
Shock waves on current-carrying metal thin films

R. Mark Bradley
Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA

�Received 10 November 2008; published 2 February 2009�

It is demonstrated that an electrical current can produce abrupt macroscopic steps that retain their shape as
they propagate on the surface of a miscut single-crystal metal thin film. A simple kinematic theory is developed
that shows why these shock waves form, and that gives their velocity. We then derive an approximate equation
of motion that allows us to study the structure and interactions of shocks that propagate along the applied
electric field, as well as the propagation and structure of oblique shocks. If the surface height is independent of
the transverse coordinate, the approximate equation of motion reduces to the Burgers equation. In general, the
equation of motion is the dissipative Zabolotskaya-Khokhlov equation.
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I. INTRODUCTION

When an electrical current passes through a conducting
solid, collisions between the conduction electrons and the
atoms at the surface lead to drift of these atoms. This phe-
nomenon, which is known as surface electromigration
�SEM�, can cause the surface of a current-carrying solid to
move and deform.1–24 The free surface of a conducting solid
moves in response to the electrical current flowing through
the bulk, in much the same way that flow in the bulk of a
fluid affects the motion of its surface. However, this analogy
is not perfect: the boundary conditions are very different in
the two problems and, due to its crystal structure, a conduct-
ing solid is anisotropic.

Two complementary approaches are used to model the
motion of a free surface brought about by SEM. If the sur-
face is vicinal and the temperature of the solid T is below the
roughening temperature TR, step flow models are employed
�see, for example, Refs. 1–6�. In this type of model, the
electrical current is taken to be independent of position. Step
flow models are able to account for many aspects of the
SEM-induced formation of step bunches on a vicinal surface
of silicon.1–6 On the other hand, if the surface of the conduc-
tor is far from being planar, the spatial variation in the elec-
trical current must be taken into account. In these circum-
stances, a coarse-grained continuum description is used in
which the surface height h=h�x ,y , t� and the mobility tensor
of the surface atoms Mij =Mij��h� are assumed to be con-
tinuous functions of their arguments.7–24 Mahadevan and
co-workers17,18 used a continuum model to explain the gen-
esis of the slit-shaped voids that can lead to electrical failure
of single-crystal metal lines, for example. In general, the
temperature T must be above the roughening temperature TR
if a continuum description is to be applied since, for T�TR,
facets may form on the surface of the conductor.

The continuum description of SEM leads to very rich
nonlinear surface dynamics. The planar surface of a current-
carrying single-crystal miscut film is either linearly stable or
unstable, depending on the Miller indices of the surface. Let
the z axis be normal to the undisturbed planar free surface of
the conducting film and take the applied electric field to be in
the x direction. In prior work on this problem, the surface
height h was taken to be independent of the transverse coor-

dinate y, i.e., the surface disturbance was assumed to be one
dimensional.7,11 If there is an instability, waves are formed
with a wavelength that is determined by the competition be-
tween the stabilizing effect of surface diffusion and the de-
stabilizing effect of the slope dependence of the adatom mo-
bility. At first, the amplitude of the waves grows
exponentially with time but as time passes nonlinear effects
become increasingly important. The wave amplitude then
starts to saturate and the wavelength begins to grow.7,11

Now consider the stable regime. If the amplitude of the
initial disturbance is small enough, the equations of motion
can be linearized and the amplitude of each Fourier compo-
nent of the surface height simply decays exponentially in
time.7,11 The situation is more complex, however, if the am-
plitude of the initial disturbance is large enough for nonlinear
effects to be appreciable. We will show that in this case
abrupt macroscopic steps can develop on the surface, and
that these remain their form as they propagate. Such a sur-
face disturbance is called a shock wave.25

Shock waves are not to be confused with the step bunches
that can form on a vicinal silicon surface.26,27 It is true that
surface electromigration is the physical mechanism respon-
sible for the development of both shock waves and step
bunches. However, shock waves form on stable surfaces
above the roughening temperature; in contrast, step bunches
are observed on unstable surfaces below the roughening tem-
perature. Shock wave formation is an inherently nonlinear
phenomenon and the leading-order nonlinearity comes from
spatial variations in the electrical current. Step bunches, on
the other hand, are the result of a linear instability and the
electrical current is taken to be uniform in theories of their
genesis.

In this paper, we will study the formation, structure, and
interaction of shock waves on the surface of a current-
carrying single-crystal miscut metal film.28 To begin, we ex-
tend past work on the linear stability of the free surface to the
general case in which the surface height h depends on both x
and y. We then turn to the problem of shock formation, and
so restrict our attention to the time evolution of stable sur-
faces. Initially, we develop a simple kinematic theory of one-
dimensional shocks. This theory shows why shocks form and
yields their velocity but reveals nothing about the internal
structure of a shock because it omits smoothing effects. We
then derive an approximate equation of motion that includes
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smoothing effects, and that applies when h varies slowly
with y. This equation allows us to study the structure of
one-dimensional shocks and their interactions, as well as the
propagation and structure of oblique shocks, i.e., shocks
whose direction of propagation makes a small angle with the
x axis. If the surface height is independent of y, the approxi-
mate equation of motion reduces to the much-studied Bur-
gers equation. The Burgers equation is the simplest partial
differential equation that develops shocks in one dimension,
is exactly solvable, and arises in many fields, including non-
linear acoustics, turbulence, thin-film deposition, and
cosmology.29 In the general case in which h depends on both
x and y, the equation of motion is the dissipative
Zabolotskaya-Khokhlov �DZK� equation,30–32 which was
first studied in nonlinear acoustics.

II. EQUATIONS OF MOTION

Consider a single-crystal metal film of uniform thickness
h0 deposited on the plane surface of an insulating substrate.
We take the z axis to be normal to the substrate surface and
locate the origin in this plane. The temperature T is well
below the roughening temperature TR. We assume that the
free surface of the film is miscut with equally spaced atomic
steps parallel to the y direction, and that the crystal structure
is invariant under the transformation y→−y.

A potential difference is now applied across the film and
the temperature is raised above the roughening temperature.
The electric field within the film is E0x̂, where E0 is a posi-
tive constant. Next, the upper surface of the film is disturbed.
Since T�TR, we may use a continuum description of the
film in which the height of the film’s surface above the sub-
strate h is a continuous function of x, y, and t �Fig. 1�. The
free surface of the film will evolve in the course of time due
to the effects of SEM and surface self-diffusion. For the sake
of simplicity, we will assume that the applied current is held
fixed and that it is high enough that the effects of SEM are
much more important than those of capillarity. We will also
assume that the mobility of the metal atoms is negligible at
the metal-insulator interface so that the form of that interface
remains planar for all time.

Let the outward-pointing unit normal to the upper film
surface be n̂. The electrical potential �=��x ,y ,z , t� satisfies
the Laplace equation

�2� = 0 �1�

within the film,33 and is subject to the boundary condition
n̂ ·��=0 on the upper surface and ẑ ·��=0 on the lower.
Explicitly, we have

�z�x,y,h,t� = hx�x�x,y,h,t� + hy�y�x,y,h,t� , �2�

and

�z�x,y,0,t� = 0. �3�

�fx��f /�x for an arbitrary function f , and the subscripts y, z,
and t are defined analogously.� If the initial disturbance is
localized in the x direction, we also have

h�x,y,t� → h0 �4�

for x→ �� and, furthermore,

�x�x,y,z,t� → − E0, �5�

and

�y�x,y,z,t� → 0 �6�

for x→ ��, arbitrary y, and 0�z�h0.
An adatom at the free surface of the metal film is subject

to the force F=qE, where q is the effective charge and
E=−�� is the electric field. As a result, the atom drifts
along the surface. Provided that the applied current is not
extremely large, the atomic drift velocity is a linear function
of the force. �This is certainly the case in all experiments
performed to date.� If the metal were isotropic, the atom’s
drift velocity v would simply be proportional to F, and the
constant of proportionality would be the mobility. However,
since the metal is a single crystal, the surface is anisotropic,
and the mobility is a second-rank tensor Mij which depends
on the surface normal n̂.

Let R�x ,y , t��xx̂+yŷ+h�x ,y , t�ẑ be an arbitrary point on
the free surface of the metal. The vectors

Rx �
�R

�x
= x̂ + hxẑ �7�

and

Ry �
�R

�y
= ŷ + hyẑ �8�

form a basis for the plane tangent to the surface at R, and so
a generic vector A in the tangent plane may be written A
=A1Rx+A2Ry. The atomic drift velocity v=v1Rx+v2Ry de-
pends linearly on the force F=F1Rx+F2Ry, i.e., vi=MijFj,
where the Einstein convention has been employed. The sur-
face atomic current is J=�sv, where �s is the number of
mobile surface atoms per unit area.

We assumed that the crystal structure is unchanged by the
reflection y→−y. This means that the surface atomic current
on the unperturbed surface cannot have a y component, and
hence M21�0�=0. Also, because the adatoms must drift in the
direction of the applied force, M11�0� must be positive.
These observations will be needed later in the paper.

At the arbitrary surface point R�x ,y , t�, the electric field
E=−��=−��xx̂+�yŷ+�zẑ� is tangent to the surface, and

FIG. 1. The current-carrying metal thin film. The height of the
free surface above the substrate, h, depends on x, y, and t. The
outward-pointing unit normal to the free surface is n̂, and the elec-
tric field far from the localized disturbance is E0=E0x̂.
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so E is a linear combination of Rx and Ry. Explicitly, at the
surface

− E =
1

g
��1 + hy

2��x − hxhy�y + hx�z�Rx

+
1

g
��1 + hx

2��y − hxhy�x + hy�z�Ry , �9�

where g=1+hx
2+hy

2 is the determinant of the metric tensor.
Since �=��x ,y ,h�x ,y , t� , t� at the surface, the total deriva-
tive of � with respect to x is �x�=�x+�zhx. Similarly,
�y�=�y +�zhy. In terms of these total derivatives, Eq. �9� is

− E =
1

g
��1 + hy

2��x� − hxhy�y��Rx

+
1

g
��1 + hx

2��y� − hxhy�x��Ry . �10�

Because Ji=�svi=�sMijFj =q�sMijEj, the components of the
surface atomic current are

J1 = −
q�s

g
�M11��1 + hy

2��x� − hxhy�y��

+ M12��1 + hx
2��y� − hxhy�x��� , �11�

and

J2 = −
q�s

g
�M21��1 + hy

2��x� − hxhy�y��

+ M22��1 + hx
2��y� − hxhy�x��� . �12�

If there is a net flow of atoms into or out of a surface
element, the surface element will move. The sign of the nor-
mal velocity vn will be chosen so that it is positive if the
surface element moves in the +n̂ direction. Explicitly,

vn = − 	 div J , �13�

where 	 is the atomic volume and div J is the surface
divergence34 of the atomic current. Since the free surface of
the metal film is in general curved, div J is not simply
�J1 /�x+�J2 /�y; instead

div J =
1
�g
	 �

�x
��gJ1� +

�

�y
��gJ2�
 . �14�

Combining Eqs. �11�–�14� with the result

ht = �gvn, �15�

we obtain the equation of motion for the free surface:

1

q�s	

�h

�t
= �x� 1

�g
�M11��1 + hy

2��x − hxhy�y� + M12��1 + hx
2��y

− hxhy�x���� + �y� 1
�g

�M21��1 + hy
2��x − hxhy�y�

+ M22��1 + hx
2��y − hxhy�x���� . �16�

On the right-hand side of this equation, �

=��x ,y ,h�x ,y , t� , t�, the total derivative with respect to x is
denoted by �x, and �y is similarly defined. We remind the
reader that the components of the mobility tensor Mij depend
on n̂, or, equivalently, Mij =Mij�hx ,hy�. Together, Eqs.
�1�–�6� and �16� completely describe the nonlinear dynamics
of the film surface. These equations reduce to those studied
in Ref. 22 if the anisotropy of the mobility is negligible.

III. LINEARIZED EQUATIONS OF MOTION

The equations of motion simplify considerably if the ini-
tial disturbance of the free surface of the metal film is small
enough for the equations of motion to be linearized. To lin-
earize, we put h=h0+h1 and �=−E0x+
, and work to first
order in the small quantities h1 and 
. Since the crystal struc-
ture is invariant under the reflection y→−y, the equations of
motion must be invariant under that transformation as well.
It follows from Eq. �16� that

M12�0� + M21�0� = 0, �17�

M11,2�0� + M21,1�0� = 0, �18�

and

1

q�s	
h1t = M11�0�
xx + M22�0�
yy − E0M11,1�0�h1xx

− E0M21,2�0�h1yy �19�

for z=h0. �Here Mij,1�hx ,hy� denotes the partial derivative of
Mij�hx ,hy� with respect to hx and Mij,2�hx ,hy� is defined
analogously.� Equations �1�–�3� yield


z = − E0h1x �20�

for z=h0,


z = 0 �21�

for z=0, and

�2
 = 0 �22�

for 0�z�h0.
We seek solutions to the linearized equations of motion

�Eqs. �19�–�22�� with

h1 = h10e
i�k·r−�t�, �23�

and


 = 
0�z�ei�k·r−�t�, �24�

where r�xx̂+yŷ, k�kxx̂+kyŷ, �=��k�, and h10 is a con-
stant. The Laplace equation �Eq. �22�� shows that 
0zz
−k2
0=0 for 0�z�h0. Imposing the boundary condition
�21�, we see that 
0=A cosh�kz�, where A is an arbitrary
constant. Equation �20� gives

kA sinh�h0k� = − ikxE0h10. �25�

Inserting Eqs. �23� and �24� into Eq. �19� and using Eq. �25�,
we obtain the dispersion relation
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−
i�

q�s	E0
=

ikx coth�h0k�
k

�M11�0�kx
2 + M22�0�ky

2�

+ M11,1�0�kx
2 + M21,2�0�ky

2. �26�

Schimschak and Krug11 linearized the equations of mo-
tion for the one-dimensional case in which h is independent
of the traverse coordinate y. The dispersion relation �26� re-
duces to their result for ky =0, as it should. As first noted by
Krug and co-workers,7,11 if qM11,1�0� is positive, there is an
instability which leads to the growth of surface ripples with
wave vector parallel to the applied electric field. The effects
of surface self-diffusion must be taken into account if the
wavelength of the fastest growing mode is to be determined.

Equation �26� shows that, even if qM11,1�0� is negative,
there is an instability if qM21,2�0��0. This instability leads
to the growth of surface ripples with wave vector perpen-
dicular to the applied electric field. To understand the origin
of this instability, consider a sinusoidal perturbation to the
free surface with wave vector k=kyŷ and suppose that
qM21,2�0� is positive. Neglecting the spatial variation in the
electric field and working to first order in the perturbation,
Eqs. �11� and �12� show that the surface atomic current is

J = q�sM11�0�E0x̂ + q�sM21,2�0�E0hyRy . �27�

The first term on the right-hand side of Eq. �27� is indepen-
dent of position and so does not affect the topography of the
surface. On the other hand, since J2 has the same sign as hy,
mass flows from the troughs to the crests of the sinusoidal
disturbance. The disturbance therefore grows in amplitude as
time passes, which means that there is an instability.

In this paper, we will restrict our attention to the time
evolution of a stable surface. We will therefore assume that
both qM11,1�0� and qM21,2�0� are negative.

IV. SHOCK WAVES

In this section, we will study shock waves on the metal
film’s free surface. Shock wave formation is an intrinsically
nonlinear phenomenon, and so we must go beyond the linear
theory we just developed.

A. Kinematic theory of one-dimensional shocks

We begin our analysis by developing a simple kinematic
theory of one-dimensional shocks, i.e., shocks with a height
h that is independent of y. This theory shows why shocks
form and yields their velocity. Our treatment will be brief; a
comprehensive discussion of the general kinematic theory of
shock waves may be found in Ref. 25.

Suppose the film thickness varies very slowly with x. The
surface atomic current J=J1 on the film’s free surface in a
region of nearly uniform thickness h is approximately
q�sM11�0�E, where E is the electric field strength in the re-
gion. The continuity equation for charge implies that E0h0
=Eh, and so

J = J�h� = q�sM11�0�E0h0/h . �28�

Since mass is conserved, ht+	Jx=0 or

ht + c�h�hx = 0, �29�

where c�h��	J��h�=−q�s	M11�0�E0h0 /h2.
The velocity of a point on the film’s surface of height h is

c�h�. For the sake of specificity, we will assume that the
effective charge q is negative for the remainder of this sub-
section; this assumption is valid for metals. The velocity c�h�
is then a decreasing function of h because M11�0� is positive.
Equation �29� therefore predicts that a hump on the surface
changes shape as it propagates—the right side of the hump
broadens while the left side of the hump becomes steeper
�see Fig. 2 of Ref. 24�. Ultimately, the wave “breaks,” ren-
dering h�x , t� a triple-valued function for a range of x values.

In reality, the surface atomic current J does not depend on
h alone: Eq. �11� shows that it also depends on the spatial
derivatives of h and 
. Equation �29� does not apply in re-
gions in which h varies rapidly with x and, in fact, smoothing
terms omitted in Eq. �28� ensure that breaking never occurs.
We will return to this point later in the paper.

In a region in which h is an increasing function of x, a
height discontinuity or shock will form in the limit in which
the smoothing terms are vanishingly small.25 Consider a
shock that separates two regions in which h is constant. Let
hl �hr� be the film thickness to the left �right� of the shock.
For a shock, we must have hl�hr. The shock velocity is

U0 = 	
J�hl� − J�hr�

hl − hr
�30�

in general.25 In our problem, Eq. �28� applies and Eq. �30�
becomes

U0 = −
q�s	M11�0�E0h0

hr hl
= c0

h0
2

hr hl
, �31�

where c0�c�h0�=−q�s	M11�0�E0 /h0�0 is the phase veloc-
ity of surface waves propagating in the x direction in the
limit of vanishing amplitude and wave number.11,35

As one would expect a priori, the shock velocity U0 is
proportional to q, M11�0�, and E0. Let �h���hr+hl� /2 be
the average height and �h�hr−hl be the height discontinu-
ity at the shock. Then

U0 = c0
h0

2

�h�2 −
1

4
��h�2

, �32�

which shows that U0 is an increasing function of �h and a
decreasing function of �h�.

B. Asymptotic analysis

The theory of one-dimensional shocks developed in Sec.
IV A reveals nothing about the structure of a shock when
smoothing effects are taken into account and does not apply
when h depends upon the transverse coordinate y. We will
now develop an approximate equation of motion which in-
cludes smoothing effects, and that applies when h varies
slowly with y. This equation will allow us to study the struc-
ture of one-dimensional shocks and their interactions, as well
as the propagation and structure of oblique shocks.
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Consider the propagation of a localized disturbance with
characteristic amplitude a that has characteristic widths lx
and ly in the x and y directions, respectively. We wish to
study the limit in which the amplitude is small, and in which
the height h varies slowly with x and even more slowly with
y. To do so, we will use multiple scale asymptotic analysis.36

Put h=h0+a, where =�x ,y , t� is of order unity. We will
study the limit in which ��a /h0, ��h0 / lx, and �� lx / ly are
all small. More precisely, we shall consider the limit in
which �, �, and � tend to zero but � /� and �1/2 /� remain
finite and nonzero. It is in this limit that the effects of non-
linearity, dissipation, and diffraction balance.

We will assume that M11�0� and M22�0� are distinct. The
special case in which these two components of the mobility
tensor happen to coincide must be treated separately and is
beyond the scope of this paper. We also note that, since
M21�0�=0, Eq. �17� implies that M12�0� vanishes.

To simplify the description of the problem, we
introduce the dimensionless quantities x̃�x / lx, ỹ�y / ly, z̃
�z /h0, t̃��q�s	M11�0�E0 /h0lx�t, and 
̃�x̃ , ỹ , z̃ , t̃�
�
�x ,y ,z , t� / �E0lx�. �Recall that we set �=−E0x+
, so that
�
→0 for x→ ��.� Equation �1� becomes


̃z̃z̃ + �2�
̃x̃x̃ + �2
̃ỹỹ� = 0, �33�

which applies for 0� z̃�1+��x̃ , ỹ , t̃�, and all x̃, ỹ, and t̃.
The boundary conditions are


̃z̃ = 0 for z̃ = 0, �34�


̃z̃ = ��2�
̃x̃ − 1�x̃ + ��2�2
̃ỹỹ for z̃ = 1 + ��x̃, ỹ, t̃� ,

�35�

 → 0 for x̃ → � � , �36�

and


̃x̃x̂ + �
̃ỹŷ → 0 for 0 � z̃ � 1 and x̃ → � � . �37�

Finally, the equation of motion for the free surface of the film
is

�q�t̃ = �x̃� 1
�g

�M̃11��1 + �2�2�2ỹ
2���x̃
̃ − 1�

− �2�2�2x̃ỹ�ỹ
̃�

+ M̃12��1 + �2�2x̃
2���ỹ
̃ − �2�2�x̃ỹ��x̃
̃ − 1����

+ ��ỹ� 1
�g

�M̃21��1 + �2�2�2ỹ
2���x̃
̃ − 1�

− �2�2�2x̃ỹ�ỹ
̃�

+ M̃22��1 + �2�2x̃
2���ỹ
̃ − �2�2�x̃ỹ��x̃
̃ − 1���� ,

�38�

where M̃ij�hx ,hy��Mij�hx ,hy� /M11�0�, z̃=1+��x̃ , ỹ , t̃�, and
�q�q / q. Note that g=1+�2�2�x̃

2+�2ỹ
2�.

We next introduce the scaled variables

� �
�

�
�x̃ + �qt̃� , �39�

� �
�

�
��1/2

�
�ỹ , �40�

� �
�2

�
t̃ , �41�

and

� �
1

�

̃ . �42�

�� ,� , z̃� is a moving coordinate system that translates with
velocity c0 relative to the laboratory frame.

For convenience, we drop the tilde on z. Laplace’s equa-
tion becomes

�zz + �2��� + �3��� = 0, �43�

and this applies for 0�z�1+��� ,� ,��, and all �, �, and �.
In terms of the scaled variables, Eqs. �34�, �36�, and �37� are

�z = 0 for z = 0, �44�

 → 0 for � → � � , �45�

and

�� → 0 and �� → 0 for 0 � z � 1 and � → � � .

�46�

After rewriting the free-surface boundary condition �35� in
terms of the scaled variables and expanding to third order in
�, we obtain

�z + ��zz +
1

2
�22�zzz +

1

6
�33�zzzz = �3��� − �2�.

�47�

This result holds for z=1 and is valid to O��3�.
We next turn our attention to the equation of motion �38�.

We rewrite this equation in terms of the scaled variables,
expand it to second order in �, and use the fact that
M12�0�=M21�0�=0. This shows that to order � and for z=1,

� + �q�� = ��� + �M̃22�0���� − �M̃11,1�0��� + ���
2��z� ,

�48�

where M̃11,1�hx ,hy��M11,1�hx ,hy� /M11�0�. One advantage
of introducing the scaled variables is now manifest: � and �
do not appear explicitly in Eqs. �43�–�48�.

We shall now begin our analysis of the small � limit in
earnest. We assume that  and � can be expanded in powers
of � for small �: we set
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 = �
n=0

�

�nn��,�,�� , �49�

and

� = �
n=0

�

�n�n��,�,�,z� , �50�

where the n’s and �n’s are independent of �.
Our next step will be to insert the expansions �49� and

�50� into Eqs. �43�–�48�, and equate terms of the same order
in �. The goal is to find a closed partial differential equation
for 0. To accomplish this, we will need to consider terms up
to order �3.

We begin by working to zeroth order in �. To this order,
Eq. �43� becomes �0zz=0 for 0�z�1. This implies that �0z
does not depend on z. Applying Eq. �44�, we see that in fact
�0z=0 for all z, �, �, and �. We conclude that �0 depends
only on �, �, and �, and we write

�0 = �0��,�,�� . �51�

Equation �46� implies that

�0� → 0 and �0� → 0 for � → � � , �52�

while, to zeroth order in �, the boundary condition �47� gives
no new information.

Equation �45� shows that

0 → 0 for � → � � . �53�

Inserting the expansions �49� and �50� into Eq. �48� and us-
ing Eq. �51�, we find that 0�=�0��. We now integrate this
result with respect to �. Since both 0 and �0� vanish for �
→ ��, the constant of integration is zero and

0 = �0�. �54�

Working to first order in �, we see that �1 is independent
of z in much the same way as we showed that �0 does not
depend on z. We set

�1 = �1��,�,�� . �55�

Equation �47� again yields no new information. Equation of
motion �48� becomes

1� + �q0� = �1�� − M̃11,1�0�0�� + M̃22�0��0��. �56�

Our next task will be to write out the equations of motion
to order �2. Equations �43� and �51� show that

�2zz = − �0�� �57�

for 0�z�1. Integrating this with respect to z and using the
boundary condition at the metal-insulator interface �Eq.
�44��, we have �2z=−�0��z. Integrating once again and using
Eq. �54�, we obtain

�2 = �2 −
1

2
0� z2, �58�

where �2 depends only on �, �, and �. Once more, Eq. �47�
tells us nothing new.

Equating terms of order �3 in Eq. �43� yields �3zz+�1��

+�0��=0 for 0�z�1. Integrating this twice with respect to
z and applying Eqs. �44�, �51�, and �55�, we find that

�3 = �3 −
1

2
��1�� + �0���z2, �59�

where 0�z�1 and �3=�3�� ,� ,��.
We conclude our analysis by equating terms of third order

in Eq. �47�. We obtain

�3z + 0�2zz = �0�0� − 1� �60�

for z=1. This can be simplified using Eqs. �54�, �58�, and
�59�. The result is

�1�� + �0�� = 1� − 200�. �61�

Comparing this with Eq. �56�, we have

�q0� + 200� + M̃11,1�0�0�� = �M̃22�0� − 1��0��. �62�

Taking the partial with respect to � of this equation and using
Eq. �54� yields

��q0� + 200� + M̃11,1�0�0���� = �M̃22�0� − 1�0��.

�63�

The right-hand side of this equation is nonzero because we
assumed that M11�0� and M22�0� differ. Therefore, to leading
order, Eq. �63� includes the effect of transverse variations in
the film height on the dynamics.

Equation �63� is a nonlinear partial differential equation
which completely describes the dynamics of the film free
surface in the small amplitude long-wavelength limit. This
equation represents a considerable simplification of the prob-
lem: in the original formulation, �=��x ,y ,z , t� satisfies the
three-dimensional Laplace equation and is subject to bound-
ary conditions at a moving boundary, a stationary plane
boundary, and at infinity. The motion of the free surface,
which is described by the very complex equation of motion
�16�, is in turn dictated by the electrical potential at the film
surface.

Before continuing, we shall simplify our notation. Let �
denote the sign of q�M11�0�−M22�0��, and set X=��, Y

= M̃22�0�−1−1/2�, T=�, u=2��q0, and �=2�q�0. Equa-
tions �62�, �54�, and �63� become

uT + uuX − �uXX + �YY = 0, �64�

u = �X, �65�

and

�uT + uuX − �uXX�X + uYY = 0, �66�

where ��−�qM̃11,1�0� is positive because qM11,1�0� was as-
sumed to be negative.

Equation �66� includes the effects of nonlinearity, dissipa-
tion, and diffraction. The nonlinear term is present because
the electrical current is crowded in regions in which the film
thickness is reduced. The third term on the left-hand side is
dissipative while the fourth term is diffractive. These two
terms result from the crystalline anisotropy.
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At the outset of our analysis, it was assumed that the
applied electric current is large enough that the effects of
SEM are much more important than those of capillarity. A
simple dimensional analysis reveals that this assumption is
valid if lx� lE, where the electromigration length lE

���s	 / �qE0� and �s is the surface tension of the free sur-
face of the metal.

SEM does not create or destroy atoms—it simply moves
them across the surface of the solid. The total mass, which is
proportional to �−�

� �−�
� h�x ,y , t�dxdy, is therefore conserved.

This conservation law was not lost in the asymptotic analy-
sis. Indeed, Eq. �64� may be written

h1t + 	 � · J = 0, �67�

where

	J = 	− c0h0 + c0h1 −
c0

h0
h1

2 + q�s	M11,1�0�E0h1x
x̂

+ q�s	�M11�0� − M22�0��
yŷ , �68�

and we remind the reader that h1�h−h0. Equation �67� is
the local statement of mass conservation. The first three
terms on the right-hand side of Eq. �68� can be obtained from
a Taylor’s series expansion of the atomic mass current used
in Sec. IV A �see Eq. �28��. The fourth term on the right-
hand side of Eq. �68� is a smoothing term that was omitted in
the kinematic theory of one-dimensional shocks and prevents
a wave from breaking. The final term results from the varia-
tion in the film thickness h with the transverse coordinate y.

Equation �66� may be written as

�x�h1t + �x	c0h1 −
c0

h0
h1

2 + q�s	M11,1�0�E0h1x
�
+

q�s	E0

h0
�M11�0� − M22�0��h1yy = 0. �69�

Linearizing this equation and seeking solutions of the form
h1=h10 exp�i�k ·r−�t��, we find that

−
i�h0

q�s	E0kx
= iM11�0� + M11,1�0�h0kx

+ i�M22�0� − M11�0��
ky

2

kx
2 . �70�

On the other hand, for small h0kx and ky /kx, the linear dis-
persion relation �26� reduces to Eq. �70� if only terms of
order h0kx and ky

2 /kx
2 are retained. The result of the

asymptotic analysis �Eq. �66�� and the linear theory therefore
agree in the appropriate limit.

C. One-dimensional disturbances

If the initial surface height is independent of y, both h and
� will remain independent of y for all subsequent times. u
and � are then independent of Y for all T�0, and Eq. �64�
becomes

uT + uuX = �uXX, �71�

which is the Burgers equation.

The Cole-Hopf transformation37,38

u = − 2��X/� �72�

reduces the Burgers equation �Eq. �71�� to the diffusion
equation in one dimension,

�T = ��XX. �73�

This transformation therefore converts the original nonlinear
equation to an exactly solvable linear equation. The solution
to the diffusion equation in one dimension is

��X,T� =
1

�4��T
�

−�

�

��X�,0�exp�−
�X − X��2

4�T
�dX�. �74�

If u0�X��u�X ,0� is given, then

��X,0� = exp�−
1

2�
�

0

X

u0�X��dX�� �75�

is known as well. Inserting this result into Eq. �74� and using
Eq. �72�, we find that

u�X,T� =

�
−�

� X − X�

T
exp�−

1

2�
G�X,X�;T��dX�

�
−�

�

exp�−
1

2�
G�X,X�;T��dX�

, �76�

where

G�X,X�;T� � �
0

X�
u0�X��dX� +

�X − X��2

2T
. �77�

Equations �76� and �77� give the exact solution to the initial
value problem for the Burgers equation.

A great deal is known about the Burgers equation in the
�→0+ limit because it has been studied extensively as a
simplified model of turbulence. In this limit, a white-noise
initial disturbance u�X ,0� evolves into a series of line seg-
ments of slope 1 /T which meet at jump discontinuities, i.e.,
at shocks.39,40 Suppose that a shock is located at the point
X=X0 at time T. The shock’s velocity is 1

2 �u�X=X0
− ,T�

+u�X=X0
+ ,T��. The strength of the shock, which is defined to

be u�X=X0
− ,T�−u�X=X0

+ ,T�, is always positive. Different
shocks have different velocities, and so shocks can collide.
When two shocks collide, they coalesce to form a single
shock whose strength is the sum of the strengths of the two
original shocks. The average shock strength and the interface
width scale as t−1/3 while the average distance between
shocks scales as t2/3 �see, for example, Ref. 40�.

Is the �→0+ limit relevant to our problem? The effective
charge q is negative for metals and, for the sake of specific-
ity, we will assume that q�0 for the remainder of this sub-
section. If the undisturbed surface is close to a mobility

maximum or minimum, then �=M̃11,1�0� will be small. Mo-
bility maxima, however, are achieved for low index crystal-
lographic planes, and faceting of the surface could occur as a
consequence. Since we are employing a continuum descrip-
tion of the metal surface, our work does not apply to that
case. We conclude that the limit �→0+ is approached if the
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undisturbed surface is stable and has a mobility that is close
to the minimum value.

For nonzero �, there are no discontinuities and the shocks
are rounded. The shock width tends to zero in the �→0+

limit. For example, the Burgers equation �Eq. �71�� has the
solution

u =
ul + ur

2
−

ul − ur

2
tanh�ul − ur

4�
�X − V0T�� , �78�

where ul and ur are constants, ul�ur, and V0��ul+ur� /2.
The scaled surface displacement u asymptotes to ul for X
→−� and to ur for X→ +�. This solution is a shock wave
which propagates with velocity V0; the width of the shock
w0=4� / �ul−ur� tends to zero as � becomes small. The shock
has a steady-state form because the tendency for the wave to
steepen and break is counterbalanced by the diffusive term in
the Burgers equation.

In the laboratory frame of reference �x ,y , t�, the velocity
of the shock �78� is

U0 = c0�1 −
h1l + h1r

h0
� , �79�

where h1l�hl−h0 and h1r�hr−h0. The shock velocity given
by the kinematic analysis �Eq. �31�� reduces to this result if
h1l and h1r are small. The shock width was not revealed by
the kinematic analysis; Eq. �78� shows that it is

2M̃11,1�0�h0
2 / �hr−hl� in the original units.

D. Two-dimensional disturbances

For initial disturbances that depend on both x and y, the
equation of motion is Eq. �66�. This equation occurs in non-
linear acoustics30,31 and in the study of Mach reflection of
weak shocks,41 and is known as the DZK equation. The DZK
equation cannot be solved using a Cole-Hopf transformation.
Only a few exact solutions are known but these have shed
light on caustic and shock formation in converging nonlinear
waves.42,43 Numerical integration of the DZK equation is
challenging but a variety of methods of increasing speed and
reliability have been developed.44

Quasi-one-dimensional solutions which propagate at an
angle � to the X axis are readily obtained. We seek solutions

to the DZK equation which depend only on T and X̃�X
+Y tan �−T tan2 �. The DZK equation then reduces to

uT + uuX̃ − �uX̃X̃ = 0, �80�

which is just the Burgers equation. Equation �78� with X

replaced by X̃ is a solution to Eq. �80�. Thus, the DZK equa-
tion has the solution

u =
ul + ur

2
−

ul − ur

2
tanh�ul − ur

4�
�X + Y tan � − V���T�� ,

�81�

where ul and ur are constants, ul�ur, and

V��� �
ul + ur

2
+ tan2 � . �82�

Note that u→ul for X→−� and u→ur for X→�. The solu-
tion �81� is an oblique shock with contour lines that make an
angle � with the Y axis; this solution reduces to the one-
dimensional shock �78� for �=0.

In the laboratory frame of reference �x ,y , t�, Eq. �81� is

h =
hl + hr

2
−

hl − hr

2
tanh� ê · r − U���t

w���
� , �83�

where the shock’s direction of propagation ê� x̂ cos �
+ ŷ sin � makes an angle � with the x axis,

U��� = c0�1 −
h1l + h1r

h0
−

M11�0� − M22�0�
M11�0�

tan2 ��cos �

�84�

is the shock velocity, and

w��� = 2 cos �M̃11,1�0�
h0

2

hr − hl
�85�

is the width of the shock. The angles � and � do not coincide
because x and y were scaled in different ways to obtain X
and Y. Explicitly,

tan � = �M̃22�0� − 1−1/2�1/2 tan � , �86�

which shows that � must be small for Eqs. �83�–�85� to ap-
ply.

Some discussion of these results is in order. Naturally,
U��� and w��� reduce to U0 and w0 for �=0, and so Eqs. �84�
and �85� generalize the results of Sec. IV C. Equation �70�,
the linear dispersion relation that applies for h0kx�1 and
ky �kx, yields the phase velocity

vp��� = c0�1 −
M11�0� − M22�0�

M11�0�
tan2 ��cos � �87�

for a wave traveling in the direction ê. This shows that the
shock velocity U��� reduces to the phase velocity of a long-
wavelength small amplitude wave vp��� in the limit that hr
and hl tend to h0, as one would expect a priori. The shock
width w��� is inversely proportional to the shock strength
hr−hl, which means that strong shocks are narrow shocks.

V. CONCLUSIONS

We have shown that surface electromigration can produce
shock waves on the surface of a current-carrying single-
crystal miscut metal thin film when it is disturbed. These
shocks form because c�h�, the velocity of a point on the
film’s surface of height h, depends on h. Shock waves are an
inherently nonlinear phenomenon; our problem is nonlinear
because the electrical current is crowded in regions in which
the film thickness is reduced.

Shocks form on stable surfaces. It has been known for
some time that the planar free surface of the film is unstable
if qM11,1�0�E0 is positive. Our linear stability analysis re-
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veals that, even if qM11,1�0�E0 is negative, the surface is
unstable if qM21,2�0�E0 is positive. In this case, the instabil-
ity leads to the growth of surface ripples with their wave
vector perpendicular to the applied electric field. Both
qM11,1�0�E0 and qM21,2�0�E0 must be negative if the surface
is to be stable.

To gain insight into shock structure and propagation, we
derived an approximate equation of motion using multiple
scale asymptotic analysis. This equation of motion applies to
surface disturbances that have small amplitude, that vary
slowly with the longitudinal coordinate x, and that vary more
slowly still with the transverse coordinate y.

For disturbances which do not depend on y, the approxi-
mate equation of motion reduces to the Burgers equation
ut+uux=�uxx. Shocks that preserve their form as they propa-
gate can be formed. In these shocks, the tendency of the
wave to steepen, which is caused by the nonlinearity, is
counterbalanced by the smoothing effect of the anisotropic
adatom mobility.

If the undisturbed surface has a mobility that is close to
the minimum value, � is small and a white-noise initial dis-
turbance evolves into a series of line segments which meet at
shocks. When two shocks collide, they coalesce to form a
single shock whose strength is the sum of the strengths of the
two original shocks. As a result, the average distance be-
tween shocks increases as time passes. Obviously, shock coa-
lescence also increases the average shock strength. However,
the slope of the line segments between shocks is proportional

to 1 / t, and this leads to an overall decline in the average
shock strength with the passage of time. Detailed studies of
the Burgers equation39,40 have shown that the average dis-
tance between shocks scales as t2/3 and that the average
shock strength scales as t−1/3 in the so-called low viscosity
limit �→0+.

In the general case in which h depends on both x and y,
the approximate equation of motion is the dissipative
Zabolotskaya-Khokhlov equation. The velocity and width of
a shock whose direction of propagation makes a small angle
with the applied electric field was determined. The long-time
behavior of solutions to the DZK equation with white-noise
initial conditions has not yet been studied, and would be an
interesting �albeit very challenging� topic for future research.

Electromigration-induced shock wave propagation has not
yet been observed experimentally. For it to be observed, a
single-crystal metal thin film should first be prepared. The
film must be oriented so that its planar free surface would be
stable if an electric field were applied in the x direction. After
a step whose height increases with x is etched into the sur-
face, a high electric field should be applied in the x direction.
The step will then evolve into a shock wave that propagates
along the direction of the applied field and that has a steady-
state tanh profile with width inversely proportional to its
height. If two or more parallel steps are etched into the sur-
face initially, applying the electric field will lead to the col-
lision and fusion of shocks.
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