects or Coulomb interaction is excluded. Among
the multiterminal structures, the simplest is a three-terminal
T junction �T-J�. The sudden opening of transmission into a
side terminal attached to a QW may influence the current
flow that one wants to measure in the QW in a marked
way.7,8 In this case, as we show here, the back action of an
extra conducting terminal is a single-particle effect and does
not require any exotic feature, such as an assistant quasi-
bound state in the close vicinity of the T-J.9,10 Singularities in
the scattering cross section when an extra reaction channel
opens have been well studied in the past in the context of
nuclear physics and nicknamed Wigner cusp after Wigner.11

The Wigner cusp is extensively described in Refs. 12 and 13
�see also Ref. 14� and is recognized also in nanostructures
when coherent charge transport occurs.8,15,16 Baranger8 stud-
ied theoretically conductance in a multiterminal system of
crossed quantum wires. Analyzing contributions of separate
channels to the conductance, he found a pronounced Wigner
cusp when a bend channel was opened by increasing the

Fermi energy. If other channels contribute to the individual
transmission with a dip in the conductance, the cusp can be
compensated in the total transmission. There is no need of
resorting to a specific model for the conductance, as the ori-
gin of the singularity at the opening of a channel in a nearby
side terminal is simply the interplay between the overall con-
strain of flux conservation in the scattering across the device
and the interference between incoming and reflected wave
amplitudes at the junction.

Schult et al.15 set up a self-consistent method to solve the
Schrödinger equation and the Poisson equation simulta-
neously to simulate gate polarization in more complex ex-
tended devices. The phenomena we want to address here
only appear when lateral quantization occurs, generating
subbands in the single-particle spectrum and discrete con-
duction channels which have a nonlocal quantum influence
on the conductance when they are close to threshold.

In this paper we address the simplest tight-binding ap-
proach to the threshold problem in a T-J. We show that, when
the gate on the side terminal is swept across the pinch-off
voltage, an enhancement of the conductance in the measured
QW or QPC can occur, which can be turned into a dip, or
into other characteristic shapes, by tuning the parameters of
the structure. At zero temperature, the singularity appearing
in the measured conductance can be a cusp or an inverted
cusp, or a saddle point, depending on the relative weight of
the tunneling matrix elements which connect the T-J island to
the bulk of the quantum wires.

In Sec. II we discuss coherent quantum transport in the
simplest T-J between QWs and present the conditions under
which the back action of the side terminal can induce a peak
or a dip in the source-drain �SD� conductance. In Sec. III we
extend our picture to the case of a T-J controlled by gate
voltages, which implies that the T-J is effectively turned into
an island confined by QPCs. The island is assumed to be
large enough, so that charging effects can be ignored but not
the quantization of the conductance in the QPCs. In Sec. IV
we shortly review the recent experiments on similar devices
and we propose to interpret those results at the light of our
findings, which do not consider possible many-body correla-
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tions in action, showing up dramatically at the pinch-off en-
ergy of the side terminal.

II. T JUNCTION OF QUANTUM WIRES

To make our argument crystal clear, we first consider a
three-terminal system of one-dimensional quantum wires
connected at the reference zero site. The formalism we use is
straightforward and well established.17 We assume that
source-drain potentials V1 and V2 are applied to the elec-
trodes 1 and 2, while the third electrode is gated with gate
voltage VG3. The latter is swept across the pinch-off point.

The current flowing from the ith electrode is given, within
linear response, by17

Ii =
2e2

h
�
j=1

3

Tij�Vi − Vj� , �1�

where

Tij =� �−
� f

�E
�Tij�E�dE . �2�

Tij�E� is the transmission coefficient from the ith to jth elec-
trode for electrons with an incoming energy E and f is the
Fermi distribution function. The conductance measured be-
tween the electrodes 1 �source� and 2 �drain�, in the presence
of the electrode 3 left unbiased, is

G12,3 =
2e2

h
�T12 +

T13T23

T13 + T23
� �3�

�indices can be interchanged�. The second term in Eq. �3� is
a contribution from indirect transmission of electrons
through the third wire.

As the simplest model, let us assume tight-binding cou-
pling with hopping integrals ti �taken as real� between neigh-
boring atoms in the ith wire and site energies �i �see Fig. 1�.
All calculations are performed exactly within the tight-
binding approach.18 The Green’s function gi in the ith semi-
infinite wire is

gi�E� =�
2

Ei − �Ei
2 − 4ti

2 for Ei � − 2	ti	 ,

2

Ei + i�4ti
2 − Ei

2 for 	Ei	 � 2	ti	 ,

2

Ei + �Ei
2 − 4ti

2 for Ei � 2	ti	

 �4�

�Ei=E−�i�. Hoppings to and from the central zero site at the
T-J are denoted by t0i �i=1,2 ,3� and the Green’s function of
the central site is

G00 =
1

E − �0 − t01
2 g1 − t02

2 g2 − t03
2 g3

. �5�

The Green’s functions Gij connecting the electrodes i and j
are expressed as

Gij = git0iG00t0jgj . �6�

They allow us to calculate the transmission coefficients Tij
appearing in Eq. �1� according to19

Tij�E� = viv j	Gij�E�	2. �7�

Here vi=�4ti
2−Ei

2 when the relative electron energy in the
ith wire Ei enters the wire energy band �	Ei	�2	ti	� and van-
ishes otherwise. A gate voltage VGi applied to electrode i
shifts its site energies uniformly: �i→�i−eVGi. The pinch-off
voltage VGi

0 makes the Fermi velocity vi�E=EF� vanish by
moving EF beyond the bottom of the conduction subband.

To match with some experiments,5 as discussed in Sec.
IV, we calculate the detector conductance G12,3 �when the
source-drain voltage is applied to QW 1 and 2, whereas QW
3 is left unbiased� as well as the conductance G23,1 �when
QW 2 and 3 are the current source and drain, respectively,
and QW 1 is left unbiased�. Conduction in the third wire will
start at the pinch-off voltage, for VG3�VG3

0 with a square-
root singularity. The detector conductance G12,3, which, ac-
cording to Eq. �3�, is, at zero temperature,

G12,3
0 =

2e2

h
v1v2t01

2 t02
2 	G00�EF�	2�1 +

v3t03
2

v1t01
2 + v2t02

2 � �8�

will suffer a back action at the threshold. An appropriate
choice of the parameters gives the result of Fig. 2 when the
gate voltage is swept across the threshold VG3

0 . The conduc-
tance between source and drain, G12,3

0 , shows a cusp at the
opening of the conduction channel which is rounded off by
temperature. The plots show that the width of the Wigner
cusp depends on the curvature of the conductance step in
G23,1.

In Sec. II B we will show that besides cusps, also dips and
saddle points can appear in the source-drain conductance,
depending on the actual structure of the T-J which is changed
in our model by changing the parameters �i and t0i.

A. Dependence of the back action on the T-J structure

Let us change the structure of the T-J area by changing the
parameters of the model. Here we show that the feature in
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FIG. 1. �Color online� Three-terminal system of one-
dimensional semi-infinite atomic chains. The parameters of the
tight-binding model are site energies �i and hopping integrals be-
tween neighbor atoms tij.
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the source-drain conductance G12,3 marking the opening of
the conduction channel in the third electrode can take various
shapes, specific of the quantum interference occurring in the
T-J. To reduce the number of parameters, we will fix the site
energies all equal in the rest, �i=0, and move the Fermi level
EF with respect to these. As before, �3 will be shifted by
sweeping VG3. Let us first assume zero temperature. It is easy
to analyze the logarithmic derivatives of G12,3

0 at both sides of
the threshold VG3−VG3

0 =0�. Just below and above the sub-

band threshold �3=�EF3
2 −4t3

2 and v3=�4t3
2−EF3

2 vanish, re-
spectively �EF3=EF+eVG3�. Correspondingly, from Eqs. �4�,
�5�, and �8�, one can get the derivatives in the two limits as
follows:

 �G12,3
0 /�VG3

G12,3
0 

0−

= t03
2 Re�G00� 	

EF3

�3
for �3 → 0+,

 �G12,3
0 /�VG3

G12,3
0 

0+

= t03
2 �Im�G00� +

1

v1t01
2 + v2t02

2 � 	
EF3

v3

for v3 → 0+. �9�

The derivatives have an explicit singular dependence 1 /�3 or
1 /v3. The same threshold singularity occurs in the differen-
tial cross section for inelastic processes.11–13 In our situation
the scattering problem has also a multichannel structure, and
Eq. �9� expresses the change in the interference conditions as
well as in the density of available states contributing to the

linear conductance at the Fermi energy when the gate voltage
VG3 just opens the new channel in the side terminal 3 to
conduction.

Since, above the threshold, Im�G00��0, the derivative
�T12 /�VG3 	0+ is always negative. However, the derivative
�G12,3

0 /�VG3 	0+ can be negative or positive due to the pres-
ence of the back reflection from the third wire �the second
term appearing in Eq. �3��. In particular, if the transmissions
T13 and T23 of Eq. �7� have opposite slopes at the threshold,
a peak develops. Figure 3 shows different shapes for the
singularity in G12,3

0 close to the threshold voltage. To simplify
our approach even further, we assume that the wires are
equal, i.e., they have equal hopping integrals t1= t2= t3= t and
define E0

r =EF−�0+ t03
2 / 	t	, the renormalized energy of an

electron at the zeroth site, and 
= �t01
2 + t02

2 � /2t2. The shape of
the singularity in Fig. 3 depends on the relative couplings t0i.
In particular we choose the symmetric case �t01= t02�, so that
the dependence is on t03 and 
= �t01

2 + t02
2 � /2 only. Together

with upward and downward cusps, saddle-point singularities
can appear. Equation �9� implies that �G12,3

0 /�VG3�0 when

E0
r � 
EF for VG3 − VG3

0 → 0−,

E0
r2 − 2
E0

rEF + 2
2E1
2 � 4t2
2 for VG3 − VG3

0 → 0+.

�10�

Figure 4 represents the boundaries for these various possi-
bilities in the space of the parameters EF and E0

r when 

=0.25. The left-hand side of the diagram corresponds to an
n-doped semiconducting structure, while the right-hand side
corresponds to the p-doped case. This means that the Wigner
cusp should be easier detected in an electron system �when
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FIG. 2. �Color online� Conductance G12,3 and G23,1 as a function
of the swept potential VG3 applied to electrode 3. All three wires are
assumed to be similar, i.e., ti= t=1 �taken as the energy scale� and
�1=�2=0 and �3=−eVG3. The wires are coupled to each other by the
zeroth site �with �0=0� and the couplings are t01= t02=0.5 and t03

=0.8. The Fermi energy is taken as EF=−1, so that the pinch-off
voltage is at VG3

0 =−1. The plots are for various temperatures: T
=0 �black solid curve�, T=0.02 �blue dashed curve�, and T=0.04
�red dashed curve�.
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FIG. 3. �Color online� Conductance G12,3 calculated as a func-
tion of VG3. The plots are for t03=0.2, t03=0.6, t03=1.0, t03=1.4,

= �t01

2 + t02
2 � /2=0.25, and various temperatures: T=0 �black solid

curves�, T=0.02 �blue dashed curves�, and T=0.04 �red dotted
curves�. The other parameters are taken as in Fig. 2.
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E0
r is negative�, whereas the dip should be more common in

a hole system.
We now shortly discuss the possibility that a bound state

splits off the subband threshold of wire 3 in our tight-binding
model and the consequences on G12,3

0 . The term −t03
2 g3, ap-

pearing in the denominator of the central-site Green’s func-
tion G00 of Eq. �5�, shifts the energy of the central site �0.
This term is due to back reflection from wire 3 and, being
positive for EF3�−2	t3	 �as g3�0 below the band edge�, it
shifts the zero-site energy downward. When �0 is moved be-
low the band edge, G00 acquires a pole on the real energy
axis, which signals the presence of a bound state localized at
the center of the structure. However, we find that G00 has no
poles for any value of EF3�−2	t3	 and t03 in our model. This
means that no applied gate potential VG3 can give a bound
state in the subthreshold region. However, if 	EF3	�2	t3	, one
could find such a pole in G00 when

VG3 = − �EF�1 − 
� − �0�
2t3

2

t03
2 �11�

provided 	EF�1−
�−�0	� t03
2 / 	t3	. In addition, less stringent

conditions for the occurrence of a subthreshold bound state
could be realized by adding side gates in the model, which
have the role of sharpening the electron confinement close to
the central island �see Sec. III�. Nevertheless, analyzing
many plots of G12,3 for various sets of parameters, we did not
find any peculiar feature induced by the pole. Had we al-
lowed for the center of the bands of electrodes 1 and 2 to be
shifted, we could have found a localized zero-site state em-
bedded with the continuum of propagating states from source
to drain. This could produce the characteristic Fano-type
resonant peak in the source-drain conductance, which could

even overlap with the threshold effect considered in this
work.

B. Multichannel conductance

Up to now the conductance due to a single channel was
considered. In the multichannel case, one can expect that
opening successive channels adds further quantum interfer-
ence in the back reflection at the T-J. The transmission coef-
ficients are expressed by

Tij = �
ki,kj

Tkikj
, �12�

where the summation runs over all incoming and outgoing
channels in the wires i and j �with wave vectors ki and kj,
respectively�. They have been calculated along the lines de-
scribed in the Appendix. Figure 5 shows plots of G12,3

0 vs the
sweeping gate voltage VG3 for a number of channels Mi�3.
They are fully open from source to drain while VG3 controls
the successive openings in wire 3. In the subthreshold region,
the case for 
=1 corresponds to an ideal SD wire and the
conductance at the plateaux reaches 3	2e2 /h. The dashed
curve refers to the direct SD transmission T12 which is con-
trolled by 
, while the full curve refers to G12,3

0 and includes
also the indirect contributions when current flows also in
wire 3, according to Eq. �3�. As expected, G12,3

0 is reduced in
the top plots, for high 
, when successive channels are
opened in the third wire. As in the one-channel case, the
Wigner cusp occurs for 
� t03. The threshold singularities
are more pronounced at successive openings, where the in-
terference effect builds up more strongly.

-2 -1 0 1 2

EF
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-0.5

0

0.5

1 E0
r

FIG. 4. Diagram showing regions with different singularities of
the zero-temperature conductance G12,3

0 . The derivative
�G12,3

0 /�VG3 	0+ �that one above the threshold voltage VG3
0 � is nega-

tive inside the ellipse E0
r2−2
E0

rEF+2
2EF
2 =4t2
2, whereas outside

the ellipse its value is positive. The line E0
r =
EF separates regions

with different signs of the derivative of the conductance in the
subthreshold regime. �G12,3

0 /�VG3 	0− �0 above the line, whereas it
is positive below this line. In the model −2�EF�2 �EF is between
the dashed lines�. The plot is done for 
=0.25.
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FIG. 5. �Color online� Zero-temperature conductance G12,3
0

�black solid curve� and transmission T12 �red dashed curve� vs the
gate potential VG3 for the quantum wires of the width M1=M2

=M3=4. The plots are for various symmetric couplings: 
= �t01
2

+ t02
2 � /2=1, 
=0.49, 
=0.25, and 
=0.09, while t03=1 in all cases.

Other hopping integrals are taken as t=1, the site energies as �i

=0, EF=−0.5, and T=0.5.
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III. T JUNCTION OF QPCs CONTROLLED BY GATE
VOLTAGES

Voltage gates VGi can tune the T junction �i=1,2 ,3 labels
the terminal as previously� and control the QPCs confining a
central island at the crossing, as sketched in Fig. 6. The area
is large enough, so that no charging effect is expected within
the island. We model this case by extending our tight-binding
approach for Mi-channel wires. The gate voltages shift
Ni-site energies close to the T crossing, as explained in the
Appendix. If we pinch off the side terminal by choosing
VG3=−1.2 and we switch off the second gate by putting
VG2=0, just one QPC, along the SD path, is left. Figure 7
shows the quantization of the QPC conductance G12

0 vs the
gate voltage VG1. The inset shows how the lateral confine-

ment increases in our model �see the Appendix� by cranking
VG1. The site energies �iy

on the lateral sites iy are moved
increasingly upward away from the center of the QW.

By changing VG3, we consecutively open the channels in
the side terminal 3. If we take the source QPC as opened,
with the conductance at one of the plateaus of Fig. 7 by
opening the side terminal with VG3, the conductance G12,3

0

can develop a saddle-point singularity at the threshold. More
interesting is the situation when the source QPC is polarized
such that the initial SD conductance is between successive
plateaux �see arrows in Fig. 7�. Then one can expect different
threshold features �with cusps and dips� in the SD conduc-
tance when the channels in the side terminal 3 are opened to
conduction. Figures 8 and 9 present the results at these val-
ues: VG1=−0.89,−0.69 and VG1=−0.48,−0.26, respectively.
The transmission coefficient T12 is plotted together with G12,3

0

in the top panels �dashed line� and T13 and T23 appear in the
bottom panels together with G23,1

0 �broken lines� to show the
various contributions of direct and indirect transmissions.
The closer the source QPC is, the smaller becomes the con-
tribution to G23,1

0 coming from T23. It is interesting that T12
shows an alternating behavior at the lower openings which is
reflected in the SD conductance. At VG1=−0.89 the pattern is
dip-peak-dip, while at VG1=−0.69 the pattern is peak-dip-
peak. In decreasing VG1 further, the pattern is less clear, but
alternation can still be seen in the SD conductance. Of
course, when the source QPC becomes more and more trans-
parent �Fig. 9�, the back action due to the sweeping of VG3 is
weaker. When this happens, the peaks tend to fade away and
the dips prevail.

Finally, we concentrate on the first threshold for the con-
ductance in the third QPC, G23,1

0 , assuming that just one

M
1

N1 N2

VG1 VG2

VG3

N
3

M3

FIG. 6. �Color online� Modeling of the three-terminal system
with QPCs with Mi channels. The shaded area shows the region,
including Ni sites, where the gate potential VGi squeezes the con-
striction by moving the site energies �i above the conduction band
�see the inset in Fig. 7�.
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FIG. 7. �Color online� Conductance G12
0 through a single QPC in

a quantum wire as a function of the gate potential VG1. The arrows
show the voltages VG1=−0.89, −0.69, −0.48, and −0.26 at which we
perform further conductance studies when channels from the side
terminal are open �the results are presented in Figs. 8 and 9�. The
inset shows the site energies �iy

along the cross section of the QPC
for VG1=−0.2, −0.5, −0.8, and −0.9 �from edge to center: black,
blue, purple, and red curves�. The size of the wires is M1=M2=9
and the length of the constriction is N1=3. EF=−1.5 and T=0.
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FIG. 8. �Color online� Top panels: G12,3
0 �red full line� and T12

�red dashed lines�. Bottom panels: G23,1
0 �black full line�, T13�blue

dashed line�, and T23 �red broken line� vs VG3 for VG1=−0.89
�right�, −0.69 �left�, and VG2=0. The length of QPCs are N1=N2

=N3=3, the width of the wires are M1=M2=9, and M3=5. �Other
parameters are ti= t01= t02= t03=1, EF=−1.5, and T=0�.
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channel can be only activated �Mi=1, i=1,2 ,3� and test the
conductances with strong asymmetric polarization of the
source and drain QPCs �see Fig. 10�. We keep the gate volt-
age of the drain fixed at VG2=−1.5 and compare the case
when the source QPC is polarized at VG1=−5.0 �top panels�
with the case of VG1=−0.2 �bottom panels� �N1=N2=1�. In
sweeping across the conductance threshold the gate voltage

on the side terminal VG3, we compare various spatial exten-
sions of the third gate �N3=� ,20,6�. The SD conductance
G12,3

0 �red online� is quite small when the source QPC is close
to the pinchoff �VG1=−5.0�VG2�, except in the neighbor-
hood of the threshold for G23,1

0 �black online�, where it has a
peak �top panels�. In the opposite case �VG1=−0.2�VG2�,
the SD conductance G12,3

0 has a dip at the threshold and sta-
bilizes at a lower value �bottom panels�. With the polariza-
tions chosen, the T terminal becomes a fork and the current
incoming from the source QPC is divided between terminals
2 and 3 almost equally.

As the system is effectively one dimensional �Mi=1�,
resonance oscillations appear in the conductance G23,1

0 at the
opening of the channel in terminal 3, as can be expected
from textbook exercises when the transmission is calculated
with an incoming energy just above the top of a barrier. The
oscillations squeeze close to threshold with increasing of the
barrier extension �i.e., increasing N3�, until they merge to-
gether for N3=� �thin black line� when VG3 is applied to the
whole wire 3. These oscillations produce a back action on
the SD conductance G12,3

0 which oscillates as well, with a
phase delay.

IV. CONCLUDING REMARKS

Multiterminal nanostructures involving QPC are playing
an increasing role in the fabrication of quantum coherent
devices to be used in building qubits for quantum computa-
tion. Also, spintronics requires spin filters which could be
controlled by magnetic fields or by gate voltages provided
the charge current is carefully tuned and intrinsic �e.g.,
Dresselhaus� and extrinsic �impurity driven or Rashba� spin-
orbit couplings can be exploited. On the other hand, nano-
constrictions offer a privileged ground for the action of
electron-electron correlations and it is often difficult to sepa-
rate their effects from those of single-particle quantum inter-
ference in coherent transport. As QPC can be used as detec-
tors, a reliable interpretation of the results requires that the
two classes of phenomena are satisfactorily sorted out.

We have reconsidered the quantum conductance in a
T-junction structure within a single-particle linear-response
scattering approach. We have used the simplest tight-binding
model to provide a complete picture of how the conductance
can be changed at the threshold of side terminals by tuning
the gate voltages which confine the ballistic transport of the
electrons. Our emphasis has been on the effects that could be
measured on the main source-drain conductance or on the
conduction in the side terminal channel that is opened.

Our model reproduces the measuring setup of some recent
experiments.5,6 Two separate types of conductance measure-
ments were reported. In the first one, the conductance G23,1
of a QPC �from terminal 2 to terminal 3, nicknamed “swept”
QPC� was measured, while sweeping the gate voltage VG3.
Voltages applied to other QPCs were held fixed, including
those controlling the conductance from terminal 1 to termi-
nal 2 �nicknamed “detector” channel�. In the second mea-
surement, the voltage applied to the gate VG3 of the swept
QPC was again varied over the same range. However, its
Ohmic contacts were left unbiased, while a SD current was
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driven through the detector channel and the conductance
G12,3 was measured. From these two separate measurements,
the variation of the detector conductance G12,3 could be cor-
related with that of the swept wire G23,1 as a function of VG3.
The experiments showed an asymmetrical peak in the detec-
tor conductance G12,3, just after the pinch-off gate voltage5 or
before this point.6 On the basis of our results, we can inter-
pret these experimental features as due to the threshold effect
in single-particle quantum interference. This can be expected
at each opening of the channel. We have showed that the
cusp in the conductance could be replaced by a dip, or a
saddle point, depending on the polarization of the voltage
gates. If the detector QPC is kept rather open, with the con-
ductance close to the quantum conductance 2e2 /h �or its
multiple�, then the conductance is reduced at the pinch-off
voltage and displays a saddle-point singularity. We suggest
controlling the shape of the conductance singularity occur-
ring in the detector QPC conductance at the sweeping of the
swept channel by changing its gate voltages. When the con-
ductance of the swept channel moves across the successive
conductance plateaux, the threshold conductance peak in the
detector channel may change from cusp to dip, with small
changes in the polarization of its gates.

Our model is for free electrons and it does not include,
nor require, any kind of charging of the central area. Of
course, we cannot exclude that a small size area for strongly
confined electrons is formed in correspondence with the
pinch-off gate of the swept QW. In this case a proper lateral
quantum dot would form and Coulomb blockade would dic-
tate its occupancy. The detector wire could detect the extra
charge or even undergo resonant tunneling of Fano type. The
reported shift6 with increasing in-plane magnetic field could
be due to the first two addition energies in the quantum dot
and support the charging interpretation. However, we are
more in favor of the threshold effect explanation. Often the
peak was measured at temperature T1.8 K when the size
of the wires used in the experiment should not lead to dra-
matic Coulomb effects. On the other hand it is rather hard to
recognize a Zeeman splitting of the peak from the data, es-
pecially at low magnetic field, while, when the magnetic
field increases considerably, one cannot exclude little uncon-
trolled orbital effects. In any case, we believe that the experi-
mentally observed phenomenon should first be confronted
with our interpretation before more exotic arguments imply-
ing electron-electron correlations at the QPC constriction are
invoked.
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APPENDIX: MULTICHANNEL QW AND QPC

In Sec. II we considered a three-terminal �T-shape� system
of one-dimensional semi-infinite atomic chains �as depicted

in Fig. 1� and its extension to the multichannel case. In Sec.
III gates were added onto the wires to tune conductance as in
QPCs.

To extend the tight-binding model to a multichannel de-
vice, we have used a method proposed by Ando,20 which was
extensively applied in theoretical studies of electronic trans-
port in nanostructures. Our three terminal system is modeled
as three semi-infinite stripes of atoms of width Mia �i=1, 2,
and 3 for the three QWs� �see Fig. 11� �a is the lattice con-
stant taken as unity in the calculations�. Here mi=1, . . . ,Mi
labels the discrete lattice sites in the transverse y direction
with respect to the current flow and the modes confined in
the transverse direction are labeled by the wave vectors ki
=�ni / �Mi+1�a with ni=1, . . . ,Mi. Wave functions for the

lateral confinement are Xki
�mi�=�2 / �Mi+1� sin�kimia�. They

correspond to the energy dispersion �i+2ti cos kia. The trans-
mission coefficients Tkikj

, from the kj to the ki channel, are as
follows:

Tkikj
= vki

vkj
 �

mi=1

Mi

�
mj=1

Mj

Xki
�mi�Gij�mi,mj�Xkj

�mj�2

�A1�

with vki
=�4ti

2− �Ei−2ti cos kia�2 for 	Ei−2ti cos kia	�2	ti	
and zero otherwise. Gij�mi ,mj� denote matrix elements of the
Green’s function in the site representation, connecting atoms
in the first row of the i and j wires, respectively. In the
semi-infinite ideal wire i, the Green’s function is expressed
as

Gii�mi,mi�� =
2

Mi + 1�
ki

sin�kimia�sin�kimi�a�

	gi�Ei − 2ti cos kia� , �A2�

where gi is given by Eq. �4�. The matrix elements Gij are
calculated by a direct matrix inversion.
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Now we want to apply voltage gates at limited portions of
the wires close to the T-J to model QPCs. This model is
closer to the experiments, in which electronic transport was
controlled by a system of several gate electrodes forming
QPCs that confine a central island. Applying a negative gate
potential VG, one can control the size of the QPC and reduce
the number of transverse modes participating in the transmis-
sion. The gate potential forms a potential barrier in the con-
striction, which depends on the transverse coordinate. Mod-
els of semiconducting nanostructures and studies of the
current flow inside them are well developed �see, for ex-
ample, Refs. 17 and 21�. For our purpose, we assume the
potential barrier inside the QPC to be uniform and constant
along the constriction, with a simple transverse shape.22 The
site energies at sites iy, in the region covered by the gate, are

�iy
= U0� 1

e�iya+wi�� + 1
+

1

e−�iya−�Mi+1�a−wi�� + 1
� , �A3�

where wi=−eVGiMia /2t+a /2 and � describes the slope of
the potential. We take U0� 	t	 in order to shift �i above the
conduction band. The potential VGi is normalized in such a
way that the QPC is closed at VGi=−1, whereas a perfect
transmission occurs for VGi=0. We have checked that the
results do not depend significantly on the potential shape. If
the potential drop is sharp and all the site energies are equal
inside the QPC, �iy

�0, then the conductance plateaux be-
come flat and uniform, as expected for quantization at low
temperatures.
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