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An analytic theory of ballistic electron transport in disordered graphene in “short-and-wide” geometry is
developed. We consider a sample of a large width W and analyze the evolution of the conductance, the shot
noise, and the full statistics of the charge transfer with increasing length L both at the Dirac point and at a finite
gate voltage. The transfer-matrix approach combined with the disorder perturbation theory and the renormal-
ization group is used. We also discuss the crossover to the diffusive regime and construct a “phase diagram” of

various transport regimes in graphene.
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I. INTRODUCTION

Recent successes in manufacturing of atomically thin
graphite samples'™ (graphene) have stimulated intense ex-
perimental and theoretical activity.>® The key feature of
graphene is the massless Dirac type of low-energy electron
excitations. This gives rise to a number of remarkable physi-
cal properties of this system distinguishing it from conven-
tional two-dimensional metals. One of the most prominent
features of graphene is the “minimal conductivity” at the
neutrality (Dirac) point. Specifically, the conductivity>*’ of
an undoped sample is close to e?/h per spin per valley, re-
maining almost constant in a very broad temperature range—
from room temperature down to 30 mK.

Several recent theoretical works addressed transport in
disordered graphene samples. It was found that localization
properties depend strongly on the nature of disorder®~'4
which determines the symmetry and topology of the corre-
sponding field theory. The localization is absent provided a
certain symmetry of clean graphene Hamiltonian is pre-
served in the disordered sample (see Ref. 12).

One possibility is that disorder preserves a chiral symme-
try of massless Dirac fermions. This situation is, in particu-
lar, realized when the dominant disorder is due to corruga-
tions of graphene sheet (ripples) and/or dislocations.!> The
conductivity in such chiral-symmetric models has been
shown!® to be exactly e*/mh (per spin per valley) at the
Dirac point. While being temperature independent, this value
is, however, less by a factor of ~3 than the experimentally
measured values.

Another possibility, a long-range randomness, was studied
in Ref. 11. This type of disorder does not mix the two valleys
of the graphene spectrum, which leads to emergence of a
topological term in the corresponding field theory (unitary or
symplectic o model). The peculiar topological properties
protect the system from localization.""=131617 Tt is worth
mentioning that a topologically protected metallic state
emerging in graphene with long-range random potential also
arises at a surface of a three-dimensional Z, topological
insulator.'81°
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A number of numerical simulations of electron transport
in disordered graphene!”-?>-2% confirmed the absence of local-
ization in the presence of long-range random potential. The
main quantity studied numerically in most of these works is
the conductance G of a finite-size graphene sample with a
width W much larger than the length L. This setup allows
one to define the “conductivity” o= GL/W even for ballistic
samples with L much shorter than the mean free path /. Re-
markably, in graphene at the Dirac point, such ballistic con-
ductivity has a universal value e?/h in the clean case.?%?’
This setup was studied experimentally in Refs. 28—32 and
the ballistic value e?/mh was indeed observed for large as-
pect ratios. This geometry of samples is particularly advan-
tageous for the analysis of evolution from the ballistic to
diffusive transport.

A complete description of the electron transport through a
finite system involves not only the conductance but also
higher cumulants of the distribution of transferred charge.
The second moment is related to the current noise in the
system. The intensity of the shot noise is characterized by the
Fano factor F. For clean graphene, this quantity was studied
in Ref. 27. Surprisingly, in a short-and-wide sample (W
> L) the Fano factor takes the universal value F=1/3, which
coincides with the well-known result for a diffusive metallic
wire.> This is at odds with usual clean metallic systems,
where the shot noise is absent (F=0). The Fano factor F
=1/3 in clean graphene is attributed”’ to the fact that the
current is mediated by evanescent rather than propagating
modes. Furthermore, the whole distribution of transmission
eigenvalues for the massless Dirac equation in a clean
sample with W>L at the Dirac point agrees with that of
mesoscopic metallic wires in the diffusive regime.>*

The effect of disorder on the shot noise was studied nu-
merically in Refs. 23 and 24, where the value of the Fano
factor F~0.3 was found across the whole crossover form
ballistics to diffusion. The Fano factor close to 1/3 was also
observed at the Dirac point experimentally.>*3> When the
chemical potential was shifted away from the Dirac point,
the Fano factor decreased, then showed an intermediate
shoulder at F=0.15, and finally approached zero for largest
gate voltages (carrier concentrations).
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While both diffusive and clean limits have been addressed
analytically, only numerical and experimental results for the
intermediate regime of ballistic transport through disordered
samples have been available so far.’> The aim of this paper is
to fill this gap. We develop the analytic theory of electron
transport in disordered graphene in the ballistic geometry
(L<W,I) and calculate the full statistics of the charge trans-
fer for both zero (the Dirac point) and large concentration of
carriers. We also discuss the crossover to diffusive regime
and construct the overall “phase diagram” of transport re-
gimes.

The structure of the paper is as follows. We begin in Sec.
IT with the introduction of the model and derivation of a
general transfer-matrix equation. In Sec. III we calculate
transport properties of a clean sample. In Sec. IV the disorder
is included in the lowest order of the perturbation theory. The
resummation of leading higher-order corrections to the
counting statistics is performed within the renormalization-
group approach in Sec. V. For the case of random potential
we discuss the evolution of the distribution of transmission
coefficients at the Dirac point from ballistic to diffusive re-
gime. We summarize the results and discuss the perspectives
in Sec. VI. Technical details are relegated to Appendixes
A-C.

II. TRANSFER-MATRIX TECHNIQUE

We start with introducing our model and the general for-
malism of transfer-matrix technique. For graphene, this ap-
proach was employed in Refs. 23, 26, 27, and 36-38.

We will adopt the single-valley model of graphene. More
specifically, we will consider scattering of electrons only
within a single valley and neglect intervalley scattering
events. Indeed, a number of experimental results show that
the dominant disorder in graphene scatters electrons within
the same valley. First, this disorder model is supported by the
odd-integer quantization®> of the Hall conductivity, o,
=(2n+1)2¢%/ h, representing a direct evidence'® in favor of
smooth disorder which does not mix the valleys. The analy-
sis of weak localization also corroborates the dominance of
intravalley scattering.® Furthermore, the observation of the
linear density dependence® of graphene conductivity away
from the Dirac point implies that the relevant disorder is due
to charged impurities and/or ripples.!®?*40-43 Duye to the
long-range character of these types of disorder, the interval-
ley scattering amplitudes are strongly suppressed and will be
neglected in our treatment. Finally, apparent absence of lo-
calization at the Dirac point down to very low temp-
eratures®*’ can be explained only by some special symmetry
of disorder. The most realistic candidate model is the long-
range randomness which does not scatter between valleys.!!

The single-valley massless Dirac Hamiltonian of electrons
in graphene has the form (see, e.g., Ref. 6)

V(x,y) =0,V (x.y). (1)

Here o, (with ©=0, x, y, z) are Pauli matrices acting on the
electron pseudospin degree of freedom corresponding to the
sublattice structure of the honeycomb lattice, (TE{O'X,O'y},
and the Fermi velocity is vy=~10% c¢m/s. The random part

H=vo0p+ V(x,y),
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FIG. 1. (Color online) Schematic setup for two-terminal trans-
port measurements. Graphene sample of dimensions LX W is

placed between two parallel contacts. We assume W= L throughout
the paper.

V(x,y) is, in general, a 2 X 2 matrix in the sublattice space.
Below we set =1 and vy=1 for convenience.

We will calculate transport properties of a rectangular
graphene sample with the dimensions L X W. The contacts
are attached to the two sides of the width W separated by the
distance L. We fix the x axis in the direction of current (Fig.
1), with the contacts placed at x=0 and x=L. We assume
W=> L, which allows us to neglect the boundary effects re-
lated to the edges of the sample that are parallel to the x axis
(at y=+=W/2).

Following Ref. 27, metallic contacts are modeled as
highly doped graphene regions described by same Hamil-
tonian (1). In other words, we assume that the chemical po-
tential Ex in the contacts is shifted far from the Dirac point.
In particular, Er> €, where € is the chemical potential inside
the graphene sample counted from the Dirac point. (All our
results are independent of the sign of energy, thus we assume
€>0 throughout the paper.) A large number of propagating
modes exist in the leads, all belonging to the circular Fermi
surface of radius pp=Er/v,. These modes are labeled by the
momentum p,=27n/W in y direction with |n|<N
=Wpp/2r. Particular boundary conditions at y=* W/2 shift
the quantized values of p, by a constant of order 1/W. How-
ever, this constant has no significance in the limit W>L
when many channels participate in electron transport.

Clearly, the transverse momentum p,, is preserved in the
clean system. We will use the mixed momentum-coordinate
representation, with the wave function W, (x) bearing a vec-
tor index n in the space of transverse momenta supplemented
by a two-spinor structure in pseudospin (sublattice) space.
The eigenstates of the clean Hamiltonian Hy=v,0p have the
direction of pseudospin parallel to the electron momentum. It
is convenient to perform the unitary rota_tion36 in the pseu-
dospin space ¢y=LV with L=(o,+0,)/V2 which transforms
o, to the diagonal form: Lo.L"=0,. Hence the two compo-
nents of the rotated spinor correspond to right- and left-
propagating waves,** ={y*, y/}. In terms of the new func-
tion ¢,(x), the Schrodinger equation HV =€V acquires the
form?23-36

Y,
ox

= (prn + i(TZE) '/jn - lo—zz Unm(x) (//m (2)

The matrix U, (x) represents the operator £V(x,y)L" in the
mixed momentum-coordinate representation,

Unm(x) = L:Vnm(x)‘cfv (3)
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dy .
Vnm(x)zf Wye—l(Pn—pm)yV(x,y)_ (4)

A standard description of electron propagation involves
the scattering matrix S. This is a unitary matrix relating the
amplitudes of incident and outgoing waves,

Wl (o) o

The elements ¢, ' and r, ¥’ are matrices in channel space
formed by transmission and reflection amplitudes, respec-
tively. The unitarity condition S'S=1 ensures conservation
of particle number.

A closely related formulation is based on the transfer ma-
trix 7 which expresses the waves at the point x=L through

those at x=0:
M(L))_ ¢R(O)) _( e r,t,_l>
(#(L) “Npo) T\ ) ©

This description is convenient due to the simple multiplica-
tivity property: 7(x3,x,)7(x5,x;)=7(x3,x;). The current con-
servation is provided by the identity 770 7=0,.

By definition, the transfer matrix 7(x,,x;) yields a solu-
tion to the Schrodinger equation [Eq. (2)] in the form
(xy)=T(x5,x,)f(x;). Transfer matrix itself, as a function of
its first argument, obeys the same Schrodinger equation with
the initial condition 7(x,x)=1. In a clean sample the solution
depends only on the difference x,—x; and is diagonal in
channel space,

TO(2,x1) = 8y expl(oyp, + i, (3 —x)]. (7)

In order to include disorder as a perturbation, it is conve-
nient to cast the Schrodinger equation [Eq. (2)] into an inte-
gral form. In terms of transfer matrix the integral equation
reads

T(xy,x1) = TOxp,x,) — lf’fz dx’]'(o)(xz,x)ozU(x)T(x,xl).

(8)

The transport statistics of the sample is expressed in terms
of transmission eigenvalues 7,—the eigenvalues of the ma-
trix ’z. One can extract these transmission eigenvalues from
the upper-left element of transfer matrix (6). The first two
moments of the transferred charge distribution determine the
conductance (by Landauer formula) and the Fano factor,??

Tr(t'1)?
Tr(f'7)

4 2
G= %Tr(r*t), F=1- 9)

The factor 4 in the expression for the conductance accounts
for the spin and valley degeneracy.

III. CLEAN GRAPHENE

We will first analyze transport properties of a clean
graphene strip. In the “short-and-wide” geometry (W> L) we
are considering, the total number of channels participating in
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FIG. 2. Energy dependence of the (a) conductance and the (b)
Fano factor of the clean sample with W> L. Solid lines show nu-
merical results. Low energy asymptotics [Eq. (21)] are plotted by
dashed lines while dotted lines correspond to high-energy limit
[Egs. (34) and (35)]. Asymptotical curves provide a very good ap-
proximation to the exact result in the whole range of energies.

charge transfer is large. This allows us to replace summation
over channels by integration. From now on, we will identify
channels by the dimensionless momentum p=p,L in y direc-
tion and integrate over this momentum according to

Wi ar
%HLJZW' (10)

The transfer matrix 7® and hence its upper-left block A7
are diagonal in channels. Using the explicit form of the clean
graphene transfer matrix [Eq. (7)], one calculates the trans-

mission eigenvalues,®
+ p?sinh?\p? — (eL)? |
T,=(t'1),,=|1+ (L)’ (11)

For the conductance and Fano factor we obtain from Eq.

)
f deﬁ

f dpT,

The result of numerical integration of Eq. (12) is shown in
Fig. 2. A detailed analytical analysis of the two limiting cases
of small and large energies is presented below.

26*W
G=
hL

dpT,, F=1- (12)

A. Transmission distribution and counting statistics

It is convenient to introduce the distribution function P(T)
of transmission eigenvalues [Eq. (11)]. This distribution
function provides a measure in the space of channels which
is, by definition, equivalent to integration measure (10),
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Wd
P(T)dT =2 X M (13)
2L

According to Eq. (11), there is one-to-one correspondence
between the transmission eigenvalue 0=7=1 and the abso-
lute value |p| of the momentum; an extra factor of 2 in the
right-hand side of Eq. (13) accounts for the double degen-
eracy between channels with momenta p and —p.

Very generally, the distribution function P(T) determines
the full statistics of the charge transfer.*> Specifically, one
defines the counting statistics «(x)=2ye*VP(N), where
P(N) is the probability that N particles are transferred within
a measurement time interval ¢,,. Then In «(y) is the generat-
ing function for cumulants,

Nk
in w0 =3 v, 14

k

It can be related to P(T) in the following way*® (we assume
zero temperature and retain the factor of 4 taking into ac-
count the spin and valley degeneracy in graphene):

4¢* ,
In (y) = fwm f ATP(T)In(1 = T+ &XT),  (15)

where V is the applied voltage. In particular, the first two of
the cumulants ((N*)) determine the conductance G and the
shot-noise power S via ((N))=(N)=Vt,,G and ((N*))=V1,,S.
According to Egs. (14) and (15), one has

= “hizf dTTP(T), = 4hi2f dTT(1 - T)P(T),
(16)
and the Fano factor
s f dTT*P(T)
F=—=1-—]/—"7". 17
“ f dTTP(T) "

Relations (15)—(17) are of general validity and equally appli-
cable to the clean and disordered system. All the information
about scattering, both at the interface with leads and in the
bulk of the system, is encoded in the transmission distribu-
tion P(T). Clearly, Egs. (16) and (17) for the conductance
and the shot noise are equivalent to Eq. (9).

B. Low energies: eL <1

In the low-energy limit, we calculate the distribution func-
tion P(T) in the form of a power series in the small param-
eter eL. In order to perform this calculation, we first invert
the function 7, given by Eq. (11) keeping terms of the sec-
ond order in €L,

1 -7
- ] (18)

) (eL)Z{ )
PN =polD)+ = po(T)  pi(T)
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1
po(T) = arccosh—. (19)
\NT

Now we substitute this expression into Eq. (13) and obtain
the distribution

W dp(T
P(T):_M
L dT
w 1 NV1-T 14T
L ar( T )]
ZWLTVI—T{ (L) po(D)  2pi(T)

(20)

It is worth noticing that by definition [dTP(T) should give
the total number of open channels Wpy/m in the leads. In
fact, the logarithmic divergence at 7— 0 of the normalization
of Eq. (20) is cut off at the lowest transmission eigenvalue
Tin ~ €xp(=2pgL). This small-T cutoff is, however, immate-
rial for the calculation of the moments (conductance, noise,
etc.).

At zero energy, the function P(T) reproduces the well-
known Dorokhov result?’ for a diffusive wire. This is, in
particular, the reason for the 1/3 Fano factor in graphene.?’
The fact that the clean graphene sample is characterized by
exactly the same form of the transmission distribution as a
generic diffusive wire is highly nontrivial. We will show be-
low (Secs. IV and V) that this remarkable correspondence
remains valid in the ballistic regime when leading disorder
effects are incorporated.

Using distribution (20), we obtain the following results
for the conductance and the Fano factor of clean graphene at
low energies, eL<<1:

2

S X o), P=ilrele?), @)
C350(3)  1244(5) _
a==3 5 - ~0l0L, (22)
287(3)  434£(5) 45724(7
- 1557(12)_ Wi( ), Wf( ) _ 0052, (23)

At the Dirac point (e=0), Eq. (21) reproduces the earlier
analytical results in Refs. 26 and 27. Low energy asymptot-
ics are shown with dashed lines in Fig. 2.

C. High energies: eL>1

When the Fermi energy e in the sample is far from the
Dirac point, many conducting (7~ 1) channels are opened.
In this regime, the conductivity and higher moments of the
transmission distribution are essentially linear in € with small
oscillating corrections (see Fig. 2). These oscillations are due
to interference effects: conductance is relatively enhanced
and the noise is suppressed when a channel exhibits resonant
transmission with 7 close to 1. This phenomenon is similar
to the Fabry-Pérot resonances.

We begin with the calculation of the main (proportional to
€) part of the transmission distribution function and will re-
turn to the oscillatory correction later in this section. It is
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FIG. 3. Integration contour used in Eq. (30).

convenient to find first the generating function of transmis-
sion moments, defined as

F@) =X T =T - (24)

n=1

This function appears to be very useful for the forthcoming
calculation of the transport properties of a disordered sample.
In this section, we apply it to the clean system. According to
Egs. (11) and (24), we have

Fo=2 "_”{1 L (G I
¢ L) 2w ¢ (eL)? - p? '

The integrand oscillates rapidly in the interval —eL <p <eL.
This interval of momenta contains all open (well-conducting)
channels and thus provides the main contribution to the gen-
erating function. At high energies, it is convenient to intro-
duce a new variable u, such that

p=p,L=elN1-u? (26)
! udu [P 5.
f dpf(p) = GLJ h[f(EL\yl - I/lz) +f(— elN1 - I/tz)]
o Vl-u
(27)

Transforming Eq. (25) to the new variable [Eq. (26)] and
averaging over oscillations (see Appendix A for details), we
obtain

_ WeK(®) - EQ)

| i
o N1 =1 —zu®>

Flz) =

We Jl w*du

[ [
w1l -z Nl -z

(28)

Here K(m) and E(m) are complete elliptic integrals of the
first and second kinds*® with the parameter m.

The function F(z) is regular at the point z=0. The coef-
ficients of the series expansion near this point provide the
moments of transferred charge distribution [see Eq. (24)].
The transmission distribution function P(T) is related to F(z)
by the linear integral equation,

YP(D)
fo 2D 7= 70, (29)

which follows from Eq. (24). In order to solve this equation
for P(T), we note that the function F(z) has a branch cut
along real axis running from 1 to . We integrate Eq. (29)
along a contour going from z=1/7T-i0 to z=1/T+i0 encir-
cling the point z=1 (see Fig. 3). This integration yields
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1 1/T+i0
()= f P(T)dT f =
0

J‘I/T+10 dz
1T=i0 27T vr-io 2mi(T™ = z)

1
= f P(T)dT. (30)

T

To find the distribution function, we calculate the derivative
of the above equation with respect to 7" and obtain

FOUT+i0) - F(1/T = i0)
T) = s .
2miT

(31)

This identity establishes a relation between the distribution
function P(T) and the jump of F(z) across the branch cut at
the point z=1/T. In other words, Eq. (29) solves the corre-
sponding Riemann-Hilbert problem.

To find the explicit formula for the distribution P(T), we
perform an analytic continuation of expression (28) from the
vicinity of the point z=0 to z=1/T=*i0 and substitute the
result into Eq. (31). This yields

WeK(T) - E(T)
w T\'m

This distribution function provides a full transport descrip-
tion at high energies (up to small oscillatory corrections that
will be discussed below). We note that Eq. (32) does not take
into account almost closed (evanescent) channels with p,
> € (and thus T<<1). Estimating their contribution, we find
that it is suppressed by a factor (eL)™ compared to the main
term, thus yielding a negligible contribution to the charge
transfer.

Using the above distribution (or, equivalently, the gener-
ating function), we calculate the asymptotics of the conduc-
tance and Fano factor in the high-energy limit eL> 1,

e? 1
= We, =3 (33)

P(T)= (32)

We recall that when passing from Eq. (25) to Eq. (28), we
neglected the oscillatory contributions to the generating
function. A more accurate calculation accounting for these
oscillations is presented in Appendix A [see Eq. (A6)]. The
results for the conductance and the Fano factor read

e’ sin(2eL — m/4)
G=SWel 14— 2, (34)
h 2\ r(el)>?
1 9 sin(2eL — /4
=—{1—M} (35)
8 2V’7T(€L)3/2

These results are in a good agreement with the high-energy
behavior of G and F calculated numerically (see Fig. 2).
Let us emphasize that transport properties of the system at
high energies depend on the particular model of the
contacts.*>>" In our calculation we assume that the bound-
aries between graphene and the leads are sharp. This induces
backscattering yielding a nontrivial distribution function
P(T) [Eq. (32)] (in particular, finite Fano factor F=1/8) even
without disorder. The model is well justified if the actual
extension d of the transitional region at the interface is small
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compared to the electron wavelength in graphene. This
wavelength is energy dependent: it tends to infinity at €=0
and decreases with increasing €. Thus the small-energy re-
sults (Sec. IIT B) are universal and not influenced by the mi-
croscopic details of the interface provided the size of the
boundary transitional region is much smaller than the length
of the sample L. On the other hand, the results of the current
section are applicable for not too high energies, e<<1/d. For
higher energy, the electron wavelength becomes comparable
to d and the transmission properties of the sample become
nonuniversal. In the extreme high-energy limit, ed> 1, the
boundary becomes adiabatically smooth. This, in particular,
leads to the vanishing Fano factor because the semiclassi-
cally propagating electrons are either transmitted or reflected
without any uncertainty.

Our results for the energy dependence of the conductance
and the Fano factor in clean graphene are in agreement with
the findings in Refs. 27 and 36, where the sum over trans-
mission channels was evaluated numerically for a finite (but
sufficiently large) ratio W/ L. Experimentally, such a ballistic
setup was studied in Refs. 30-32. Most of the experimental
observations reasonably agree with our results. The conduc-
tivity GL/W (which is equal to 4e?/ah at the neutrality
point, as expected for a ballistic sample) increases roughly
linearly with energy e. The Fano factor has a value close to
1/3 at the Dirac point and decreases when one moves away
from the Dirac point, showing a tendency to saturate at F
~=(.15, which is not far from the value 1/8 we have obtained
in the high-energy regime. Measurements on other samples
reveal that very far from the Dirac point the Fano factor
decreases again, reaching a value as low as 0.02. Apparently,
the intermediate plateau corresponds to the high-energy re-
gime L' <e<d! investigated in our work, while the van-
ishing of the Fano factor at still higher electron concentra-
tions corresponds to the ultrahigh-energy range, e>d-'. It is
not quite clear to us why the oscillatory structures are not
observed in experimental data. A possible explanation is that
the length L of the sample in the experiment varies as a
function of the y coordinate, leading to a suppression of the
oscillations.

IV. INCLUDING DISORDER: PERTURBATIVE
TREATMENT

So far, we have considered the transport properties of a
clean graphene sample. In the present section we include
disorder on the level of the leading perturbative correction.
As discussed in the beginning of Sec. II, we neglect the
intervalley scattering. Further, we will assume the Gaussian
statistics for disorder components V* that determine the ran-
dom part V(x,y) of Hamiltonian (1) acting within a single
valley,

(V¥(x,y)) =0, (36)

(VM )V y" )y =278, w,(x—x",y =y").  (37)

This type of randomness is realized when the scattering is
due to impurities in the substrate separated by a thick (com-
pared to the lattice constant) clean spacer layer from the
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graphene plane. The intervalley matrix elements of the dis-
order potential are then exponentially suppressed and can be
safely neglected. A more realistic case of long-range charged
impurities with 1/r potentials can also be treated perturba-
tively within the Gaussian model but with an energy-
dependent scattering amplitude.!®© We will briefly discuss
modifications of the results in the case of Coulomb-type im-
purities in Sec. V F.

The correlation function w,(x,y) is even with respect to
both arguments and is peaked at short (compared to the
wavelength in the sample) distances, being hence almost a
delta function. At the same time, we will have to keep a
small but nonzero correlation length in order to regularize
ultraviolet singularities arising at the intermediate stage of
our calculation. The results of the calculation will not depend
on this correlation length.

In the transfer-matrix approach, it is convenient to convert
the correlation function to momentum representation in y
direction. The x dependence of w,, can be safely replaced by
the delta function without generating any singularities. Thus
we introduce dimensionless functions «,, according to

w,(x,y) = 5(7”2 e a,(q,,L). (38)

The functions a,(g) vary slowly with g. They are almost
constant at low values of momentum and decay at the large
scale of inverse correlation length. We will express the trans-
port characteristics of the system in terms of four constants,

a,= aM(O). (39)

These parameters are nothing but the amplitudes of the ef-
fective delta functions in Eq. (37),

w,(x,y) = a,0(x)8y), (40)

and correspond to the intravalley scattering parameters used
in Ref. 11 (there it was assumed that a,=a, =, /2).

In the present section we will calculate the first disorder
correction to the transport properties of a graphene sample.
Specifically, we will find a linear-in-e,, contribution to the
function P(T). It is convenient to introduce short-hand nota-
tions for inverse transmission amplitudes and probabilities of
the clean sample,

hy=1/0, H,=|n|>=1/T (41)
Further, it will be useful to label the types of disorder (u
=0,x,y,z) by a pair of binary indices & n== according to

ay=a,,, a,=a,,

=a_,. (42)

ay=a__, a

We develop the perturbative expansion by iteratively solv-
ing Eq. (8). Then we single out the upper-left block of the

matrix 7(L,0) thus obtaining A7 Up to the second order in
V the result is

(tT_l)mn = 5mnh; + Amn - 5mnh:2 Aml' (43)
1

Here A,,, is the linear correction to the transfer matrix,
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L
A=— iJ dx[’]'(o)(L,x)a'ZU(x)’Z'(O)(x,0)]1’1, (44)
0

where the subscript 1,1 refers to the upper-left block in the
right-/left-mover space [see Eq. (6)].

The last term in Eq. (43) represents the contribution of the
second order in disorder amplitudes U(x). Since we are in-
terested in the correction to transport coefficients of the lin-
ear order in «,, (and thus quadratic in U), we can perform
disorder averaging of this term using Egs. (37) and (38).
Then the integration over x coordinate in this term is trivial
due to the delta function in correlator (38) and the multipli-
cativity property of the transfer matrix. We have also used
the relation [(jdx&(x)=1/2. [This identity holds because the
delta function in Eq. (38) is a replacement for some symmet-
ric sharply peaked function.] As a result, we get

Amn W E éafr](QmL an) (45)
&=
The sum over intermediate states [ in the last term of Eq. (43)
converges due to a nonzero correlation length of disorder,
encoded in the momentum dependence of ay, in Eq. (45).
Now we substitute expression (43) and its Hermitian con-
jugate into Eq. (24) and then expand F(z) up to the second
order in A and first order in A. Performing the disorder av-
eraging of terms containing A, we obtain the following ex-
pression for the generating function F(z):

2[{nAmn
¥ E (Hn - Z)2

2an + (Hn + Z) Con
(Hn - Z)2([—]m - Z)
(46)

with

an = Re hmhn<AmnAnm>’ Cmn = <|Amn|2> M (47)
In a general case, the two matrices B,,, and C,,, are very
complicated functions of m and n. We will simplify further
analysis by considering two limiting cases of low and high
energies.

A. Low energies: eL <1

We have already calculated the lowest-order correction to
the distribution function P(T) due to small energy [see Eq.
(20)]. Now we are going to find the lowest disorder correc-
tion at exactly zero energy. To the main order, these two
contributions merely add up.

At zero energy, there are no propagating modes in
graphene; all the channels are evanescent. In this situation, it
is convenient to use the transverse momentum p=p,L in-
stead of index n to label the channels according to Eq. (10).
The bare transfer matrix (7) at e=0 simplifies to

70 _ (cosh p sinhp ) 48)
sinhp coshp/

The quantities 4, and H,, introduced in Eq. (41) take the form
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H,=cosh® p. (49)

hp =cosh p, »

The matrix A,,, defined by Eq. (44) now becomes [using Eq.
3)]

L
Bpy= fo dx{= iV (x)cosh[p = (p + @)x/L] = iV} (x)

Xcosh[p = (p — g)x/L]+ V3, (x)sinh[p — (p — g)x/L]
+iV,,(x)sinh[p — (p + ¢)x/L]}. (50)
Two types of averages [Eq. (47)] arise in the calculation
of transport properties. These averages are the result of ap-
plying Eq. (37) to the product of two A, matrices and sub-

sequent integration over single [due to the delta function in
Eq. (38)] position x. This yields

B,,=- Whphq Ej ag,(p— q)[f cosh(p — nq)

sinh(p +
, Sinh(p nq)} 51)
p+mq
L sinh 2p + 7 sinh 2¢g
Cpy=— @ (p—q)[§+ .
MW LT 2(p+ m9)
(52)

Now we substitute Egs. (45), (51), and (52) into Eq. (46)
and separate the resulting expression into four parts,

Fz) = Fol2) + Fi(2) + Falz) + F5(2), (53)
[
.7:()(1) 2l (54)

H, tanh p tanh ¢

A=t f dpdqéna,(p - 61)

2w Lsf?? (H —Z)Z(H -z)
(55)
W 2+ (1 -29)H,
Fr(2) = 2 Lgfagnfdpdq(Hp_Z)z(Hq_Z), (56)
Filz)=— f dpdq { sinh 2p 7 sinh 2g
e L§77 1) prmg (HP—Z)2+(Hq—z)2
(57)

The first part, F, originating from the first term of Eq. (46),
is the generating function for the clean sample,

w arcsm\z
Cal \z-¢

It corresponds to the distribution function P(T) [Eq. (20)] at
e=0.

The other three terms are disorder-induced corrections.
The integral in Eq. (55) would not be absolutely convergent
if we replace ay, by constants. For this reason, we have to
retain the momentum dependence of ay,, (originating from
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finite correlation length of disorder) in the integrand. Per-
forming first the integration over p+g¢q and then over p—gq,
we get

Fi(2) = Fo(2) 2 Ena,,. (59)
&n

Note that the value of F; does not actually depend on the
precise form of the functions g, (p—¢) but only on their
values at p—g=0. Indeed, the integral over p+¢q and the
subsequent integral over p—gq are convergent even with con-
stant ag,. The finite disorder correlation length is needed
only to ensure the absolute convergence of the ¢ integral in
Eq. (55).

The integral in F, [Eq. (56)] is absolutely convergent in
both variables. This allows us to neglect the momentum de-
pendence of @, (p—g) and replace it by a constant from the
very beginning, yielding

Fi2) = Fo(2) 2 Ea,. (60)
&n

The last term Fj is also absolutely convergent in both vari-
ables. When writing Eq. (57), we have simplified the inte-
grand by means of symmetrization with respect to p < 7q.
The integrand in Eq. (57) can be rewritten in the form of a
total derivative,

(i_ i) H, = H,
o~ "aql (p+ nq)(H,-2)(H,—2)

(61)

and hence
fg(Z) =0. (62)

Collecting all the terms, we finally obtain the following
generating function:

_
W arcsinyz

Flz)=(14+20p-2a,) (63)

L \z-7*

We see that the random vector potential, a, ,, does not influ-
ence transport characteristics of the system in the lowest or-
der. In fact, any vector potential is unable to alter conduc-
tance or higher moments of charge transmission at zero
energy. We will give a general proof of this statement in Sec.
V C below. Another manifestation of this property was found
in Refs. 10, 51, and 52 where it was shown that the random
vector potential does not change the conductivity of an infi-
nite graphene sample at the Dirac point.

The distribution of transmission eigenvalues follows from
Eq. (63) with the help of identity (31). Together with the
energy correction from Eq. (20), P(T) acquires the form

w_1
2aL TV =T
2 \rl - T 1 + T
+ (eL T |
arccosh’(1/NT) 2 arccosh*(1/\T)
(64)

P(T) = ll +2(ap— )

Remarkably, the functional dependence P(T) is not changed
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by disorder at e=0. We will discuss the consequences of this
fact in Sec. V B.
After including the disorder correction at small energies,
the conductance reads
2
= 4iV_V[1 +2ay-2a,+c¢;(eL)?] (65)
wh L )

with the constant ¢; given by Eq. (22), while the Fano factor
remains unchanged [see Eq. (21)].

B. High energies: eL>1

The transport properties of a clean graphene sample at
high energies were considered in Sec. III C. The main con-
tribution to the conductance and to higher moments is pro-
portional to eL and comes from the band of fully opened
channels with |p,|<e. In the present section we will calcu-
late the disorder-induced correction coming from the same
channels. As we will show below, the relative correction is of
the order of a,€L. Since all the momentum integrals will be
restricted to |p,| <€, we do not need the ultraviolet regular-
ization and can neglect the momentum dispersion of «,, from
the very beginning.

As appropriate for high energies (see Sec. III C), we will
label the channels by variables u and v related to p, and p,,
according to Eq. (26). In this representation the quantities A,
and H, introduced in Eq. (41) take the form

i L
h, = cos(uel) — iw, (66)
u
) sin’(uel)
H,=cos™(uelL) + ———. (67)
u

The matrix A, [Eq. (44)] and the averages B,,, and C,,, [Egs.
(51) and (52)] contain rapidly oscillating terms. The integra-
tion over u and v will average out these oscillations. For this
reason, we can drop all the terms in B,, and C,, that are
proportional to odd powers of sin(ueL) or sin(veL), already
before calculating the integrals in Eq. (46). Furthermore, we
discard the contributions that are odd functions of p, and/or
Dns Wﬂcorresponds to dropping odd powers of \1—u?
and \'1-v?% The matrices B,, and C,, simplify to

L 1
B,=—-— HH,+ — |, 68
v W§a§n|:§ v u202:| (68)
L 1
C U:w% a‘f,][§+ uz_l)z] (69)

Substituting these expressions together with Eq. (45) into
Eq. (46) and averaging over oscillations, we find

1 2
.7:(Z)=K6f du l u

T Jo \r’/(l—uz)(l—zuz) V-2

! vidv(&® - 1)
+ eLgl ag, T 02Z)3:| . (70)

The first term in the square brackets gives the generating
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function of the clean sample [Eq. (28)], while the second
term represents the leading disorder-induced correction,
Fais(z). Evaluating integrals in Eq. (70), we express this cor-
rection in terms of elliptic integrals,

WL
Fal2) =— m; ¢a,[(1-2)K(2) — E(2)]

X[(1 - &)K(z) - E(2)]. (71)

Expanding this generating function at z=0, we readily calcu-
late disorder corrections to the conductance and Fano factor.
Combining these corrections with the results for clean
sample [Egs. (34) and (35)], we obtain

e’ sin(2eL — /4)
G="—We| 1+ ———"
h 2\ m(eL)*?

_EeL(a0+ax+3ay+3az)}, (72)

1 {1 9 sin(2elL — m/4)

= 3 ) \’,’7_7( EL)3/2

T
+ZeL(3a0+ 3ax+13ay+13az)} (73)

We see that at high energies any disorder suppresses conduc-
tance and enhances noise at the level of the lowest perturba-
tive correction.

To find the disorder correction to transmission distribution
function (A9) we perform the analytic continuation of Fy;((z)
from the vicinity of the point z=0 to z=1/7=*i0 and apply
Eq. (31). The result is

WLé
Pdis(T)= 2772
4E(DIK( -T)-EéEAQ -D]+w(é-1)
XE CY§,,I l_T .
&

(74)

There is, however, a subtlety in determination of Pg(T),
which is related to the singularity of Fy(z) at z=1 [see
discussion of a similar problem in the clean case (Appendix
A)]. As a result, distribution function (74) cannot be applied
in the vicinity of T=1. Specifically, we have to impose the
bound

1-T> (a,el)’. (75)

Atl1-T~(«a MeL)z, disorder-induced correction (74) becomes
comparable to the main (clean) term [Eq. (32)] and our per-
turbative expansion breaks down. It should be stressed that
this peculiarity in the behavior of P(T) near T=1 does not
affect the evaluation of the moments using the generating
function F(z), which is based on the behavior of the latter in
the vicinity of z=0. Indeed, the disorder-induced correction
[Eq. (71)] to F(z) [and thus to the moments; Egs. (72) and
(73)] is controlled by the small parameter a,eL<1. Note
that at sufficiently high energies eL=1/a,,, disorder correc-
tion to P(T) becomes comparable to the clean result in the
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I 1
| | \ 7
A

(a) (b) () (d)

FIG. 4. One-loop diagrams for (a) electron self-energy and [(b)—
(d)] scattering amplitude. These diagrams yield RG equations [Egs.
(78)-(81)].

whole range of 7. This implies a crossover to the diffusive
regime, where the perturbative approach developed in the
present section fails (see Sec. V).

V. RENORMALIZATION GROUP AND OVERALL
PHASE DIAGRAM

In Sec. IV we have calculated the lowest disorder correc-
tion to transport properties of a ballistic graphene sample. In
the present section we will discuss the resummation of
higher-order contributions.

The second-order and all higher terms contain logarithmic
divergences and thus become important when system is still
in the ballistic regime, L<</. These logarithms are intrinsic
for two-dimensional Dirac fermions subjected to disorder
and were extensively studied in various contexts using
renormalization-group technique.’!*3->7 Application of such
a renormalization group (RG) to disordered graphene was
developed in Refs. 8 and 10.

The RG deals with the two-dimensional action describing
disordered Dirac fermions,

S[yl= f dzx[@av y—iepp+ 2 ma, (Yo, ) |,
M
(76)

where ¢ and i are two-component fermionic (anticommut-
ing) fields. The field-theoretical description of a disordered
system involves also some tool to get rid of diagrams with
closed fermionic loops. This is usually either supersymmetry
or replica trick. In both cases, the fields acquire additional
structure in supersymmetric or replica space. Equivalently,
one can derive the RG equations by simply discarding all
diagrams that contain fermionic loops, without extending the
fields.

The one-loop diagrams contributing to renormalization of
energy and disorder couplings are shown in Fig. 4. The solid
lines are propagators of free electrons,

€+ op

GOp) = ) 77
=z (77)
Dashed lines stand for disorder correlators 27> 100, ® 0T,

We cut the logarithmic divergence in the one-loop diagrams
by the running scale parameter A, which has the dimension

of length, and obtain the beta functions,'*8
0"6(0
A 2(ap+ a)(ap+ o+ ), (78)
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da da,

X = =2 s 79
JInA almA % (79)
Ja
P anA =2(ap+ @) (- a. + a, + a), (80)
Jde
alnA=e(a0+ax+ay+az). (81)

Bare values of energy and disorder couplings, which are
the initial conditions for RG equations, correspond to the
scale of the order of lattice spacing or disorder correlation
length. This scale plays the role of ultraviolet cutoff in our
theory. We will denote it as a. After renormalization proce-
dure we obtain renormalized values of the parameters at the
scale A and also a new effective bandwidth 1/A. We will
denote the new effective couplings by «,(A); for the bare
(initial) values we keep the notation without an argument,
a,=a,(a).

The renormalization proceeds until one of the following
events happens: (i) the running scale A reaches the system
size L, (ii) one of the disorder couplings becomes of the
order unity, or (iii) the renormalized energy reaches the
bandwidth. We will discuss these three possibilities for par-
ticular disorder types below. Once the renormalization has
been performed, we can calculate observables by simply ap-
plying the perturbation theory. The results of Sec. IV for
transport characteristics thus remain applicable with bare pa-
rameters replaced by their renormalized values.

A. Random scalar potential

We start the discussion of various disorder types with the
case of random scalar potential. Let us first consider the
zero-energy limit when the only parameter of the model is
the disorder coupling «. In the single-parameter case, the
RG beta function is universal, i.e., does not depend on the
regularization scheme, within the two-loop accuracy. A dis-
cussion of the universality and the derivation of the second-
loop contribution is presented in Appendix B. The two-loop
RG equation reads

(96!0
dln A

=205+ 20, (82)

The disorder strength, quantified by ¢, increases in course
of renormalization. The renormalization process should be
stopped when the renormalized value of o becomes of order
of unity, so that the perturbative expansion of the beta func-
tion fails. The corresponding scale is the zero-energy mean
free path, which we denote /. To find this length, we express
A as a function of «, in Eq. (82) and integrate from the
initial value of ¢ to 1. This yields

ly= a\r’;(,em“o (83)

in terms of the initial value of the coupling ay= ay(a).

The universality of the two-loop equation is evident from
Eq. (83). The first-loop contribution determines the exponen-
tial factor in [,, while the second loop gives v‘;o in the pre-
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exponent. This parametric dependence of [, cannot depend
on the regularization scheme. On the other hand, the third
loop would fix the numerical prefactor in Eq. (83). However,
the value of the ultraviolet length a is itself defined only up
to a number within the framework of the linearized Dirac
Hamiltonian model.

At scales shorter than the mean free path [, the renormal-
ized value of « is given by

1
" 21n(ly/A) +In In(lo/A)”

ap(A) (84)
As long as L<<I[, [and thus ay(L)<<1], we can describe the
transport properties by distribution function (64) with the
renormalized value «y(L) and €=0. It is worth noting that the
lowest-order perturbation theory used for derivation of Eq.
(64) in combination with RG result (84) provides the best
possible accuracy within the framework of disordered Dirac
Hamiltonian. Specifically, the second-order terms in the per-
turbative expansion of P(T) in powers of ay(L) would gen-
erate the contribution of the same order as that of the third-
loop correction to Eq. (82). The latter, however, depends on
the regularization scheme and hence is nonuniversal, as dis-
cussed above.

A small but nonzero energy does not change the qualita-
tive behavior of the system, as long as the RG flow is termi-
nated by the system size. We refer to this situation as “ultra-
ballistic regime.” The energy gets renormalized according to
Eq. (81), which is universal only in the one-loop order (see
Appendix B). Using result (84), we solve the RG equation
for energy and obtain

€
Va2 In(ly/A) + In In(lp/A)]

e(A) (85)

It is worth mentioning that renormalized coupling (84) and
renormalized energy (85) are related via

@ _ ap(A)
62 - a '

The value €(L) is to be substituted into Eq. (64) along with
the renormalized value of ay(L). This yields the full descrip-
tion of transport properties for the system in the ultraballistic
regime. In particular, the conductance and the Fano factor are

(86)

_ﬁl’[ 209+ c¢i(el)? ] (87)
AR ao[2 In(ly/L) + In In(ly/L)] |

1 cy(el)? ]
F=3 {1 t el gL+ mmyn] ) Y

with the constants ¢, , given by Eqgs. (22) and (23), [, deter-
mined by Eq. (83), and «, being the bare value of the cou-
pling constant. It is remarkable that the conductance in-
creases with increasing strength of random potential (cf. Ref.
36), whereas the Fano factor decreases. This is in contrast to
the usual behavior of metals.

When the initial (bare) value of energy is increased, the
renormalized energy eventually becomes comparable to the
effective bandwidth 1/A before the running scale A reaches
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diffusive (antilocalization)

ballistic

ultraballistic

0
0 v

€

FIG. 5. Schematic phase diagram of various transport regimes in
the graphene sample with random scalar potential. The lines indi-
cate crossovers between corresponding regimes. The shortest
sample exhibits ultraballistic transport with the conductance and
Fano factor given by Egs. (87) and (88), respectively. When the
length of the sample exceeds Fermi wavelength (89), ballistic re-
sults (93) and (94) apply. In a sample longer than the mean free path
(92), diffusive regime establishes with the Drude conductivity (95)
and the Dorokhov distribution of transmission eigenvalues [Eq.
(96)]. The conductivity experiences symplectic antilocalization in
this case.

L [and still before the disorder coupling «y(A) reaches
unity]. The length scale at which e(A)=1/A plays the role of
the effective Fermi wavelength \. (Indeed, in the absence of
disorder, energy is not renormalized and A=1/¢.) Using Eq.
(85), we find

1l —————
= —\2qq In(€/y), (89)
€

where vy is the characteristic disorder-induced energy scale,
v= \Jgo/lo =Ae™ 1?0, (90)

where A=1/a is the initial bandwidth of the model, and we
assumed that €> vy. For €< v, the role of the wavelength is
played by the mean free path /,. Note that Eqs. (89) and (90)
have the same two-loop accuracy as Egs. (83)—(85); in par-
ticular, the absence of a double logarithm term in Eq. (89)
and of a; in the pre-exponent in Eq. (90) is fully control-
lable. According to Egs. (86) and (89), the renormalized val-
ues of the coupling constant and the energy at the scale of the
wavelength are given by

eN\) = ap(N) o1

V2a, In(ely)’ “2In(ey)

In Fig. 5 we show the phase diagram of various transport
regimes. If e<vy and L<<[; or, alternatively, e=y and L
<\, the renormalization terminates by the system size, A
=L, and the system is in the ultraballistic regime discussed
above [see Egs. (87) and (88)]. If >y and N <L <], the
renormalization stops at A=\ and the running scale does not
reach L. We refer to this case as “ballistic regime” since the
system size is still smaller than the mean free path /,
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A ™
- = Y500 In(e/y) 2. (92)
mag(N) e

This value!® of the mean free path corresponds to the imagi-
nary part of the electron self-energy calculated in the Born
approximation with renormalized coupling constant ag(N).
Note that for the model with random scalar potential, the
transport mean free path, which determines diffusion coeffi-
cient, is twice longer, [,=2l. Naturally, expression (92)
matches [, from Eq. (83) at e~ y.

In the ballistic regime, the renormalized energy is such
that e(N\)L=L/\>1. This means that we have to use the
high-energy results of Sec. IV B. In particular, with the
renormalized parameters, the conductance and the Fano fac-
tor [Egs. (72) and (73)] become

eew sin(2L/\ — w/4) L
G=—— = o — (93)
h N\ 2N (LN 41
1 9 sin(2L/\ — m/4) 3L
F=—|1-"—rm—— |, (94)
8 2N a(L/N)? 41

In expressions (93) and (94) there are two corrections to the
leading term. The first (oscillating) correction exists in the
clean limit and is small provided L> \. The second correc-
tion due to disorder is small only if L<</. This imposes the
natural upper bound on the ballistic regime: if the system
size exceeds the mean free path, electron transport becomes
diffusive. In this case, the system is naturally characterized
by the conductivity o, which determines the conductance via
Ohm’s law, G=oW/L. The Drude expression for the conduc-
tivity reads®

4¢* 8e21 (/) (95)
=———=—1In .
7 whay(N)  wh ey

At small energies, €<, the conductivity is of order e*/h
with further corrections due to antilocalization.

The distribution function of transmission eigenvalues in
the diffusive regime is the same as in a usual quasi-one-
dimensional (quasi-1D) metallic sample,*’

w g
P(T) = — ———,
@ 27LTV1-T

(96)
with the dimensionless conductivity g=(mh/4e?)o. Taking
into account interference effects leads to L dependence of g
in this formula, as we are going to discuss.

B. Single parameter scaling for random potential
at zero energy

Remarkably, the transmission distribution function at zero
energy appears to be the same in ultraballistic and diffusive
limits. In both cases it has the form of Dorokhov distribution
(96) with the parameter
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FIG. 6. Unified scaling function (98) for both ultraballistic and
diffusive regimes at zero energy in the case of the random potential
disorder.

1 +2ay(L), ultraballistic,

R 97
§ %U(L), diffusive, ©7)
e

which has the meaning of the dimensionless conductivity. In
the ultraballistic regime, the scaling of g is induced via
renormalization of «, according to Eq. (82) while in the
diffusive limit, g>1 acquires antilocalization corrections
characteristic for a disordered system of symplectic symme-
try. This allows us to infer a unified scaling law covering
both limiting cases,

1
—1)2=-=(g-1)3, g-1<1,
Jln g (g-1) 2(g ), 8

zﬂnL: 1
-, g>1.
8

(98)

Scaling function (98) is depicted in Fig. 6. It is qualitatively
similar to the numerical results in Refs. 22 and 25.

The applicability of the Dorokhov distribution to the dif-
fusive system in the considered geometry requires a com-
ment. The original derivation given by Dorokhov*’ assumes
a diffusive system of a quasi-1D geometry (a thick wire),
with W< L. On the other hand, our geometry is entirely dif-
ferent, W> L. This difference is, however, of minor impor-
tance for the statistics of charge transfer as long as the sys-
tem is a good metal. Indeed, there exist alternative
derivations of the Dorokhov statistics that are based on the
semiclassical Green’s-function formalism,*>? on the sigma-
model approach,’' or on the kinetic theory of fluctuations®?
and do not require any assumption concerning the aspect
ratio of the sample.

We stress that the ultraballistic asymptotics of the beta
function in Eq. (98) is only valid for Gaussian white-noise
statistics of random potential. The interpolation between the
two asymptotics of the beta function in Fig. 6 implicitly as-
sumes a smooth crossover between the two regimes (in par-
ticular, without any intermediate fixed points), as suggested
by numerical simulations.!7?>23.25

Scaling function (98) characterizes the evolution of the
dimensionless conductivity with increasing L. The full distri-
bution function P(T) has form (96) (parametrized by g only)
in the following cases: (i) in the clean limit, (ii) in the ultra-
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ballistic regime within the first order in a(L), and (iii) in the
diffusive regime up to corrections® in 1/0(L). In the cross-
over region (shown by the dashed line in Fig. 6), the depen-
dence P(T) deviates from the Dorokhov distribution.®3

C. Random vector potential

Let us now consider the situation when the only disorder
in the sample is the random vector potential (characterized
by the couplings «, and a,). This situation is physically re-
alized when disorder is due to random corrugations of the
graphene sheet (ripples). The one-loop RG equations for ran-
dom vector potential read”!

Ja Ja,
_":_L:O, 99
dlnA JdlnA (99)
Je
A ela,+ ay). (100)

In fact, the beta function for the disorder couplings is iden-
tically zero in all loops,>'7 i.e., the random vector potential
is not renormalized. Since the couplings do not change with

growing system size, the energy follows a power law:

e(A) = e(é>al,

a

(101)

where a, =a,+a,. For not too high energies, the RG flow
terminates by the system size L (ultraballistic regime), so
that

e(L)L = eL(L/a)* < 1. (102)

As demonstrated in Sec. IV, at zero energy the lowest-
order perturbative correction to the transport coefficients is
absent in the case when the only disorder is vector potential.
Now we present a general argument showing that any given
configuration of the vector potential A(x,y) does not affect
transport properties of the system at zero energy.

The zero-energy Dirac equation takes the following form
in the presence of vector potential:

a(p-A)V=0. (103)

We fix the gauge by requiring that VA=0 in the bulk of the
sample and normal component of A vanishes at the boundary
of the sample. This gauge is widely used in the theory of
superconductivity and is referred to as the London gauge in
that context. In this particular gauge we can express vector
potential using a scalar function ¢(x,y) as
d i

A =—

A )
T 9y Y ox

(104)
The boundary conditions allow us to fix ¢=0 at the edges of
the sample. The function ¢ is related to the magnetic field
B=3,A,-d,A, by the Poisson equation V2¢=-B. The exis-
tence of a solution to such an equation follows from an
equivalent electrostatics problem: finding the potential of the
charge distribution with a given density inside a metallic
cavity.
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Now we do a pseudogauge transformation introducing the
new wave function W according to W=¢?:*¥. For this new
function, the Dirac equation becomes

e ap¥ =0, (105)

which is equivalent to the free Dirac equation with no mag-
netic field. The boundary conditions of the London gauge fix

¢=0 outside of the sample. Thus W=V in the leads. The
transfer matrix of the whole system, and hence all the trans-
port properties, is not influenced by the vector potential. This
result holds for any configuration of vector potential, which
may stem from random deformation (ripples; Refs. 15 and
64) or from tension of suspended sample (Ref. 65). Recently,
we have become aware of an alternative proof of the general
statement by Titov.°® The immunity of the transport proper-
ties to the vector potential holds despite the fact that the
random vector potential problem represents a critical
theory®! with the multifractal wave function ¥(x,y) and a
spectrum of multifractal exponents governed by the disorder
strength «, (for review see Ref. 67).

We will use the results of Sec. III obtained for the clean
sample. Disorder, however, affects the transport properties
through the disorder-dependent renormalization of energy.
Thus, in the ultraballistic regime, we can use Egs. (20) and
(21) of Sec. Il B with €L replaced by its renormalized value
given by Eq. (102),

2
G= :_ihvzv[l +c,(eL)*(L/a)**], (106)
F= %[1 +c,(eL)*(L/a)**]. (107)

When the system size L is larger than the Fermi wave-
length A, the renormalization of energy stops by the band-
width. The value of N is found from the equation 1/\

=¢€(\), yielding
1/ e a /(1+a )
N==(< :

AU (108)

The L-independent renormalized energy e(\) is thus given
by e(\)=€(A/e)*r/1+a1),

To calculate the transport coefficients in the ballistic re-
gime, we substitute the product e(N\)L=L/\>1 along with
the couplings a, and a, into Egs. (72) and (73), which yields

ew sin(2L/\ — w/4) @l
G=——|1+——=———" - ——(a,+3a) |,
h \ 2\ a(L/IN)? 4N
(109)
F 1 9 sin(2L/\ — 7/4) 77'L(3 1Ba)
= 1l-—F+—— + ).
8 ZV/,;—T(L/)\)S/Z Ay & ay
(110)

Using Eq. (108) we find the mean free path,
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FIG. 7. Schematic phase diagram for the sample with random
vector potential. Ultraballistic and ballistic regimes are similar to
the case of random scalar potential. However, the time-reversal
symmetry is broken and the system exhibits weak (second-loop)
localization in the diffusive regime, which eventually drives it to the
critical state characteristic for the quantum-Hall transition. There is
no disorder-induced energy scale in the case of random vector po-
tential, thus we plot the phase diagram for all energies up to the
bandwidth A, which is exponentially larger than vy in Fig. 5. In the
case of random mass, the phase diagram is qualitatively the same.

N 1 a /(l+a))
e (g

T,  ma, €\A

(111)

The system becomes diffusive when L=/. In contrast to the
case of scalar potential discussed in Sec. V A, for random
vector potential there is no direct crossover between the ul-
traballistic and diffusive regimes (at zero energy the mean
free path diverges).

At finite energy the system belongs to the unitary symme-
try class. The corresponding field-theory possesses a topo-
logical term,'! which drives the system to the quantum-Hall
critical point with the universal value of conductivity o
=40". According to numerics,%® the critical conductivity is in
the range o*=(0.5-0.6)e?/h. Since the disorder coupling « |
stays nonrenormalized, the Drude conductivity'® is given by
the Born approximation with the bare value of « |,

2¢?
o=

- ’
mha |

(112)

and does not depend on energy. The criticality is achieved
only at very large scales L~ &.,,. The quantum-Hall correla-
tion length &, is of the order of the unitary-class (second-
loop) localization length & exp(g?) at which all states would
be localized in the absence of the topological term (for re-
view, see, e.g., Refs. 67 and 69),

fcorN 1(6)61/411{. (113)

The phase diagram for the random vector potential (Fig. 7)
contains four regions: ultraballistic (0<<L<\), ballistic (A
<L<I), diffusive (I<L<¢,,), and critical (L> &,).

D. Random mass

Let us now discuss the transport properties in a situation
when disorder is modeled solely by the random-mass term
(e, coupling). We are not aware of physical realizations of
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such disorder in graphene. Nevertheless, we will consider
this case for the sake of completeness.
The RG equations for the random mass read
Jda, 5 Jde
—— ==« = 6az.

dln A ¥ 9lnA

(114)

It is worth mentioning that there is an exact (valid in all
loops) relation’! between the beta function B, for the
random-mass coupling «, and 3, for the random potential
ayp,

IBZ(aZ) == ﬂo(— az)- (1 15)

However, we do not need the two-loop result for the random
mass since a.(A) decreases with growing A and therefore
the second-loop term never becomes important.

The one-loop RG equations for «, and € are solved by

a.(A) (116)

" 1+2a, In(Ala)’

E(A)=E\/a:(yj\)=6\/1+2a’z ln%. (117)

Thus, while a.(A) decreases with growing length scale A,
the energy e(A) becomes larger. Energy reaches the band-
width at the Fermi wavelength scale N\ determined by €(\)
=1/\. This yields

1

€1+ 2a, In(Ale)

—_—
e(N) =€Vl + 2, In(Ale). (119)

At this scale the disorder coupling becomes

% (120)

)= ———
N = Inave

To describe the transport properties in the ultraballistic
regime (L<<\), we substitute Eqs. (116) and (117) taken at
A=L into Eq. (64) and find
4e* W 2a

- ———————+c(el)[1 + 2a, In(L/ ,
{ 1 +2ea, In(L/a) cilel)] 2, In( a)]}

(121)

F= %{1 +cy(eL)’[1 +2a, In(L/a)]}. (122)

When the system size exceeds the wavelength, L> \, we use
the values for «, and € given by Egs. (119) and (120). The
system becomes diffusive when

N 1

A
L=I= - \/1+2a.In=.  (123)
wa,(\) Ta.€ €

In the ballistic regime A <L <<[ we get
eew sin(2L/\ — w/4) 3L
G = 1 + — -
h \ 2\a(LN)Y? 4l

], (124)
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1 9 sin(2L/\ — /4 13L
[ ~ sin( l4) 13L (125)

F=-— :
8 2L 41

where \ is given by Eq. (118).

At zero energy, the system belongs to the superconducting
symmetry class D (see, e.g., Ref. 55). Finite energy drives
the system to the unitary symmetry class A, similarly to the
case of random vector potential. Again, weak (second-loop)
localization leads to the quantum-Hall critical point at very
large scales L=&,,.. The Drude conductivity'® is given by
the Born approximation with the renormalized value of «,
from Eq. (120),

4¢? 4% | 1 A
o=————=—| — 42— |. (126)
3mwha.(N) 37h| a, €

The corresponding quantum-Hall correlation length is then

given by
1(1 A)?
Eor ~ le)exp| =| —+21In— ] |.
I\ e, €

Thus the case of random-mass disorder is very similar to the
case of random vector potential. We have four regimes: ul-
traballistic (0<<L<\), ballistic (A <L<), diffusive (/<L
< &), and critical (L>§,.,). The schematic phase diagram
is the same as for the random vector potential case presented
in Fig. 7. There is no direct crossover between the ultrabal-
listic and diffusive regimes. This is related to the fact that at
zero energy the system is ultraballistic for arbitrary length L.

(127)

E. Generic disorder

Finally, let us consider the case of generic disorder when
all disorder couplings are present. In fact, even if only two of
the three coupling constants «, ,, and «, are present at the
initial ultraviolet scale a, the third one always becomes non-
zero with growing system size®! [see Egs. (78)—(80)]. The
system belongs to the unitary symmetry class at all energies
and falls into the quantum-Hall universality class.!'>! Physi-
cally, this situation is realized in graphene when, e.g., both
long-range vector (ripples) and scalar (charged impurities)
potential are present.!!-13

As discussed in Appendix B, when two or more coupling
constants are nonzero, the second-loop beta-function be-
comes nonuniversal. Therefore, we will deal here with the
one-loop RG equations. The solution of the set of coupled
RG equations (78)—(80) is analyzed in Appendix C. It turns
out that when the initial values of the couplings are of the
same order, after renormalization the coupling «, (corre-
sponding to the scalar potential) dominates. In particular, at
zero energy the renormalization stops at the scale [, when
ap(ly) ~ 1, while the other two couplings are still much
smaller than unity (suppressed by a logarithmic factor),
a, (lp)+a.(lp))=(9/8)[In a|™!, where ay<1 is the bare
value of the coupling.

The phase diagram for the case of generic disorder (Fig.
8) contains four regimes, similarly to the cases of random
vector potential and random mass: in addition to the ultra-
ballistic, ballistic, and diffusive regimes, there is a regime of
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diffusive
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FIG. 8. Schematic phase diagram for the case when more than
one disorder type is present in the system. Random scalar potential
a becomes dominant in the course of ballistic renormalization (see
Appendix C); therefore, the ultraballistic, ballistic, and lowest part
of the diffusive regime are similar to the diagram Fig. 5. Once the
diffusion is established, the antilocalization starts but it proceeds
only till the length I. [Eq. (128)] at which the time-reversal sym-
metry breaks down (Ref. 14). At longer scales the system falls into
the unitary symmetry class and exhibits weak (second-loop) local-
ization. At exponentially long scale &, [Eq. (129)], the quantum-
Hall critical state is established.

quantum-Hall criticality. On the other hand, at variance with
the random vector potential and random-mass problems, the
diffusive regime consists of two subregimes (with weak an-
tilocalization and weak localization corrections to the Drude
conductivity, respectively). Indeed, as discussed above, at the
border of the diffusive regime (L~ ) the dominant coupling
is ay, which corresponds to the symplectic symmetry class.”
At larger scales, L>1,. with

I, ~ Lo|ln ap|™"? (128)

for €=0, the gap in the Cooperon modes due to the couplings
a, and @, becomes important!* and only diffuson modes
remain, restoring the unitary symmetry and leading to the
second-loop localizing correction to the conductivity. When
the renormalized conductivity drops down to the value of the
order e2/h, the critical quantum-Hall regime sets in. Simi-
larly to Secs. V C and V D, this happens at the scale &,
~lceg2. The energy dependence of the correlation length is
dominated by the exponential factor yielding, according to
Eq. (95),

In &, ~ 4 1n2<f>. (129)
Y

It is also worth mentioning that, similarly to the case of

random scalar potential, at lowest energies (including €=0)

the ultraballistic regime crosses over directly into the diffu-

sive regime.

F. Additional comments

Throughout this paper, we have considered a somewhat
idealized theoretical model. Specifically, we have neglected
(i) intervalley scattering, (i) momentum dependence of scat-
tering amplitude characteristic for scatterers with 1/r poten-
tials (such as charged impurities or ripples), and (iii)
electron-electron interaction. We are now going to discuss,
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on the qualitative level, a possible influence of these effects
on our results.

(i) Intervalley scattering. As discussed in the beginning of
the paper, the fact that the dominant disorder scattering in
experimentally studied graphene samples is of intravalley na-
ture is proven by the observation of the anomalous odd-
integer quantum Hall effect. The dominance of the intraval-
ley scattering also explains why the localization is not
observed at the Dirac point down to very low temperatures.
Therefore, the model of decoupled valleys considered in this
work is not only of theoretical interest but is also directly
relevant to experiments.

Still, in any realistic system some amount of intervalley
scattering will be present, so that it is natural to ask what its
influence will be. The weakness of the intervalley scattering
implies that the corresponding mean free path /;,., is much
larger than the mean free path ! (induced by the intravalley
scattering and considered in the paper). This means that the
scale [, is generically located far in the diffusive (or criti-
cal) regime. The results in the ultraballistic and ballistic re-
gimes, as well as in a parametrically broad window in the
diffusive and critical regimes, remain essentially unaffected
by the intervalley scattering. At very large distances, L
> [, the intervalley scattering will strongly affect the be-
havior, generically inducing the localization (except for a
special case of chiral disorder at the Dirac point'?).

(ii) 1/r impurities. Most of realistic candidates for long-
range scatterers in graphene samples, such as charged impu-
rities and ripples, are characterized by 1/r potentials. As was
shown in Ref. 10, there is no ballistic RG for this type of
scatterers; the scale and energy dependences of disorder-
induced effects in the ballistic regime are governed simply
by the energy dependence of the cross section of an indi-
vidual scatterer. With these modifications, all the consider-
ations in our paper remain applicable. In particular, all the
phase diagrams remain qualitatively unchanged; one should
just use the appropriate values of the wavelength N\ and the
mean free path /.

(iii) Electron-electron interaction. The effect of electron-
electron interaction on the system of disordered Dirac fermi-
ons constitutes, in general, a very complex problem. In the
clean case, the interaction induces a logarithmic correction to
the velocity’! that can be treated within an RG scheme simi-
lar to the ballistic disorder RG used in this work. In the
disordered case, a unified ballistic RG emerges’>"3 describ-
ing renormalization of disorder couplings and of the interac-
tion. In Ref. 72 corresponding one-loop RG equations are
derived for time-reversal-invariant disorder and in the limit
of large number of valleys (simplifying the theoretical treat-
ment). One can use this interaction-modified RG values for
renormalized couplings entering our results in the ultraballis-
tic and ballistic regimes; this analysis is, however, beyond
the scope of the present work.

It should be stressed that, as discussed above, the ballistic
RG is redundant for scatterers with 1/r potentials, such as
charged impurities or ripples. In this situation, inclusion of
interaction does not lead to any essential modifications as
long as the system is in the ultraballistic or ballistic regime.
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VI. SUMMARY

In this paper, we have analyzed transport properties of a
graphene sample in the “wide and short” geometry, W>L,
with disorder effects restricted to intravalley scattering. Start-
ing from the clean limit and using the transfer-matrix tech-
nique, we have analyzed the evolution of the transmission
distribution P(7) and, in particular, of the conductance G and
the Fano factor F, with increasing system size L. To take the
randomness into account, we have developed a perturbative
treatment of the transfer-matrix equations supplemented by
an RG formalism describing the renormalization of disorder
couplings. This has allowed us to get complete analytical
description of the transport properties of graphene in the ul-
traballistic (L<<\) and ballistic (\ <L <) regimes. We have
also constructed phase diagrams of different transport re-
gimes (ultraballistic, ballistic, diffusive, and critical) for
graphene with various types (symmetries) of intravalley dis-
order.
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APPENDIX A: OSCILLATIONS AT HIGH ENERGIES

In this appendix we consider transport properties of a
clean graphene sample in the limit of high energies, eL>1.
We will find the next term in the inverse energy expansion of
the generating function F(z) and the distribution function
P(T), which yields an oscillatory correction to results (28)
and (32). Our starting point is the exact expression for the
generating function [Eq. (25)] that we rewrite using param-
etrization (26),

We (' udu sin®(uelL -1
Flz)=— ,ﬁ[cosz(ueL) + % -z
T Jo Nl—-u u
(A1)

Trigonometric functions in the integrand rapidly oscillate. To
take advantage of this property, we represent the integrand as
a sum over Fourier harmonics cos(nuel). The first and the
second terms of such Fourier expansion are

Fl2) =

We fl w?du
m1-2zJo N1 =u?)(1 - zu?)

21 —z =1 —zu?)?
X1+ 5 cos(2ueL) |.

(A2)

1-u
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FIG. 9. Integration contours used to calculate oscillating correc-
tion to the (a) generating function [Eq. (A3)] and (b) transmission
distribution [Eq. (A7)].

The first term of the above expression gives the main
contribution to the generating function [Eq. (28)]. The next
term is suppressed due to oscillations of the integrand. To
estimate this contribution to F(z) we will apply a saddle-
point method. Representing cos(2uel) as a real part of an
exponential function and deforming the integration contour
as shown in Fig. 9(a), we get

IWe u2(uV1 —7- \,/1_—1142)26114 2iuel
5F () = / F-ad)
T \'(I—Z)(]_u);(l_zu)

(A3)

The integrand decays exponentially when the contour runs
far from the real axis. Hence we can estimate the value of the
integral by expanding the pre-exponential factor near the two
ends of the contour. We parametrize these two parts by sub-
stituting u=iw and u=1+iw and obtain the two contribu-
tions,

4We (~ 3w
OF,=-— Ef dwwie Vel = ° 3 (A4)
7 Jy 27(eL)
We sin(2eL — m/4) [ —
57, = Ve s/l_n( € 727 ) dw e 2vel
V2m(1-2) 0
_ We sin(2eL — m/4) (A3)

8\l - 2)3(el)?

We see that the vicinity of =0 yields much smaller correc-
tion, 6F,<< 6F,, and hence should be discarded even though
o0F;, oscillates. The generating function including the first
oscillating correction is the sum of Egs. (28) and (A5),

K(z) - E(2) .\ sin(2€L — m/4)
7TZ\‘”11 -z 8\";(1 - Z)z(eL)3/2 ’

The conductance and the Fano factor [Eqgs. (34) and (35)] are
then calculated by expanding F(z) in small z.

Let us now calculate the oscillating correction to distribu-
tion function (32). The second term in Eq. (A6) for the gen-
erating function does not possess a branch cut at z> 1 [this is
an artifact of the saddle-point approximation applied to Eq.
(A3)]. Therefore, we cannot get the result by applying Eq.
(31) to the generating function (A6). Instead, we have to use
a more general expression (A2), which still possesses a
branch cut. Performing the analytic continuation of the inte-

Fz) = We[ (A6)
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grand in Eq. (A2) and using Eq. (31), we obtain the correc-
tion to the distribution function in the form

2Wef‘i dur®[T - (2 = T)u*]cos(2ueL)
1)y NU-D(1-u®)(T-u?)

SP(T) =

(A7)

This integral contains rapidly oscillating function and we
calculate it using the same method as above. We replace
cos(2ueL) by exponential, then deform the contour as shown
in Fig. 9(b), and estimate the integral in the vicinity of u
=\T by changing variable u=\T+iw. The result of this cal-
culation is

V2We Sil’l(ZEL\/} +a/4) (7 dw

SP(T) = - —__ 2elLw
(7) 77'2T1/4(1—T) 0 \’/;e

We sin(2&LV7"+ l4)
=- — —, (A8)
72T(1 = T)VeL

Combining Eq. (A8) with the main part Eq. (32), we have
the following distribution function:

P(T)=We

K(T) = E(T)  sin(2eL\NT + m/4) (49)
2T -T 72T —1)eL |

The correction to the distribution function [Eq. (A8)] is
not integrable at the point 7=1. This prevents us from cal-
culating corrections to conductance and higher moments us-
ing Eq. (A9). In fact, result (A9) is not accurate when T is
close to 1. Indeed, expanding the integrand in Eq. (A7) near
u=v’?, we have neglected the variation of the factor (1
—u?)32. When T approaches 1, this neglect is not justified
because the singularity at u=1 gets close to the integration
contour [see Fig. 9(b)]. The integral in Eq. (A8) converges at
w~1/€eL. When typical values of w are of the order of 1
—\T our approach fails. Thus we have to impose the condi-
tion

1
1-T> —

- (A10)

for applicability of result (A9). This condition also ensures
that the oscillating correction is smaller than the main term
in Eq. (A9).

APPENDIX B: DERIVATION OF THE TWO-LOOP BETA
FUNCTION FOR RANDOM POTENTIAL

1. Model and universality

In this appendix we derive the RG equations for random
potential disorder. The beta function is universal when it is
invariant under small changes in the definition of the cou-
pling constants. Generally, the latter depends on details of
the high-energy part of the spectrum (where the dispersion is
no longer linear) and hence on the way the ultraviolet cutoff
of the effective low-energy theory is imposed. Therefore, the
invariance of the beta function with respect to uncertainty in
the definition of couplings is equivalent to its independence
on the RG regularization scheme.
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When only one coupling constant is present in the model,
the beta function is universal within the two-loop accuracy.
Indeed, in this case a small change in a coupling constant
would only change the three-loop and higher terms in the
beta function. In order to see this, one can assume that the
beta function for some coupling « is known within the three-
loop accuracy,

Jda
dln A

=Ad’ +Ba’ + Ca?, (B1)

with the coefficients A, B, and C in the first-, second-, and
third-loop terms, respectively. Introducing a new coupling o’

through
o' =a+Ma*+Nd, (B2)

and using Eq. (B1), one finds the RG equation for this new
coupling in the form

da’

dln A

=Aa’’+Ba'* +(C-AM?*+ AN - BM)a'*.

(B3)

One sees that the coefficients of the first and second terms of
the new beta function remain unchanged, whereas the coef-
ficient in the last term (third loop) depends on the definition
of a'.

When the model contains more than one coupling con-
stant, already the two-loop RG equations are in general non-
universal. This can be seen from

Ja; ki ki
=AY aqpa;+ B! " oy, B4
Jln A i Gk i k&1 %m ( )
af = a;+ M} oy, (B5)
(96!1-, _Akl ’ f+(Bklm+2Aklem_2Aijlm) roro
dImA i Ay i M i) o,

(B6)

In our model, the RG equation for « is independent of en-
ergy €; therefore we can retain the two-loop term. On the
other hand, the RG equation for energy involves both € and
ay; hence, we only keep the one-loop term in the correspond-
ing scaling function.

We choose the dimensional regularization (with the mini-
mal subtraction) as our RG scheme:’* we consider the action
in d=2-¢ dimensions (g >0) and send € — 0 at the end. The
model is characterized by two constants, a mass parameter m
which corresponds to the imaginary (Matsubara) energy and
the coupling constant «, which corresponds to the mean qua-
dratic potential disorder strength [Eq. (40)].

The renormalized action of the model (known as the mas-
sive Gross-Neveu model) has the form

Sely]= f X[ o V i+ mpp+ wagu (Y)*]. (B7)

Here m=—ie and we have introduced the mass scale u to
keep the coupling «, dimensionless. The wave function ¢ is
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a d-dimensional spinor in the left-/right-moving space and o
is a vector of o, which are the generators of the
d-dimensional Clifford algebra, obeying

T 0+ 050, =28,4l, > o,0,=dl. (B8)

Our goal is to derive the RG equations for a and m, which
determine the evolution of these two parameters upon in-
creasing the (infrared) scale of the model. This derivation
closely follows that in Refs. 75 and 76, where a related mass-
less theory was considered.

We will start with the one-loop calculation since the cor-
responding integrals and counterterms will be required for
the two-loop calculation as well. As discussed in Sec. V, we
will discard diagrams with closed fermionic loops, as is ap-
propriate for a system with quenched disorder. (Alterna-
tively, the same result is obtained by using the replica trick or
the supersymmetry.)

The quadratic (clean) part of the action yields the bare
fermion propagator (solid line in diagrams),

—op-im

. B9
pr+m? (B9)

G"p)=(im-op)' =

Dashed lines in the diagrams denote the disorder correlator

rO=27utal ® 1. (B10)

In order to keep track of the two-sided algebra structure, we
draw the diagrams for vertex corrections with an upper and
lower electron line.

The counterterms are denoted with crossed circles. The
vertex counterterm is

Ol =2’ dayl ® 1 (BI11)

and the self-energy (mass and velocity) counterterm is

82 = (—iém+ dvyop). (B12)

Below we will calculate one- and two-loop diagrams for the
self-energy and the vertex amplitude and construct the cor-
responding counterterms using the minimal subtraction
scheme.

The divergent parts of all the integrals appear with the
factor ¢, or ci, where

Co= (477)8/2_1<5>8<1 - gs)

and C=0.577 is the Euler-Mascheroni constant.

(B13)

2. One-loop RG equations

We calculate the one-loop integrals with the accuracy
O(e) because this precision is needed for the two-loop cal-
culation later. The following integrals appear in the one-loop
diagrams of Fig. 4 (we include u® to make the integrals
dimensionless):

& 1 2
o f P CSL: + 0(8):|, (B14)
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2-¢ 1
po | 2Pk {—+O(s)], (B15)
&

C
@m> (p? +m?)? T

. d2—sp m2
K (277_)2—3 (pZ + m2)

s=c[1+0(e)]. (B16)

All other integrals appearing in the one-loop diagrams are
zero because of isotropy.

Only two diagrams [Figs. 4(a) and 4(b)] give the first-loop
corrections to the self-energy and vertex, the third and fourth
diagrams [Figs. 4(c) and 4(d)] cancel each other [up to
O(1)]. More specifically, diagram (c) on its own,

(©) =4ﬂ2aéc{1 ®1- éE T ® aa] +0(s), (B17)

would generate a new algebraic structure (corresponding to a
new disorder—random vector potential). We have to calcu-
late it together with its crossed companion, diagram (d),

(d) =4ﬂ2agc€[11 @1+ é}) o, ® a'a] +0(g). (B18)

In combination of the two diagrams, the new structure is
canceled. This happens also in higher loops, where all new
algebraic structures always cancel. We therefore combine
diagrams with their crossed versions directly.

The one-loop corrections read

d*®p 1
(27T)2_8[) p2 + mz

S p=(a)=- 2m'ma0,ufj

=—27Timaoca[§+0(s)}, (B19)

W] _y=2 % (b) +(c) + (d)

dZ—a
= 877'2a%0'aa'ﬁ,u,zgf P PaPp

(271_)2—8 (p2 + m2)2

d2—sp m2
—8772 2 28f 1
o (2,”_)2—5 (pz + m2)2 + 0( )

= 1677201(2),ugc£[£ + (’)(1)} ) (B20)

The one-loop correction to the self-energy is independent of
external momenta, and therefore, there is no one-loop correc-
tion to the velocity. Thus no rescaling of the fields is re-
quired.

Within the minimal subtraction scheme, the divergences
in Egs. (B19) and (B20) are canceled by the following one-
loop counterterms:

2

me, 2a
UM D)
e e

(B21)

yielding the one-loop RG equations
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FIG. 10. Two-loop diagrams for the [(a)—(e)] self-energy and [(f)—(t)] vertex corrections.
day _, o _9€ _ 2 [ 4'pd’q PadpP + 9P+ 4),
=2, = €, (B22) 24 (2, 22, 2 2,
dln A dln A Qm)™ (p*+m*)(g=+m*)[(p + q)" + m*]
8,0 8Osy + 00103, — Ol
2
with A being the real-space running scale (A~ ') and en- = C£|:_ Zﬂszﬂv B agsﬁﬂ uf W} +0(1),
ergy e=im.
(B27)
3. Second loop . ddp 4’ q mzp Lp
Let us now turn to the second-loop calculation. In addi- Qm* (p* +mH) (g +mH)[(p + q)> + m*]?
tion to the integrals appearing in the one-loop diagrams, the 1
further two single integrals appear in the two-loop calcula- = aﬁci[— + O(l)], (B23)
tion, €
2 [ d'pd’q m’padp

d2—sp m4
(277)2—8 (p2 + m2)3

&

= cs[% + O(S):| , (B23)

. d2—sp mzpapﬁ 1
f (277)2—8 (P2 + m2)3 = 504;&6 4 +0(e) |. (B24)

The two-loop calculation will only be performed up to O(1)
since only the divergent parts of the diagrams are required
for deriving the RG equations.

The double integrals that appear in the calculation of the
second-loop diagrams can be reduced (by linear combination
and/or relabeling variables) to the following set:

2 [ dpdlq PoPp
Qm* (p*+mA)(g* +mA)[(p +9)* + m*]

2 1
= a,30§[;+;+(9(1)}, (B25)
2e ddpddq paqﬁ
Q@ (p*+m*) (g +m*)[(p +q)* + m’]
1 1
2

= -—=-—+0()|, B26

aBC8|: 82 De + ( )i| ( )

Qm>* (p* +m*)(q* + m*)[(p + q)* + m*]
1
2
= -—+0Q1)|.
aﬁcs[ e ( ):|
The integrals of the same type as Egs. (B25)—(B29) but con-

taining no momenta in the numerator of an integrand are not
divergent [~O(1)].

(B29)

a. Self-energy

Let us calculate corrections to the self-energy in two-loop
order (including diagrams with the one-loop counterterms).
The relevant diagrams are shown in Figs. 10(a)-10(e). The
divergent parts of these diagrams and the integrals used in
their calculation are given in Table I. The divergent part of
the self-energy correction is

3i maé

2(2)|p=0 = __2

> e (B30)

The divergence in 3 is compensated by the second-order
mass counterterm,

2

SO = 3mag

= (B31)

Electron velocity v also acquires a correction in two-loop
order. This correction appears because the second-order self-
energy depends on the external momentum. Expanding 3.
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TABLE I. Two-loop diagrams. The first column contains com-
binatorial factors and diagram labels according to Fig. 10. The in-
tegrals relevant for the calculation of a given diagram are listed in
the second column. The third column contains the divergent part of
the diagram.

Diagram Integrals used Result
Self-energy (in units 4m%imagc?/e?)
(a) (B14)(B15), (B14)(B16) —4+4e
(b) (B25), (B26) -2

Self-energy with counterterms (in units 47 imagc,/4me?)

(c) (B15) 4-4e
(d) (B14) 8
Velocity
(e) (B27), (B23) —4mopaici/e
Vertex (in units 8773&/8,(1,66‘2/82)

2% (f) (B15)2, (B15)(B16) 8—-8s—(8¢)
2X(g) (B27), (B29) —4+4e+(4¢)
4 (h) (B27), (B29) 8—8e—(8¢)
4 (i) (B14)(B23), (B14)(B24) —(8e)

() (B15)%, (B15)(B16) 4-4g—(4¢)
4 (k) (B29) —(16¢)
2% (1) (B29) 0
2 X (m) (B14)(B23), (B14)(B24) 0

(n) (B15)? 4-2¢
2% (0) (B27) —4+4e

Vertex with counterterms (in units 87° agu®c,/4me?)

2% (p) (B15) —16+8s+(8¢)
2X(q) (B15) -16+8e+(8¢)
4 X (1) (B23), (B24) (8e)

2 X (s) (B16) (16g)

2 X (t) (B23), (B24) 0

in small external momentum we obtain the diagram in Fig.
10(e). It equals to

J%(p)
ap

= 0'p4772a(2)cz{— i + O(l)].

(B32)

(e)=p

p=0

This divergence is compensated by the velocity counterterm,

2

Q
vy = ﬁ. (B33)
b. Vertex

The two-loop vertex diagrams are shown in Figs.
10(f)-10(t). The values of these diagrams are given in the
bottom part of Table I along with the integrals used in their
calculation. According to Refs. 75 and 76, one can disregard
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the mass in the numerator of electron propagator (B9). In
order to check this fact, we keep the corresponding parts in
angular brackets in Table I. Indeed, these contributions sum
up to zero.

The divergent part of the two-loop vertex correction is

( 16¢2  32c, 2c§>
20¢, L2

1"(2) » =8773 3 & _
|p_0 %ok g2 4qre? e

8§ 1
=7T,LL€(I(3)<—;+—). (B34)

&€

This divergence is canceled by the two-loop vertex counter-

term,
4 1
(5(2)0(0 = a(3)< Y ) .

-— B35
&2 2e ( )

4. RG equations

Now we collect the one and two-loop counterterms and
compose the bare action of the model,

Sp= f d*x[ g V g + mpigig + waop(Wpip)*]

2 2
=fd2‘sx[<l +@>Jjav 1//+m<1 —%+%)z}¢/
4e €

2&?

2 407 )\ -
+m0m(1 -ﬂ+—2°——0)(¢¢;)2]. (B36)
e e 2¢e
Parameters of this action are
2
O,
llf3=l/f(1 +—°>, (B37)
8e
2 2
ay 3o 0‘0)
=m|l-—+—-—1, B38
e m( e 2&* de ( )
20 4ot P
aOB=a0,u8<1——0+—20——0). (B39)
€ € €

By construction, the bare couplings myg and «yz do not de-
pend on the scale u,

(90(03 _ (9mB (B40)

dlnu (9111,LL: '

This determines scaling behavior of renormalized (observ-
able) couplings,

day 3
&ln,u__sao 20420, (B41)
am mag
=—may— —> (B42)
dlnpu 2

We express the result in the form of real-space scaling with
A~ ', This amounts to changing the sign of the deriva-
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tives. Taking the limit e —0 and replacing mass by the en-
ergy (m=-ie), we finally obtain the RG equations in the
form

(96(0
amA=2%+2@, (B43)
de a?))
= +— . B44
dln A €<a0 2 ( )

As discussed above [see Egs. (B4)—(B6)], the second-loop
term in the RG equation for energy (B44) is not universal.
This is easily demonstrated with the help of a small redefi-
nition of «,

a)=ag+Maj, (B45)

06 ( ' a(,)2 M 12)
=€lay+— Moy, |.
dln A L) 0

(B46)

On the contrary, the two-loop term in the beta function for «j
remains unchanged as the RG equation (B43), being dimen-
sionless, cannot contain €. In the main text, we use only
universal one-loop part of the energy beta function.

APPENDIX C: ANALYSIS OF ONE-LOOP RG EQUATIONS

In this appendix we will analyze the set of coupled RG
equations [Egs. (78)—(80)] assuming that all three couplings
are nonzero. We are going to show that, at sufficiently low
energy e€<v, the parameter ¢, always becomes dominant
during renormalization. The zero-energy mean free path is
always set by the condition a(ly)=1.

In order to prove the above statement, consider the func-
tion

)

al+az

-%mmL+%y (C1)

Since initial values of the couplings are small, we have
Q(A=a)> 1. Taking the derivative with respect to In A and
applying RG equations [Egs. (78)—(80)], we see that Q al-
ways increases in the course of renormalization,

110 ao(aL—?)aZ)z
=— +

dlnA 4 a, +a,

aa +7a;

>0. (C2)

4 a +a,

Suppose RG stops at ay(ly) ~ 1. Then we have the following
estimate for the final values of &, and a,:

1

a) +a,

= Q(ly) > Qa) > 1. (C3)

A=l

An alternative assumption that « always remains small and
RG stops due to large values of the other couplings implies
Q(lp)~1 that is incompatible with the inequality Q(l)
>Q(a)>1.

Once we have established that a; becomes dominant pa-
rameter, we can approximately solve the RG equations. In
order to do that, it is convenient to introduce new couplings,
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a =a; +a, (c4)

w=a, -2a,. (C5)

In terms of these couplings the one-loop RG equations take
the form

&(irC:OA - 20[3 +2a0a; + §(2a1 +a))(a;—a), (C6)
O g+ S+ 2 - ), (C)
ai:zA =4 - g(“l +2a)(a - @),  (C8)

aﬁxzd%+“ﬁ (C9)

The coupling ¢, grows upon the renormalization. When it
becomes dominant (this always happens as proven above),
a also increases while @, decreases. This allows us to ne-
glect a, in the above equations. After such a reduction we
have the second-order system of differential equations,

(9&'0 4

amA=2%+2%%+§ﬁ, (C10)
0&1 2
amA:z%m+§ﬁ. (C11)

It is uniform and does not involve the variable A explicitly.
These symmetries yield the following integral of motion for
the reduced RG flow:

R=

5 3
2¥~—mm%+a9—?nm. (C12)

(e3] 36
For any small initial values of «, and a; we have R>1.
Substituting ay(ly)=1 in Eq. (C12) we see that the coupling
a;(lp) ~ 1/R is still small at this scale. In particular, if bare
values of the couplings are of the same order a~ ay~ «;
then at the length [, we have

1

a’l'f'az A:lo

8 1
=R=—ln—> 1. (C13)
9 «

Results of the numerical simulation of the full system [Egs.
(C6)—(C8)] are in a good agreement with the above estimate.
Calculation of the mean free path is a much more subtle
problem. From the dimensional analysis of the RG equations

we conclude that
Iy 1

InC ~ =
a (%

(C14)

for the case when all initial couplings are of the same order
a. The coefficient in the above relation is a number of order
1 dependent on the ratio of actual initial values of the cou-
plings.
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