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We study numerically the effects of edge and bulk disorder on the conductance of graphene nanoribbons. We
compute the conductance suppression due to Anderson localization induced by edge scattering and find that
even for weak edge roughness, conductance steps are suppressed and transport gaps are induced. These gaps
are approximately inversely proportional to the nanoribbon width. On/off conductance ratios grow exponen-
tially with the nanoribbon length. Our results impose severe limitations to the use of graphene in ballistic
nanowires.

DOI: 10.1103/PhysRevB.79.075407 PACS number�s�: 73.23.�b, 73.50.�h, 81.05.Uw

I. INTRODUCTION

Measurements of electronic transport in graphene trig-
gered an intense effort to understand the physical properties
of this material.1,2 Both fundamental and applied aspects are
currently being investigated by a large number of groups
around the world. As the quality of the samples improves and
other synthesis techniques are developed, the material
changes from a regime where bulk disorder is the dominant
electron-scattering mechanism at low temperatures to a bal-
listic one, where boundary conditions, crystal alignment, and
edge defects play a dominant role in setting the transport
properties. This regime is now experimentally accessible in
ultranarrow ribbons, which are promising for developing
high-frequency low-noise low-power field-effect transistors.

Motivated by recent experiments3–5 and theoretical
studies,6–14 in this paper we explore how edge roughness
affects conductance in long nanoribbons with realistic widths
from several nanometers to tens of nanometers. Through nu-
merical simulations we show that even very weak edge dis-
order has a marked effect in the conductance of these nanor-
ibbons. Moderate amounts of edge roughness can
substantially suppress the linear conductance near the charge
neutrality point and induce a transport gap when the nanor-
ibbon is long and the number of propagating channels is
small. This effect is a manifestation of quasi-one-
dimensional Anderson localization. We compute transport
gaps, localization lengths, and on/off ratios and explore the
combined effect of edge and bulk disorders. We also com-
ment on the effect of inelastic scattering and dephasing. For
nanoribbons with very weak edge roughness, conductance
steps appear at noninteger values of the conductance quan-
tum e2 /h, irrespective of the lattice orientation. Our results
indicate that producing quantum point contacts with current
graphene nanoribbons will be extremely challenging and can
only be achieved if either scattering at edges of the constric-
tion is substantially suppressed or the edges themselves are
defined with atomic precision. The paper is organized as fol-
lows. In Sec. II we describe the numerical method and
present our results for the linear conductance of a graphene
nanoribbon in the presence of edge disorder. In Sec. III we
show the results of our computations when bulk disorder is
added to the nanoribbons and in Sec. IV we discuss the ef-

fects of weak edge roughness on the conductance quantiza-
tion steps of nearly ballistic nanoribbons. Conclusions and
final comments are left to Sec. V.

II. TRANSPORT IN THE PRESENCE OF EDGE
DISORDER

The simulations are based on the standard nearest-
neighbor tight-binding model of a single-layer graphene.2

The linear conductance is evaluated through the recursive
Green’s-function technique.15 An infinite nanoribbon is bro-
ken into three parts �see Fig. 1�: two �left and right� semi-
infinite regions of width W modeling ideal contacts and a
finite central region of length L where edge and bulk disor-
ders are introduced.

For a nanoribbon with perfect edges and no bulk
disorder,16 the conductance near the neutrality point EF=0
can be zero �for semiconductor armchair� or a multiple of the
conductance quantum 2e2 /h �for metallic armchair and zig-
zag�, depending on the availability of states. The first discon-
tinuity in the conductance appears when the Fermi energy EF
matches the minimum of first electron or hole subband; other
steps are reached as the minima of consecutive subbands are
crossed.

In our simulations, edge defects are created by extracting
lattice sites �carbon atoms� from both edges of the nanorib-
bon following a uniform probability distribution. It is as-
sumed that atoms at the edges are always attached to two
other carbon atoms and passivated by a neutral chemical
ligand, such as hydrogen. The control parameters are the
number of etching sweeps Nsweep, which is related to the
roughness amplitude, and the etching probability per site in
the kth sweep, pk, which is related to the edge defect density.
Unless otherwise specified, an averaging over ten realiza-

L

Wnanoribboncontact contact

FIG. 1. �Color online� Schematic representation of the graphene
nanoribbon setup used in the simulations.
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tions of each disorder case analyzed was carried out to de-
crease sample-to-sample fluctuations and facilitate the visu-
alization of the results.

In Figs. 2�a� and 2�b� we show the linear conductance of
nanoribbons with metallic armchair and zigzag lattice orien-
tations as a function of the Fermi energy for different values
of Nsweep and �pk� at zero temperature. Also shown in Fig.
2�c� are the typical etching profiles for the four different
cases. We have defined the roughness parameter r= �W
−W̄�P /a0, where W̄ is the average ribbon width, P=�kpk,
and a0 is the lattice constant.17 While a staircase of conduc-
tance steps is seen in the absence of edge roughness, the
conductance rapidly degrades as the concentration and depth
of the random etching increase. The conductance is strongly
suppressed near the neutrality point even for relatively shal-
low etchings. Close to the neutrality point, a deep gap devel-
ops.

The formation of a transport gap in ultranarrow graphene
nanoribbons is very much consistent with all experimental
evidence available so far.3,18,19 Several mechanisms have
been proposed to account for this phenomenon, such as
straightforward lateral confinement to many-body
effects.20,21 Some of these mechanisms require the existence
of substantial edge disorder along the ribbon �enough, for
instance, to form bottlenecks and quantum dots.21�

The results presented in Figs. 2�b� and 2�c� show that the
suppression of conductance can also occur at small values of
r. Near the neutrality point, the number of propagating chan-

nels in the nanoribbon is very small and the system behaves
as a quasi-one-dimensional wire. Edge defects act as ran-
domly positioned short-range scatterers and induce strong
backscattering, which in turn leads to Anderson localization
if the nanoribbon is longer than the localization length. Note
that even at room temperatures, we expect dephasing lengths
in graphene to be exceedingly long.22 Therefore, in practice,
localization lengths can be shorter than both the nanoribbon
length and the dephasing length.

Further evidence of this effect is provided in Figs. 3�a�
and 3�b� where the conductance as a function of Fermi en-
ergy is shown for three different nanoribbon widths. At a
fixed energy, for nanoribbons with increasing width, the lo-
calization becomes weaker and, consequently, the conduc-
tance suppression decreases. In order to make contact with
experiments, we estimated transport gaps by determining the
energy value at which the curves show an inflection point
�see insets of Figs. 3�a� and 3�b��. This inflection point cor-
responds to the crossing between two straight lines: an
energy-independent conductance at low energies and a linear
function at high energies. The results are shown in Fig. 4�a�.
For both lattice orientations, we find that the transport gap Eg
scales approximately with the inverse of the nanoribbon
width W and is only weakly dependent on the length L pro-
vided the latter is sufficiently long �not shown�. Notice that
the value obtained for A, the scaling prefactor, is in the same
range of those found experimentally �A�0.2–0.6 eV nm�
�Refs. 18 and 19� even for moderate roughness. The gap is
less pronounced for zigzag nanoribbons since for this orien-
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FIG. 2. �Color online� �a� and �b� Energy dependence of the
average linear conductance of graphene nanoribbons with varying
edge roughness. All nanoribbons have the same length �L
=45 nm� and similar widths �W=4.4 nm for armchair and W
=4.7 nm for zigzag�. �c� Typical etching profiles used in �a� and �b�
�only segments of the nanoribbon atomic structure are shown�. Left:
armchair and right: zigzag.
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FIG. 3. �Color online� Average conductance of �a� metallic arm-
chair �W=4.3 nm� and �b� zigzag �W=4.6 nm� nanoribbons as a
function of the Fermi energy for three different widths when mod-
erate roughness is present �zero temperature�. The dashed lines in-
dicate the conductance gap estimated by the change in the slope of
the curves �see insets�. A total of ten realizations of the edge rough-
ness types 3 for armchair and 4 for zigzag were used for each curve
presented.

MUCCIOLO, CASTRO NETO, AND LEWENKOPF PHYSICAL REVIEW B 79, 075407 �2009�

075407-2



tation most of the current at low doping is carried through
bulk states5 which are less sensitive to edge defects. Never-
theless, once the etching goes deeper than one lattice spac-
ing, a clear gap develops for zigzag orientations as well.

In Fig. 4�b� we plotted the ratio between the on and off
linear conductances as a function of the nanoribbon length.
The off conductance Goff was obtained at EF=0 while Gon
was defined as the conductance at the Fermi energy where a
transition from the first to the second step occurs in the clean
nanoribbon. The curves indicate an approximate exponential
growth in the on/off ratio, consistent with the Anderson lo-
calization picture. Since conductance is broadly distributed
in the localized regime, the on/off ratio develops very large
fluctuations when the nanoribbon is long. In the inset we
show the localization length lloc extracted by fitting to the
data an expression of the form G�L�=G�0�e−L/lloc. We note
that the localization length grows with increasing ribbon
width and energy. Fittings to the form lloc=AW� yield �
=0.21–0.61 at EF=0 and �=1.8–2.2 at EF=0.2t, with the
prefactor in the range A=0.04–7.3 for lloc and W in lattice
units. Thus, lloc can be comparable to W.

III. BULK DISORDER

In order to investigate the effects of bulk disorder, we
added an on-site correlated Gaussian disordered potential
Uimp�r� to the nanoribbon.23–25 The latter is constructed by
distributing along the nanoribbon Nimp Gaussian scatterers of
width � with random amplitudes �Un� drawn from a uniform
distribution �−�U ,�U�. The intensity of the disorder is char-
acterized by the dimensionless parameter K0, which is de-
fined through the correlation function

	Uimp�ri�Uimp�r j�
 = K0
�v

2��2e−�ri − rj�
2/2�2

. �1�

In the dilute limit, when Nimp is much smaller than the total
number of sites in the nanoribbon, one can show that24 K0

�40.5nimp��U / t�2�� /a0�4, where nimp is the scatterer density
per lattice site. For large graphene sheets at high doping, far
from the neutrality point, it is possible to relate this param-
eter to the transport mean-free path using the Born
approximation25 �tr=2�F /�K0, where �F is the Fermi wave-
length in the graphene sheet, with �F��tr.

The difference between armchair and zigzag states near
the neutrality point also explains the effect of bulk disorder
in nanoribbons with rough edges �Fig. 5�. For the metallic
armchair orientation the low-lying states are concentrated at
the edges and are quite sensitive to edge roughness.6 In this
case, moderate bulk disorder has a small effect on the trans-
port gap. For zigzag orientations, the situation is the opposite
as bulk disorder disrupts the current-carrying states and sup-
presses conductance in this case. However, for both orienta-
tions, bulk disorder only leads to strong localization when
�	a0 �short-range disorder�.

IV. CONDUCTANCE QUANTIZATION

While it is clear that moderate edge disorder leads to sub-
stantial suppression of the conductance of nanoribbons, what
happens when the etching is nearly perfect and only very few
and shallow defects are present? How does weak edge
roughness affect conductance quantization in comparison to
bulk disorder? Answers to these questions are provided in
Fig. 6 and in the inset of Fig. 5�a�. The main effect of very
weak edge disorder is to lower the conductance steps without
changing their positions in energy. Some fluctuations occur
near the transition regions between steps because of the sen-
sitivity of the evanescent modes to variations in nanoribbon
width, but these fluctuations are washed out at finite tem-
peratures. However, thermal fluctuations, even at room tem-
perature, do not change the wider steps, as can be seen in the
insets of Fig. 6, as long as the nanoribbon is sufficiently
narrow.
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FIG. 4. �Color online� �a� Transport gap dependence on the na-
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the data as explained in the main text. �b� On/off linear conductance
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Bulk disorder, on the other hand, has a quite distinct effect
on the conductance quantization. In the inset of Fig. 5�a� we
show how bulk disorder affects the conductance steps of a
metallic armchair nanoribbon. As the disorder range widens,
the steps are smeared without shifting the conductance value.
This result can be understood in the following way. When
only weak edge disorder is present, the width of the nanor-
ibbon is hardly unaltered and propagating channels in the
nanoribbon open up at the same energies as in the case of
perfect edges. Yet, backscattering due to randomly posi-
tioned edge defects, albeit weak, reduces the overall conduc-
tance and shifts the steps downward. Long-range bulk disor-
der, on the other hand, creates potential inhomogeneities
which lead to the appearance of electron and hole puddles
when the Fermi energy lies close to the Dirac point.23 Trans-
mission through these puddles creates mode mixing, which
in turn smears the conductance steps.

A simple model can be used to describe the suppression of
the conductance steps. For the first step, let us assume that
carriers propagate in one dimension through a sequence of
randomly positioned but identical barriers. When the barrier
reflectance is very small, R�1, it is straightforward to show
that, in the short-wave limit ���L�, the conductance in the
first step goes as G1��2e2 /h��1−NR�, where N is the num-
ber of barriers, which can be directly related to the defect
probability or density as follows: N= �L /a0�p1. For higher
steps, more than one propagating mode is present and the
system becomes quasi-one dimensional. In the absence of
mode mixing, the conductance of the nth step behaves as
Gn�n�2e2 /h��1−NR�. However, mode mixing is unavoid-
able for n
1 and one expects strong deviations from this
simple scaling behavior

The suppression of the conductance step as a function of
nanoribbon length and edge defect concentration is presented
in Fig. 7. For the first step of the armchair orientation the
simple one-dimensional scattering model works quite well.
Both dashed lines in Figs. 7�a� and 7�b� correspond to R
=0.035. The linear scaling ceases to apply for higher steps,
with a sublinear dependence indicating substantial mode

mixing. For zigzag orientations, the suppression of the first
conductance step was too small to be shown on the same
plot. Figures 7�c� and 7�d� show that the simple scaling be-
havior no longer applies already when n=2 �R=0.013 was
used in this case�.

V. CONCLUSIONS

Our results indicate that creating graphene quantum point
contacts will depend fundamentally on atomic-scale
engineering.26 In searching for ways to improve the nanorib-
bon conductance in the presence of edge roughness, we
found that, due to the Klein tunneling effect, side gates are
not effective in reducing edge scattering �i.e., electrostatic
potentials do not confine Dirac fermions�. At moderate
roughness, Anderson localization develops and transport
gaps appear. There is a quantitative agreement between the
gaps that we find numerically when extrapolating our results
to wider nanoribbons and the available experimental data,
although we expect that other mechanisms, such as spin
gaps20 and charging effects21 �not taken into account in our
calculations�, will likely compete with localization. Elec-
tronic dephasing can be introduced in the calculation follow-
ing a standard procedure.27 Since, in practice, dephasing
lengths exceed the nanoribbon width, we expect that the
main effect of dephasing will be the appearance of an addi-
tional weakly energy-dependent suppression of the conduc-
tance as the nanoribbon will break into a series of indepen-
dent quantum resistors. At this point, we would also like to
note that we recently became aware of similar work by
Evaldsson et al.28
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