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Magnetoexciton dispersion in polar semiconductors
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A study of the exciton binding energy in three and two spatial dimensions in polar crystals in the presence
of a strong uniform magnetic field is presented. The calculations are performed within the lowest Landau-level
approximation, assuming the existence of Frohlich interaction between the electrons and the longitudinal
optical phonons. It is shown that the magnetoexciton binding energy in a pure two-dimensional polar crystal
has the same form as in the nonpolar semiconductors but with an effective dielectric constant which depends

on the strength of the magnetic field.
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I. INTRODUCTION

In polar semiconductors the interaction between a single
electron and longitudinal optical (LO) phonons dominates as
compared with the interaction with phonons of other types.
The corresponding interaction is known as the Frohlich in-
teraction, and it leads to a dielectric constant which depends
on the frequency,
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where @, is the LO optical phonon frequency and &*~!

=g —851. In the limit of zero frequency, e(w) is equal to the
static dielectric constant g,. For frequencies well above the
optical phonon frequency, the dielectric constant approaches
the high-frequency dielectric constant &.,. Turning our atten-
tion to the exciton-LO-phonon system in polar crystals, we
find that the basic assumption is that the electron and hole
that constitute the exciton are considered well separated, and
therefore interact individually with phonons. In other words,
the excitons in polar crystals can be described by an exten-
sion of the Frohlich Hamiltonian initially derived for de-
scribing the interaction between electrons and phonons. This
point of view leads to the conclusion that the exciton disper-
sion in polar crystals should be calculated using a
Schrodinger type of equation for the relative electron-hole
motion but with a more complicated interaction between
them. The electron-hole interaction in polar crystals has been
investigated decades ago by applying different techniques,
such as a perturbation theory,! unitary transformations,? path
integrals,3 a variational method,* the Green’s function
method,’ the equation-of-motion method,’ and the dielectric-
function method.” Each of the abovementioned theoretical
methods provides its own potential for the electron-hole in-
teraction, usually a nonlocal one, but regardless of the ap-
plied techniques the potential always depends on the static
and high-frequency dielectric constants &, and &., the LO
phonon energy fiw,, and the electron m,. and hole m, bare
masses. Since the experimentally obtained m, and m,, should
be interpreted as polaron-mass parameters, an additional pro-
cedure is needed to convert the polaron-mass parameters into
the bare-mass parameters.

Strong magnetic fields can dramatically change the prop-
erties of excitons. The strong magnetic limit means that the
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electrons and holes are confined primarily to the lowest Lan-
dau level (LLL), and the typical Coulomb energy (the three-
dimensional exciton Rydberg) is much smaller than the ex-
citon cyclotron energy. The Hamiltonian that usually is used
to calculate magnetoexciton dispersion has the following

form:%?
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where [=(fic/eB)"? is the magnetic length. Hamiltonian (1)
is written using the center of mass R=a r.+a,r, and the
relative r=r,—r, coordinates. The coefficients a,=(1-17)/2
and a,=(1+7)/2 are expressed in terms of the parameter
vy=(m,—m,)/(m.+m,) which accounts for the difference be-
tween the electron m, and the hole m, masses. The in-plane
exciton pseudomomentum is AQ=%(Q,,0,.0), while Q,
=(-0,.0,,0). M=m.+m, and pu=m.m,/(m.+m,) are the
exciton total mass and its in-plane reduced mass, respec-
tively. The electron and the hole dispersion laws are E.(k)
=E,+h’k?/2m, and E,(k)=1’k*/2m,, respectively, where
E, is the semiconductor band gap. Since the above Hamil-
tonian does not include the interaction with LO phonons, the
Coulomb attractive interaction between the electron and the
hole, V(r)=—e?/er, must be screened by the static dielectric
constant. It is possible to justify the use of the Coulomb
interaction screened by the static dielectric constant in non-
polar materials, but an effective dielectric constant between
€. and g, should be used for interpretation of optical spectra
of polar semiconductors in the presence of a constant mag-
netic field. In GaAs, for example, €,=10.84 and the static
dielectric constant at very low temperatures is gy=12.74.1 In
Ref. 11, however, a value of e=12.1 has been used, and this
value provides a very good agreement with the measure-
ments of magnetoexciton dispersion in GaAs-coupled quan-
tum wells at B=4 T. One may well ask what exact value
should be used in polar materials, such as TICl and TIBr,
where the dielectric constants &, and g, are quite different
(see Table I).

In what follows we extend the dielectric-function method
to the magnetoexciton-LO-phonon problem. Our approach
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TABLE I. Effective dielectric constant e(B) for various magnetic fields B=4,6,...,20 T calculated according to Eq. (25). The GaAs

values of gy and &., are measured at temperature 75.6 K (Ref. 10).

hw

(me(‘,)V) £ £o €(4) €(6) €(10) e(12) e(14) €(416) €(18) €(20)
36.8 12.74 10.89 GaAS 12.25 12.17 12.11 12.06 12.02 11.98 11.95 11.92 11.90
50.0 11.0 9.1 GaP 10.54 10.46 10.40 10.35 10.31 10.27 10.24 10.21 10.19
434 8.6 52 ZnS 7.14 6.95 6.81 6.70 6.61 6.54 6.438 6.43 6.38
27.2 7.4 3.7 CuCl 4.89 4.70 4.58 4.50 4.33 4.38 4.34 4.31 4.28
20.8 9.6 7.13 CdTe 8.31 8.18 8.08 8.01 7.96 7.91 7.88 7.84 7.82
21.5 37.6 5.1 TICI 11.24 9.67 8.82 8.28 7.91 7.63 7.42 7.25 7.11
14.3 35.1 5.4 TIBr 9.10 8.22 7.74 7.43 7.22 7.05 6.93 6.82 6.74

justifies the above choice of the dielectric constant in GaAs
and provides an analytical expression which allows us to
calculate the dielectric constant in polar materials in strong
magnetic field regime. The calculations are done assuming
the presence of a strong constant magnetic field B along the
z axis defined by a vector potential A(r)=(1/2)BXr. As in
the case of the absence of a magnetic field, we assume that
the electron and the hole, constituting the magnetoexciton,
interact individually with the LO phonons.

To the best of our knowledge no attention has been paid to
the magnetoexciton dispersion in polar crystals perhaps be-
cause of the lack of incentive from the experimental side.
The magnetoexcitons in a cylindrical disklike semiconductor
quantum dot have been discussed in Ref. 12. The main as-
sumptions in this paper are (i) there is no transverse motion
of the magnetoexciton as a whole, (ii) the interaction with
phonons in quantum dots is the same as with the Frohlich
bulk LO phonons, and (iii) the magnetoexciton wave func-
tions can be written as the tensorial product of the ground-
state noninteracting electron and hole wave functions in the
presence of a constant magnetic field. The third assumption
is questionable because the electron-hole interaction plays an
important role in this case, and therefore, we should expect
that the exact eigenfunctions differ significantly from the
corresponding noninteracting electron and hole wave func-
tions. This means that in order to obtain reasonable numeri-
cal results by diagonalization of the Frohlich exciton-phonon
Hamiltonian, one should use a linear combination of nonin-
teracting electron and hole wave functions which includes
not only the ground-state wave functions but also the
excited-state wave functions as well. Some attention has
been focused on the polaronic effect on the shallow donors in
the presence of a strong magnetic field.'> Shallow donors are
the analog of the magnetoexcitons with zero in-plane
pseudomomentum Q=0. In both papers,'>!? the assumption
of the absence of a transverse motion of the magnetoexciton
as a whole simplifies very much the problem, but it neglects
the fact that even a small transverse exciton velocity (or
small transverse wave vector Q) will induce an electric field
in the rest frame of the exciton. This electric field will push
the electron and the hole apart, so the binding energy must
decrease as the transverse velocity increases. In other words,
the magnetic field induces a coupling between the center of
mass and the relative internal motion. The coupling effect

complicates the calculations, so each of the abovementioned
techniques needs major modifications in order to be applied
to the magnetoexciton-LO-phonon problem.

In what follows we will modify the dielectric-function
method which is based on the assumption that the electron-
hole attractive interaction in polar crystals is due to the ex-
change of the longitudinal photons.” Since the photons
propagate in the crystal, they interact with the polarization
created by the lattice vibrations, and therefore, the system
under consideration includes electron, photon, and phonon
subsystems. In this approach the interactions between the
particles are the electron-photon and phonon-photon interac-
tions. The summation of a sequence of diagrams which rep-
resents the photon-phonon interaction (see Fig. 1) leads to
the following longitudinal part of the photon Green’s func-
tion Dy(q,w)=27hc?/ 0*)e'(q,w) where £7!(q,w) is the
inverse dielectric constant. Let w, (q) be the longitudinal nor-
mal modes in the crystal, which can be determined by the
solutions of the equation &(q,w,)=0. For photon energies
closed to the resonance fw,(q) the longitudinal photon
Green’s function assumes the form

____Ca>.___
\_f,"

FIG. 1. There are various types of diagrams that represent the
interaction of photons with the polarization created by the lattice
vibrations. The number of photon lines - - - - is used to classify the
diagrams. Parts of diagrams which do not contain photon lines are
described by shaded polygons. The contributions of diagrams, such
as (d)—(f), are negligibly small (Ref. 14). The sequence of diagrams,
such as (a)—(c), has been summed to obtain the longitudinal part of
the photon Green’s function Dy(q, w).
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In the absence of a magnetic field, this approach’ and the
equation-of-motion method® both provide similar results for
the energy-gap shift, polaron masses, and the exciton binding
energy.

Our study of the magnetoexciton-LO-phonon problem is
based on the Bethe-Salpeter (BS) equation with a kernel
screened by the appropriate dielectric function which takes
into account the lattice vibrations. In the presence of a strong
magnetic field the LLL approximation for the single-particle
Green’s function describes qualitatively the main features of
the magnetoexcitons in polar crystals. The LLL approxima-
tion greatly simplifies the problem because the dynamics of
the LLL is essentially D—2 dimensional,’> and only in the
LLL approximation we observe a dimensional reduction
(from two spacelike coordinates and one timelike coordinate
to no spacelike coordinates and one timelike coordinate, i.e.,
2+1—0+1) in the dynamics of fermion pairing in the pres-
ence of a constant magnetic field. It is worth mentioning that
our approach applied to pure two-dimensional (2D) polar
crystals allows us to derive an exact expression for the di-
electric constant that could be used to calculate the magne-
toexciton binding energy. This is because the dimensional
reduction 2+1—0+1 makes our results independent of the
electron and hole masses, and therefore, there is no need of
an additional procedure of converting the polaron-mass pa-
rameters into the bare-mass parameters. In the absence of a
magnetic field this conversion does affect the accuracy of the
numerically calculated exciton binding energy because there
is no way to measure the electron and hole bare masses in
polar materials.

An outline of the paper is as follows. In Sec. II, we study
the dispersion of bulk magnetoexcitons. In Sec. III, we con-
sider a quantum-well system assuming the same electron-
phonon interaction as in the bulk material.

II. BULK MAGNETOEXCITONS

We shall investigate the role of the interaction with LO
phonons by applying the BS formalism widely used in quan-
tum field theory for describing the two-fermion bound states.
The basic assumption in the BS formalism is that the
electron-hole bound states are described by the BS wave
function (BS amplitude) W(1;2)=W(r.,z..t1;¥y.2p:02),
where the variables 1 and 2 represent the corresponding co-
ordinates and the time variables. This function determines
the probability amplitude to find the electron at the point
(r.,z.) at the moment #; and the hole at the point (r,,z,) at
the moment #,. The BS amplitude satisfies the following BS
equation:

W(l;Z):fd(l’,2’,1”,2”)Gc(1;1’)GU(2’;2)

1/ l"
A o
2/ 2//

Here, I is the irreducible BS kernel and G, , are the electron
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and the hole single-particle Green’s functions. When the
screening effects are taken into account, the irreducible ker-
nel represents the screened Coulomb interaction between
electrons and holes that constitute the excitons,

d’q dg.do 4me?
V(r;z;t)=—f ——————r"(q.q,0)
(277)2277277\/|q|2+q§ ‘
Xexplu(q - r+q.z- wr)]. (2)

In the case when the screening is due to the interaction with
bulk LO phonons with frequency w,, the inverse dielectric
function £7'(q,q.,w)=¢"'(w) depends only on the fre-
quency.

The BS equation in the center of mass and reduced coor-
dinates assumes the form

\PQ,QZ(I‘yR;Z,Z;t’t’)
= f dz'dZ' d*r' d°R'dt,dt,

m,. m,.
XGC(R+ a,r,R +ayr' ;. Z+ 27,7 + =7t - tl>
M M

Z Z

m m
XGU(R’ -ar' ,R-ar;Z - ﬁz’,z— ﬁz;tz— t’)

Z Z

XV(r';z' sty =) Wq o (r',R":2,Z"511,1,),

where G, are the single-particle Green’s functions.
The BS amplitude depends on the relative internal time
t—t" and on the “center-of-mass” time,

Vo0 (r,R;z,Z;0,1")

E >
=exp| - M(act +ayt’) (g o (r.R;z,Z:t—1"),

h
3)

where E(Q,Q,) is the exciton dispersion. Introducing the
time Fourier transforms according to the rule f(r)
= fmf(w)exp(zwt)g—q‘:, we transform the above BS equation
into the following form:

dQ)
U0 (r.R:z,.Z;0) = f dz’dZ'dzr'dZR’z—Gc(R+ a,r,R’
2 .

+ao,r" 2+ a2, 2" + a7 sho
+a.E)G,R' - ax' R-arx;Z'
-a7,Z-azho-a,E)V(r';7 o

=Moo (r'.R":2".2":Q),

where g (r,R;z,Z;Q) is the Fourier transform of
¢Q,Q7(r,R;z:Z ;7). Since the translation symmetry is broken
by the magnetic field, the single-particle Green’s functions
can be written as a product of phase factors and translation
invariant parts. The phase factor depends on the gauge. In the
symmetric gauge we have'¢
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Gc,v(r’r, ;Z,Z, ;w) — ez(e/ﬁc)r-A(r >Gc,v(r -r 7 — Z, : w) ) (4)
The broken translation symmetry requires a phase factor for the BS amplitude,
P0.0.(r,R;2,2;Q0) = " HIAR 6 (r,R;2,Z:00). (5)
The BS Eq. (3) admits translation invariant solution of the form
X0.0.(r.R;z2,Z;0) = QRCDG, | (r1z;0). (6)

The function ¥ o (r;z; o) satisfies the following BS equation:

dQ
Xo.0 (r;z;w)=fdz’dZ’dzr’d2R’2—exp{;—e[(r+r’)~A(R’—R)+yr-A(r’)]}
< 7T &

XGJR-R’+ a,(r-r");Z-7"+a,(z-7');ho+ o E]
Xév[R' -R+a(r-r'):Z -Z+a(z-7")iho-a,E]V(r';z ;0 - Q)¥q0 (r':z:Q).
The substitution R’ —R’+R+ yr provides the following equation for the Fourier transform of the exciton wave function

)?Qst(k ik, w)=[dzd*r exp[-1(k- r+kzz)])?Q,Qz(r;z o)

_ y dp, dq dp , f”’ dQ L or=| ] e
k--Qikjo|= | = ——5——5dR| —e'TORG| —q+k-—AR):k, + 0,0+ a E
XQ,QZ( 2Q ‘ w) f277'(271')2(271')2 oc271'e e[ 24 e (R)3k:+ a0z + a

[ 1
xGU[— ~q+k- —AR):k. - a,0.:fiw— aUE}
2 hc N N

2e _ b%
XV{p - [k— h_cA(R)] Pk Q}XQ,QZ<p - EQ;PZQQ),

where V(k;k,; w)=—4me?/ (k>+k2)e™ (w) and G.,(k;k.;hw) are the Fourier transforms of G, ,(r;z;hw).
In the effective-mass approximation the exact fermion Green’s functions G, , are replaced by the corresponding propagators

of the free fermions but with renormalized masses. The translation invariant parts G, , in the Landau-level representation have
the following forms:

A’k dk, ~
=G, (k:k_shw)expli(k - r+k.z)],

Gelr;zsho) = J Qm? 2w

~ © _ 1 n _ l2k2 L 2lzk2
Gc(k;/@;hw) =22 2 3 ) CXp( ) n( ) ’
z =0 fiw — [ﬁ kZ/ZmC + Eg + ﬁQC(n + 1/2)] +10%

_ - —1)"exp(= PKk>)L, (21°Kk>
G (ko= S, — CRCIOLEAID
< =0 ho + [k 2m, + h Q) (n + 1/2)] - 10"

Here, L,(x) are the Laguerre polynomials and %), ,=feB/cm,, are the electron and hole cyclotron energies. In strong
magnetic fields the probability for transitions to the excited Landau levels due to the Coulomb interaction is small. The
resonant condition w, =}, requires to take into account Landau levels with n=1. It can be seen that all Landau levels could
be taken into account by rewriting the BS equation in the form G™!G™'W=IW¥,'718 but in this case there is no dimensional
reduction. In what follows we assume that (i) the resonant condition does not hold, and therefore, the contributions to the
Green’s functions from the excited Landau levels are negligible, and (ii) we consider the case of a strong magnetic field
(exciton binding energy much smaller than the exciton cyclotron energy). In this regime, one can apply the LLL approxima-
tion, according to which one can ignore transitions between Landau levels and consider only the states on the lowest Landau
level, i.e., we keep only the n=0 term in the last expressions,

2 exp(- I’k?)
hw—[E, + h2k22m, + 1 Q2] +10*

2 exp(- I’k?)
fw + [h2k22my + hQY,/2)

G (k:k, hw) = G,(Kk:k,;hw) =~ 0% (7)
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The solution of the BS equation in the LLL approximation can be written in the following form:

2
Xoo,(Kik:;) = eXP{‘ lz(“ + %,Q) —1Qo- klz} 9o (k:w). (8)

Thus, the LLL approximation reduces the problem from 3+1 dimensions to 1+1 dimensions, and therefore, the functions
¢g (k;; ) and the energy E(Q,Q,) can be obtained from the following equation:

dp.dQ dw 1
oo ksw)= | ———Io(p,—k; ;00— Q)
: 2w 2w 2w h? Q.
ho+aE-|E,+—(k +a0)"+— | +:10"
2m, 2
1
+ ®o (p;Q2).

7 1o, o

hw— aE+—(k,— a,0,)* + —— — 10"
2m, 2

In the LLL approximation, the exciton dispersion is determined by the term

dm (L )eldr+Qp) . 1 1
Io(g ;) = L j d d*r %0( )ze 1- Lof= . 9)
€ ( o

+
" 2m)? @ +q’ 2 & —w-10" wy+w-—10"

The solution of Eq. (8) can be chosen in the following form:

Plk.)

@g (k@) =

Q. hZ ﬁQC ﬁz ﬁQU

o+ aCE— Eg + _(kz + CL/CQZ)2 +—— | +10" hw- avE+ _(kz - a’sz)2 +— | -10*
2m, 2 2m, 2

(10)

Integrating both sides of Eq. (9) over w, we find the following equation for the exciton wave function @, (k,) and exciton
energy E(Q,QZ)=Eg+%ﬁQ+ﬁ2Q§/2M—Eb(Q,QZ):

12k 47Tezf dg, d*q J W (r)elq'(”ZzQO)
—E,(Q,0.)®,, (k) =—=d, (k) - - dr o
b(Q Qz) QZ( z) 2[.L Qz( z) £u 2 (271_)2 r q2+ (kz_qz)z QZ(QZ)

zsz dg, Pq [, YRr)es T
" 5 2 r—, 2
£ 2 (2) q° + (k.- q.)
« ﬁwo + h(})o

ﬁw(] + Eb(Q’ Qz) + AQZ(qz’kz) ﬁw() + Eb(Q? Qz) + AQZ(kz’ qz) '

(DQZ(('IZ)

where

wAE hqE B2Q.k.-q.)
+ + .
2m, 2m, M

AQZ(kza qZ) =

In position representation the last equation assumes the form

[

2 d2q>Q_(Z)
3 dZ,UQ,QZ[Z’Z,;Eb(Q9Qz)](I)QZ(ZI)’ (11)

f
~EJQ.0)%0 ()= 5 ~ Voo 0 + f
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where in the LLL approximation

o= [
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oo(r) (12)

V(r + 1200)2 + 72

Here, io(r) =exp(—r?/41%)/\2ml* is the LLL wave function. Thus, we obtain a Schrodinger type of equation but with an extra

nonlocal potential,

UQ,QZ[Z’Z, 7Eb(Q’ Qz)] = 8*

27Tezf dk_dq. d*q
27 27 (21)°

f dzl‘ ‘ﬁéo(r)exp{l[q : (I‘ + leO) + kzz - qzz,]}

q2 + (kz - qZ)Z

ﬁwo

h(,()()
X +
hwo + Eb(Q’ Qz) + AQZ(qZ’kz)

hwo + Eb(Q’ QZ) + AQZ(kZ’ qZ)

which represents the effect of the exciton-LO-phonon interaction. It is worth mentioning that because of the interaction with
the LO phonons, the in-plane motion and the motion along the z direction are not independent.

For Q=0 and Q,=0, after integrations over r and q, we find the following equation for the magnetoexciton binding energy
€=E,/1{) and the corresponding wave function ®(z) (z is in units of 1):

0= 14
T T 2422

Vo(z)+6}¢(z)+f dz'Upo(z,2":€) (). (13)

Here, Vo(z)z\Fz—T(l/ aB)Erfc(\y)exp( 12) and the nonlocal potential (in units of 7)) is

)fdkd
22

Upo(z.2'5€) = —(l/ag)ﬂ<

2 2
Z2+q.(z—z )]}exp(k2 )F(O,%)

-1 -1
X H,B+ €+ %[ac(kz+ 4.+ ayq: } + {/5’+ €+ %[av(kZ +q.)%+ acqf]} ]

where B=w,/), and az=e.f%/ ue is the exciton Bohr en-
ergy. Erfc(x) and I'(a,x) are the complementary error func-
tion and the incomplete gamma function, respectively.

The last term in Eq. (13) is nonlocal in space and depends
on the binding energy and the electron and the hole bare
masses. The dependence on the bare masses is due to the 3
+1—1+1 reduction, so one can expect that in a pure 2D
case the nonlocal potential should be the mass-independent
one.

Without the nonlocal term, Eq. (13) has been studied de-
cades ago by many authors.® More recently, it was found
(see, e.g., Ref. 19 and references therein) that the eigenvalues
can be separated into two distinct classes: the states having
no node and the states having node (or notes) in their eigen-
functions. The states having no node in their wave functions
are tightly bound while the states having nodes in their wave
functions are weakly bound. A complete numerical evalua-
tion of Eq. (13) for arbitrary value of the magnetic field is a
complicated problem beyond the main goal of this paper.

III. QUANTUM-WELL MAGNETOEXCITONS

Our approach can be applied not only to bulk crystals but
also to the quasi-two-dimensional systems as well. In quan-

tum wells, however, besides the bulklike phonon modes one
has to take into account the presence of slab modes,?” inter-
face modes,>! and half-space modes.”> In quasi-two-
dimensional systems we still have a dimensional reduction
2+1—0+1, but each of the above modes will create extra
poles in the inverse dielectric function £~!(q, ). The prob-
lem becomes too complicated and cannot be solved analyti-
cally.

In what follows we calculate the magnetoexciton disper-
sion in a quantum well, taking into account only the interac-
tion with Frohlich’s bulk LO phonons. In other words, we
shall take into account the effect of size quantization in a
quantum well on the electron (hole) spectrum, whereas the
phonon spectrum stays the same as in a homogeneous me-
dium, as if the entire space was filled with the quantum-well
material. Strictly speaking, this approach can provide only an
approximate solution of the quasi-two-dimensional problem.
But, we expect that our results can be used in the case of
narrow quantum wells because they are exact in a pure 2D
case.

In a single quantum well (SQW) and coupled quantum
wells (CQWs) the Fourier transform of the exciton wave
function satisfies the following BS equation:
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_ y Pq dp F dQ ~[1 e }
k-~Q:w|= S PR Zexp[- ‘R]G.| =q+k- —A(R);% E
XQ( 2Q,w> (277)2(277)261 wzweXp[ (q+Q) - R]G, Satk—o (R):hw+a,

~ 1 e 2e y )
XG,| - = k-—AR);hw-a,E|Vi\p-|k-—AR) |[;0—-Q (¥ --0Q:;Q01, 14
U[ Sa+k—-—AR)ho av]{p { hc()}w }xo(p ,Q (14)
where V(k;w)=-[2me*f([Kk|)/|k|]e”'(w), where f(K) is the structure factor

fla)=f(g) = f dz, f dz, exp{ — qlz. = 2|10 () 5, (2,) - (15)

In our calculations, we take into account only the first electron E,. and hole E, confinement levels with wave functions ¢.(z,)
and ¢, (z,), respectively.

In the L]?]T approximation the exact fermion Green’s functions G, , are replaced by the corresponding propagator of the free
fermions GCOU,

2 exp(— ’k?)

G.(k;hw) = )
olk; ) ho—[E,+ Ep. + 1 Q2]+ 10"

~ 2 exp(- I’k?)
G,(kK;hw) = . 16
At = e + h 02— 10 (16)

The solution of the BS equation in the LLL approximation can be written in the following form:
y \?

Xo(K;w) =exp| - lz<k + EQ) —1Qy - kI’ | op(w). (17)

Thus, the LLL approximation reduces the problem from 2+ 1 dimensions to one-dimensional problem for obtaining function
¢(w) and energy E(Q) from the following equation:

1

Pp(w) =~
Q. rQ,
fio+aE-E,~E).———+10" || iw— a,E+Ep, + —— —10"
2 2

o dQ o dQ (1)0 1 1
«| 10Ql,e.) J  er @ - 1(QLe" j C @ R s
2 —0 29T

—o0 2 \wy—w+Q-10"  wy+w-Q-10"

The exciton dispersion is determined by the term

_2me? [, dq F(lq))er s+
1(Q,¢) = . f dl~—(277)2</;2m(r)—|q| ) (19)

The solution of Eq. (18) can be chosen in the following form:

1

op(w) = (20)
hQ, hQ,
[ﬁw+ aE-E,—Ey,— —+ 10+] |:ﬁw— a,E+Ey, +— — 10"
2 2
Thus, by integrating both sides of Eq. (19) over w, we find the following equation for the exciton dispersion E(|Q|):Eg
+Eo.+Ey,+1Q/2-E,(|Q|):

ﬁ(,()o
hawo+ Ey(|Q))

Ey(1Q) =1(Ql...) - 1(|Ql.&") (21)

Solving for E,(|/Q

), we obtain
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ENQD= %{I(IQ

+ \/(I(IQ

When Q=0 the exciton binding energy E,=E,(Q=0) is

L| & hag\>  exh
Eb:—{l—ﬂ+\/(l—ﬂ> +48—ﬂJ, (23)
2 1. L, €p 1.

,800) - th

5 8w)ﬁw0:| .
(22)

6.) — fig)? +4221(Q
€o

where 1,=1(]Q|=0,&.,).
In a pure 2D case the exciton dispersion is determined by
the terms I,5(Q,e..) and I,5(Q, "), where

2
2 ezq~(r+l Q)

dq
@m0y

2 2
Lp(Q,x) = ik f d’r
X

The exciton dispersion in 2D E(|Q|)=E,+AQ/2-E,(|Q])
becomes

,800) - th

1
E,(Q]) = §|:12D(|Q

+ \/(IZD(|Q

Let us compare our results with the binding energy E,p
=\m/2(¢*/ €l) and the in-plane mass Map=2%2¢/\me?l of
2D magnetoexcitons in nonpolar materials.”> When Q=0 the
magnetoexciton binding energy (22) assumes a similar form,

E,= y@ez/ €(B)l, but with an effective dielectric constants,

,8°C) - ﬁwo)z + 48_0012D(|Q ,Sw)ﬁ(l)o .
€0

(24)

2€,
h hwy\> ety
1_ﬂ+\/<l_ﬂ> L 482l
Erp Esrp €9 Exp

In the high-field (B—°) limit the effective dielectric con-
stant (25) approaches the high-frequency dielectric constant.
For strong magnetic fields when the inequality E,np>hw,
holds, the effective dielectric constant is lower than the static
dielectric constant. Only for magnetic fields such that 7w,
> FE,p, the interaction between the electrons and holes is
screened by the static dielectric constant.

For small wave vectors, the magnetoexciton dispersion is
parabolic and is characterized by an effective magnetoexci-
ton mass which can be calculated from the dispersion Eq.
(22),

eB) =

(25)
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£o ha, -l
l+(2—-1]—

Vme’l \/(1 _ M)Zﬁ@
Eyp g0 Exp

Table I gives the result of our numerical calculation of the
effective dielectric constant (25) for various strong magnetic
fields B. For GaAs the input parameters were measured at
T=75.6 K, so our predicted result for the effective dielectric
constant at B=4 T is in a good agreement with the value
used in Ref. 11.

In Ref. 18, the magnetoexciton binding energies for mag-
netic fields 4<<B<<20 T have been calculated by a varia-
tional method without taking into account the interaction
with LO phonons. There are two major differences between
the present work and the previous one. The first difference is
that in Ref. 18 the interaction with the LO phonons was
neglected. Instead, an effective dielectric constant €, for
GaAs quantum wells has been used. The second difference is
that in Ref. 18 all Landau levels have been taken into ac-
count. Nevertheless the previous and the present calculations
are not the same; we can see that when the magnetic field
decreases from B=20 T to B=4 T, the difference between
the calculated binding energies in Ref. 18 and the experimen-
tal values also decreases. This effect can be attributed to the
fact that the error due to the above-chosen dielectric constant
decreases because the difference between e(B) and e,
=12.35 also decreases when magnetic field changes from 20
to 4 T. It should be pointed out that variational calculations
of the heavy-hole exciton ground-state energies in GaAs
quantum wells for various well widths L and strong magnetic
fields (see Table II in Ref. 18) can be improved by taking
into account the interaction with the LO phonons. For ex-
ample, in the case of L=4.03 nm single quantum well the
average Coulomb energies V(B) calculated by the varia-
tional method for B=20, 18, and 16 T are as follows: 23.7,
22.9, and 21.8 meV, respectively. When the interaction with
LO phonons is taken into account, the corresponding average
Coulomb energies calculated by means of Eq. (23) with €,
=10.89, €=12.74, and Awy=36.8 meV are 24.8, 24.0, and
22.8 meV, respectively. Thus, the position of the exciton
ground state moves about 1 meV closer to the experimental
values.

IV. SUMMARY

Generally speaking, the interaction with LO phonons can
strongly influence the optical and transport properties of
weak polar crystals, such as III-V semiconductors. In the
present paper we have formulated a different approach to the
problem of magnetoexcitons interacting with LO phonons
which in 2D case provides analytical results for the binding
energy and the exciton mass in terms of three parameters: €.,
&s hawg . . . .

e and T The reason to obtain analytical results lies in the
fact that the dynamics of the lowest Landau level is essen-
tially D—-2 dimensional.
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