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The thermal boundary conductance is derived for the heat flow between the electrons in a metal and the
phonons in an ionic crystal. The image potential generated by the ion charges makes a regular pattern of
surface charges on the surface of the metal. When the ions vibrate, these surface charges oscillate. Since the
surface charges are the tails of the wave functions of the conduction electrons in the metal, the surface charges
provide a matrix element between these electrons and the phonons in the insulator.
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I. INTRODUCTION

We derive a theory of how heat is transported through the
interface between a metal and a nonmetal. The heat in a
metal is carried primarily by electrons, while that in the in-
sulator is carried by phonons. We propose that these two
energy systems are linked at the interface by the image
charges from the vibrating ions.

Kapitza1 discovered the thermal boundary resistance be-
tween various metals and liquid helium. The first theory2,3

was based on elasticity, and considered only heat flow be-
tween the phonons of the two solids. This theory works well
at very low temperatures, but does not explain the experi-
mental data at room temperature.4–8 Two earlier theories of
heat flow between a metal and an insulator used conventional
electron-phonon coupling, such as deformation-potential
interaction.9,10 Here we propose another mechanism that in-
volves the image potential of an ion outside of a metal sur-
face.

If the nonmetal is a polar material, with anions and cat-
ions, then an ion of charge Q has an image potential of

V�z� = −
Q2

4z
. �1�

The image potential is due to static charges on the metal
surface. If a polar insulator is near the metal surface, the
regular pattern of ion charges makes a regular pattern of
charge density on the metal surface. When the ions vibrate,
the charge density oscillates. The surface charge density con-
sists of the tails of the electron wave functions. There is a
direct coupling between the ion vibrations and the electron
states in the metal. This direct coupling provides the matrix
element for the interaction between the electrons in the metal
and the phonons in the adjacent insulator.

The surface charge density is due to the polarization of
the surface plasmons in the metal.11–13 The electrons in the
metal couple to the surface plasmon, and the surface plas-
mon couples to the ion charge. In the language of field
theory, the electrons in the metal and the ions in the solid
interact through the exchange of surface plasmons. This in-
teraction can be used to construct the matrix element for
energy transfer between the electrons in the metal and the
phonons in the insulator.14,15 It is a type of electron-phonon
interaction caused by the surface plasmon. The same inter-

action was used years ago to describe the vibrational excita-
tion of molecules chemically bonded to the metal surface by
the scattering of low-energy electrons.15 Schaich and Harris16

used it to calculate the friction coefficient between an atom
or ion and a metal surface. We initially formulated the
Kapitza problem using surface plasmons. However, this for-
malism proved to be unnecessarily cumbersome. The final
theory, which is presented here, uses classical image theory
and does not mention surface plasmons.

A neutral atom in the insulator, whether solid or fluid, has
a van der Waals self-interaction with its image,14

V�z� = −
C3

z3 , �2�

C3 =
�

4�
�

0

�

du�i�iu�
��iu� − 1

��iu� + 1
, �3�

where ��iu� is the polarizability of the neutral atom, evalu-
ated at imaginary frequencies, while ��iu� is the dielectric
function of the metal, evaluated at long wavelength �q→0�,
and also at imaginary frequency. This formula applies if the
metal has a planar surface. It can be used to construct a
theory of Kapitza resistance between a metal and a nonionic
solid such as argon. We do not provide this theory here, but
will present it in a later publication.

In most calculations of the thermal boundary resistance
between two insulators, the Lennard-Jones 6-12 potential is
used between the atoms in the two solids or the liquid and
the solid. The Lennard-Jones potential is also based on a van
der Waals interaction. So in treating the case of a metal-
nonmetal, we recognized that the van der Waals interaction
has a different form, due to the feature that the metal is a
conductor.

II. INTERACTIONS AND MATRIX ELEMENTS

We derive the interaction between electrons in a metal and
phonons in a polar crystal. We begin by writing the potential
function ��r� generated by an ion of charge e� at r0
= �0,0 ,d� outside of the surface. The observer is at position
r= �� ,z�0�,

��r� =
e�

�i
�1

r
−

	

rI
� , �4�
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r = ��2 + �z − d�2, rI = ��2 + �z + d�2, 	 �
�m − �i

�m + �i
,

�5�

where ��m ,�i� are the dielectric functions of the metal and
insulator, respectively. Their precise form is discussed below.
The interaction with ion displacements Q j in the insulator is


��r� = − �
j

Q j · �� ��r − R j� . �6�

Equation �4� applies outside of the metal surface. Inside the
metal the potential is

��r� =
e�

�i
�1 − 	�

1

r
=

2e�

�m + �i

1

r
. �7�

The two-dimensional Fourier transform of Eqs. �4� and �7� is

��r� =
2�e�

A�i
�
q

1

q
eiq·��e−q	z−d	 − 	e−qd−q	z	� . �8�

For values of z near the surface, we write the above expres-
sion as

��r� =
2�e�

�iA
�
q

1

q
eiq·�e−qd
�eqz − 	e−qz���z�

+ �1 − 	�egz��− z�� . �9�

If 	=1 the potential vanishes at the point z=0. The dielectric
function �m is generally a function of wave vector and fre-
quency. Phonon frequencies are small compared to plasmon
frequencies, so the frequency dependence can be ignored.
For three-dimensional bulk systems, the dielectric function
��q� is given by random-phase approximation �RPA� or
something similar. For surfaces, the dependence is more
complicated. In the two-dimensional transform listed above,
we employ the two-dimensional response of an electron gas,
which is �m�q�=1+2 / �qa0�, where a0 is the Bohr radius.

Since the electrons are confined to the space z�0, the
potential in this region is taken to be

��r� =
2�a0e�

A
�
q

u�q�eiq·�e−q�d−z�, �10�

u�q� =
2

2 + qa0��i + 1�
. �11�

Equation �9� has the image contribution to ��r� changing at
the surface z=0. This change is actually due to a surface
charge, which is not centered precisely at z=0 nor is a point
charge. The nature of the image potential and image charge
has been investigated in numerous references. Some of the
earliest are Refs. 17–25. Their results are usually given as an
integral equation or a graph. The simple form we use above
is an interpolation of these results.

For electrons in a metal, the potential energy for scatter-
ing the electron from �k ,ki� to �k+q ,kf� is13

Ve�q� = e� d3r��k + q,kf ;r�
��r��k,ki;r� , �12�

�k,ki;r� =� 2

�
eik·���ki,z� , �13�

where �k ,q� are two-dimensional wave vectors parallel to
the surface, and �ki ,kf� are the z component of the electron’s
wave vector. The metal has a volume �=ALm. For the
infinite-barrier model, the eigenfunction is

��ki,z� = sin�kiz� . �14�

However, finite-barrier models provide a better description
of physical systems.26 When using Eq. �14�, the matrix ele-
ment contains a factor of

Iif = �
−�

0

dzeqz sin�kiz�sin�kfz� �15�

=
2qkikf


q2 + �ki − kf�2�
q2 + �ki + kf�2�
. �16�

The transverse integral d2� in matrix element �12� forces
conservation of parallel wave vector. The transverse wave
vector q of the phonon changes the transverse wave vector of
the electron by this amount.

III. PHONONS IN THE INSULATOR

Since the metal is bonded to the insulator, the phonon
normal modes in equilibrium involve all of the atoms in both
systems. However, during heat flow, there exists a tempera-
ture difference between the two solids. Then the phonons in
the insulator are at a different temperature from those in the
metal. This situation cannot be described by using the normal
modes of the combined system. Instead, one must assume
that the normal modes in the metal are independent of those
in the insulator, with a small coupling between them at the
interface. That raises the question of how we set up the vi-
brational modes in the insulator: what boundary condition is
applied at the interface? The answer to this question is pres-
ently unknown. Here we made a simple assumption that the
modes are those of a freestanding slab of material. This as-
sumption is based upon the feature that the image potential
has a long range, so the details of the surface bonding are
unimportant.

The phonon eigenfunctions are

Q j =
1

�N
�
	qqz

X��	,q,qz�eiq·�jA	,q,qz
sin�qzz��̂��	,q� ,qz� ,

�17�

X��	,q,qz� =� �

M��	�q,qz�
, �18�

A	,q,qz
= a	qqz

+ a	,−q,qz

† . �19�

The summation over 	 is over polarizations. The index �
indicates which atom in the unit cell.

The most general eigenfunction in the z direction might
contain a phase shift: sin�qzz+
�. We have used the theorem
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of Ridley27 that the optical-phonon amplitudes vanish at the
surface, to set 
=0.

The phonons in the insulator contribute the following po-
tential, for z�0 and Zj �0:


��r� = −
2�a0

A
�
q,j

eju�q�eiq·�r−Rj�
iq · Q j + qQjz�eq�z−Zj�.

We use the above expression for the ion displacements Q j
and find


��r� = −
�a0

A0
�N

�
�	qqz

e�eiq·r+qzu�q�
iq · �̂� + q��z�X��	,q,qz�

� ��q,qz�A	,q,qz
��z� , �20�

��q,qz� = 2�
zj

e−qZj sin�qzZj� =
sin�qzaz�

cosh�qaz� − cos�qzaz�
,

�21�

where az is the lattice spacing in the z direction.
The interaction between the electrons and the phonons in

Eq. �12� is

V =
1

Lm
�N

�
kqkikfqz	�

Ck+q,kf,�
† Ck,ki�

A	,q,qz
M	�q,kf,ki,qz� ,

M	�q,kf,ki,qz� = −
2�ea0

A0
�

�

e�u�q�X��	,q,qz���q,qz�Iif

��q,ki,kf�
iq · �̂� + q��z� .

Transverse wave vector is conserved: the parallel wave vec-
tor q of the phonon is transferred to the parallel wave vector
of the electron.

IV. ENERGY TRANSFER

The energy transfer through the surface, in watts per area,
is

JQ =
2�

�ALm
2 N

�
	,k,q,kikfqz

	M		2��	�q,qz�� ,

� = 

��k,ki� − ��k + q,kf� − ���q,qz��
fk�1 − fk+q��Nq + 1�

− fk+q�1 − fk�Nq� − 

��k,ki� − ��k + q,kf� + ���q,qz��

�
fk�1 − fk+q�Nq − fk+q�1 − fk��Nq + 1�� , �22�

where fk are the electron occupation number, Nq is the pho-
non occupation number, and ��k ,ki� is the band dispersion of
the electrons. The expression for � is familiar from earlier
discussions of energy transfer between electron and phonon
systems: see Ref. 28 for metals, Ref. 29 for semiconductors,
and Ref. 10. The summations over states give

�
k,q,kikfqz

=
ALm

2 �

24�7 � d2k� d2q� dki� dkf� dqz. �23�

The prefactor of ALm
2 � cancel similar factors in the matrix

elements, and the final energy current density is independent
of these factors. The final expression is

JQ =
�0

��623� d2k� d2q� dki� dkf� dqz�
	

	M		2� ,

�24�

where �0 is the volume per ion in the polar material.

V. ELECTRONIC INTEGRAL

Expression �24� contains a seven-dimension integral. Four
�d2kdkidkf� are related to the electronic properties of the
metal, and three �d2qdqz� are related to phonons in the insu-
lator. Here we evaluate the four integrals relating to the elec-
tronic model. We use the infinite-barrier model for the
boundary condition. We assume a free-electron metal with a
spherical Fermi surface, where kF is the Fermi wave vector.
Consider the following function P�q�:

P�q� =� d2k� dki� dkf	Iif	2� . �25�

Examine just the first term in �. Let W=��	�q ,qz�. The
argument of the delta function of energy is

0 =
�2

2m

k2 + ki

2 − �k + q�2 − kf
2� − W �26�

=−
�2

2m

q2 + 2qk cos��� + kf

2 − ki
2 + Q2�, Q2 =

2m

�2 W .

�27�

Write d2k=kdkd� and the angular integral gives

�
0

2�

d�
�E� =
4m

�2

1


4q2k2 − �q2 + kf
2 + Q2 − ki

2�2�1/2 .

�28�

Next do the integral kdk= �m /�2�d��k�. This integral is
dominated by the occupation factors in the region near the
Fermi surface, where

� dEif�Ei�
1 − f�Ei − W�� =
W

eW�e − 1
= Wne�W� . �29�

For the rest of the integrand we set k2=kF
2 −ki

2. A similar
derivation applies to the other three factors in �. These steps
bring us to the expression

P�q� = 2�2m

�2 �2

W
np�W� − ne�W��� , �30�

� = �
0

kF

dki�
0

kF

dkf

	Iif	2


4q2�kF
2 − ki

2� − �q2 + kf
2 + Q2 − ki

2�2�1/2 ,

�31�

where the notations ne,p refer to the temperatures Te,p of elec-
trons and phonons in the occupation factors. There is no heat
current unless they are different: Te�Tp. These steps are
similar to those of Allen28 in deriving the electron-phonon
energy relaxation in metals.
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We now drop the factor of Q2 since this wave vector is
much smaller than the others. We define new variables si

2

=kF
2 −ki

2 and sf
2=kF

2 −kf
2. The argument of the square root in

the integral for ��q� can be written as

4q2si
2 − �q2 + si

2 − sf
2�2 = 
q2 − �si − sf�2�
�si + sf�2 − q2� .

�32�

There are limits on the q integral: si+sf �q� 	si−sf	. Insert-
ing the integral over dq into the definition of � gives the
limits

�
0

kF

dsi�
0

kF

dsf�
	si−sf 	

si+sf

dq

= �
0

kF

dq��
0

kF−q

dsi�
	si−q	

si+q

dsf + �
kF−q

kF

dsi�
	si−q	

kF

dsf
�33�

+ �
kF

2kF

dq�
q−kF

kF

dsi�
q−si

kF

dsf . �34�

The order of integration has been reversed to put �dq as the
last integral. It is now removed from the definition of ��q�.
The above exercise was for deriving the correct limits on the
two integrals in ��q�. The integrand is

��q� =� sisf

kikf
dsidsf

	Iif	2

�
q2 − �si − sf�2�
�si + sf�2 − q2�
.

�35�

Equation �16� has a prefactor of kikf that cancels the same
factor in the denominator in the above expression. We
change integration variables to �= �sf −si� /kF and �= �sf
+si� /kF, and define x=q /kF, yi=ki /kF, and yf =kf /kF. The
factor of Iif is, in these new variables,

Iif =
2yiyfx

kF
Ĩif , �36�

Ĩif =
1


x2 + �y−�2�
x2 + �y+�2�
. �37�

Next we define the dimensionless function �̄�x�,

��q� =
1

kF
2 �̄�x� . �38�

Collecting the above results leads to the following:
�1� For 0�x�1 the limits of integration are

�̄�x� =
x2

8
�

−x

x

d��
x

2−	�	

d�
	Ĩif	2��2 − �2�

��x2 − �2���2 − x2�

��
4 − �� − ��2�
4 − �� + ��2� .

�b� For 1�x�2 the integral is

�̄�x� =
x2

8
�

x−2

2−x

d��
x

2−	�	

d�
	Ĩif	2��2 − �2�

��x2 − �2���2 − x2�

��
4 − �� − ��2�
4 − �� + ��2� .

The function �̄�x� is dimensionless. For the range of values
0�x�1 a numerical evaluation gives the approximate ex-
pression

x2�̄�x� � 0.22 − 0.17x �39�

VI. PHONON INTEGRALS

We collect the above results to obtain

JQ = D�
0

Wx

WdWG�W�
ne�W� − np�W�� , �40�

D =
24

�2

�ne

MAMU

�0

A0
2 , �41�

G�W� =
1

kF
5 �

	
�

q�2kF

d2q�̃� q

kF
�u2�q�� dqz

W

− ��	�q,qz�� �42�

���
�

e�

e
�MAMU

M�

�̂	,� · �qx,qy,iq��2

�
sin2�qzaz�


cosh�qaz� − cos�qzaz��2 . �43�

The prefactor of D has the units of inverse area times sec-
onds.

In the high-temperature limit, where kBT�Wx, the occu-
pation factors can be expanded,


ne�W� − np�W�� �
kB

W
�Te − Tp� , �44�

JQ = ��Te − Tp�, � = �0I , �45�

I = �
0

Wx

dWG�W� , �46�

�0 = kBD = �00
a0�0

A0
2 , �47�

�00 =
24kB

�2

�ne

MAMUa0
, �48�

where a0 is the Bohr radius. Using the electron density ne of
aluminum, the constant �00 has the numerical value of �00
=7.28 GW /m2 K, which is larger than the experimental data
shown in Table I. However, I is less than 1 because of sev-
eral factors including the ion mass. The integral in Eq. �46� is
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dimensionless and does not contain the energy of the
phonons,

I =
1

kF
5 �

	
�

q�2kF

d2q�̃� q

kF
�u�q�2� dqz

���
�

e�

e
�MAMU

M�

�̂	,� · �qx,qy,iq��2

�
sin2�qzaz�


cosh�qaz� − cos�qzaz��2 . �49�

It is merely an integral over wave vectors in the Brillouin
zone �BZ�.

The only phonon part of the integral in Eq. �49� consists

of displacement eigenvectors �̂	�� which depend upon the
phonon mode 	 �e.g., TA and LO�, atom in the unit cell ���,
and vector component �= �x ,y ,z�. For a crystal with Na at-
oms per unit cell, there are 3Na values of 	. The polarization
vectors obey the orthogonality relation

�
	=1

3Na

�̂	���̂	��� = 
���
��. �50�

In the formula for I, the summation over 	 eliminates all
cross terms in the square of the matrix element,

�
	
��

�

e�

e
�MAMU

M�

�̂	,� · �qx,qy,iq��2

�51�

=�
	�
� e�

e
�2 MAMU

M�


�	�x
2 qx

2 + �	�y
2 qy

2 + q2�	�z
2 � �52�

=�
�
� e�

e
�2 MAMU

M�


qx
2 + qy

2 + q2� �53�

=2q2�
�
� e�

e
�2 MAMU

M�

. �54�

For a binary crystal, where the anion and cation have equal
and opposite Szigeti charges30 e�=e� /e, the result is given by
the reduced mass � of the two ions,

I = 2�e��2 MAMU

�kF
5 �

q�2kF

q2u�q�2d2q�̃� q

kF
�

�� dqz
sin2�qzaz�


cosh�qaz� − cos�qzaz��2 = I0�̃ , �55�

I0 = 4��e��2 MAMU

�
, �56�

�̃ = �
0

x0

x3u�x�2dx�̃�x��
0

z0

dz
sin2�zc�


cosh�xc� − cos�zc��2 ,

�57�

c = kFaz, z0 = �x0
2 − x2. �58�

The Fermi-surface restriction is that x=q /kF�2. The above
integral is evaluated for aluminum, which has a very large
value of kF. Then the effective restriction on the integral over
phonon wave vectors is that they should be confined to the
Brillouin zone of the insulator since all these wave vectors in
the BZ obey the constraint q�2kF. Since we do not know
the orientation of the insulator, we do not know the projec-
tion of the BZ on the interface. So we made an approximate
calculation by assuming that the BZ was a sphere, and the
above integral is confined to a hemisphere. The sphere with
the same volume as the BZ in rocksalt �fcc� lattices has a
radius q0,

x0 =
q0

kF
=

2�

kFal
� 3

�
�1/3

, �59�

where al is the lattice constant. Table II shows results for
three crystals with the sodium chloride structure. This case
has the prefactor of

�0

A0
2 =

1

al
. �60�

The theoretical prediction for � varies from 100 to
10 MW /m2 K. These results are similar to the experimental
values in Table I. The values for � become smaller as one
goes down the column. This is partly due to: �1� the increase

TABLE I. Room-temperature values of Kapitza conductance in
units of MW /m2 K. Data from Stoner and Maris �Ref. 7�. Metals on
top, and insulators on left.

Al Au Pb

BaF2 100 40 62

Al2O3 105 45 55

Diamond 46 40 31

TABLE II. Factors entering the Kapitza conductance at room temperature. Final column contains theo-
retical results in units of MW /m2 K.

Crystal al �Å� e� �i��� x0 �̃ �

LiF 4.02 0.87 1.93 0.879 0.0072 100

NaF 4.62 0.93 1.75 0.765 0.0051 40

NaCl 5.64 0.74 2.35 0.626 0.0029 10
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in ion mass, �2� the smaller value of e�, �3� the increase in
lattice constant, and �4� the increase in the insulator dielectric

constant �i=����. Note the strong dependence of �̃�x0�. The
insulators in Table I all have one ion mass that is light
�C,O,F�, which probably contributes to the large values
found experimentally. The present theory gives a value of the
Kapitza conductance in general agreement with the available
experimental data.

VII. DISCUSSION

We present a theory of heat flow between the conduction
electrons in a metal and the phonons in an insulator. We
propose that these two systems interact through the surface
charges caused by the image potential that the ions in the
insulator make on the surface of the metal. When the ions
vibrate, the surface charges oscillate, which provides direct
coupling to the electrons in the metal. This interaction takes
place only in the surface region, where the tails of the con-
duction electrons have a small region of overlap with the tail
of the image potential.

We derived an analytic theory for this interaction. We also
make an approximate evaluation of this Kapitza resistance
for three alkali halide crystals. They were chosen because all
parameters are known, and our theory has no adjustable pa-
rameters. The predicted thermal conductances are the same
magnitude as found experimentally for more complex insu-
lators. The theory predicts that the values of boundary con-
ductance are independent of temperature above the Debye
temperature of the insulator. This prediction agrees with the
experiments.7

A better calculation of our theory requires knowledge of
which crystal face of the metal is bonded to which crystal

face of the insulator. That information is presently lacking.
Also, the surface charges can be treated better, with a non-
zero width, which gives a slightly improved image potential
in the surface region. Two-dimensional crystal surfaces have
two-dimensional reciprocal-lattice vectors G j. An electron
scattering from the surface can have its wave vector changed
by one of these reciprocal-lattice vectors. Such processes are
well known in photoemission and in low-energy electron dif-
fraction. They can contribute to heat flow through the bound-
ary since a phonon of parallel wave vector q can scatter the
parallel wave vector of the electron by q+G. These pro-
cesses are not included here since we do not know which
crystal faces are involved nor the matrix element for such
scattering. For incommensurate surfaces, there are two sets
of such reciprocal-lattice vectors: one for the metal and one
for the insulator.

Most people tell us that diamond is not an ionic crystal,
and should not be described by our theory. We agree that it is
not an ionic crystal, but aver that it should be described by
our theory. The standard bond polarizability model of
group-IV elements, such as diamond and silicon, puts the
bonding charges between the ions. When the ions vibrate, the
bonding electrons stay midway between the ions. These elec-
trons are polarizable. This model has positive ions and nega-
tive electrons, which are all that are needed for the present
theory. Recently we applied this model31 to derive the infra-
red properties of graphite, another carbon compound. The
fact that the experimental values for diamond are the same
magnitude as those for the ionic materials suggests they have
a common theory. Solid argon is an example of a crystal that
is not described by the present theory. We hope to derive a
theory for it, based on Eq. �2�, in the near future.
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