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As a possible physical realization of a quantum information processor, a system with stacked self-assembled
InAs quantum dots buried in GaAs adjacent to the channel of a spin field-effect transistor has been proposed.
In this system, only one of the stacked qubits, i.e., the edge qubit �the qubit closest to the channel�, is
measurable via “spin-blockade measurement.” It is shown that the state tomography of the whole chain of the
qubits is still possible even under such a restricted accessibility. The idea is to make use of the entangling
dynamics of the qubits. A recipe for the two-qubit system is explicitly constructed and the effect of an
imperfect fidelity of the measurement is clarified. A general scheme for multiple qubits based on repeated
measurements is also presented.
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I. INTRODUCTION

Toward realizations of quantum information processors, a
variety of physical systems has been proposed and inten-
sively investigated. In particular, solid-state devices with the
quantum bits �qubits� realized by the spins of electrons con-
fined in quantum dots in semiconductors1–3 are supposed to
be promising in terms of its compatibility with existing semi-
conductor technology. Among them, vertically stacked self-
assembled InAs quantum dots have the advantage of strong
confinement of electrons which allows high-temperature op-
eration of the order of 1 K as opposed to millikelvin in
confined two-dimensional electron gas �2DEG� system by
Schottky electrode.2,3 Thus, we have proposed and have been
investigating, from both experimental and theoretical as-
pects, a system with vertically stacked self-assembled InAs
dots buried in AlInAs barrier layer adjacent to the channel of
a spin field-effect transistor �FET� �see Fig. 1�.4,5

For quantum information processing, one should be able
to perform initialization, quantum gate operations, and read-
out of the qubits.6 In the proposed setup depicted in Fig. 1,
the qubits evolve under the interactions with the neighboring
qubits and each of them would be rotated via electric spin
resonance �ESR�. Furthermore, it is possible to measure re-
peatedly the state of the spin of the electron in the edge
quantum dot, just above the channel of the FET, by making
use of the “spin-blockade effect,” as will be recalled in Sec.
II.4,5

Although the qubits other than the one on the edge are not
directly accessible by the proposed measurement scheme,
one can still perform useful operations on the chain of qubits.
Multiple qubits can be initialized via repeated measurements
only on the edge qubits,4,7 and an entanglement generation
was discussed.4 In the present paper, we show that the state
tomography �or the state reconstruction� is also available.

The determination of the quantum state is a highly non-
trivial problem.8 A wave function, or more generally a den-
sity operator, of a quantum system is not an observable and
cannot be measured directly. From a practical point of view,

one can see the state only through measurable quantities. In
order to gain full information on the state of an N-level sys-
tem, a list of the measured values �expectation values� of
N2−1 independent observables is required, with which all
the matrix elements of its density matrix are reconstructed
and the tomography of the state is accomplished.

The state tomography has been carried out for a variety of
physical systems to analyze experiments.9–16 We are going to
discuss the state tomography in the present setup. One can
measure only the edge qubit; still, it is possible to reconstruct
the state of the whole chain of the qubits.

II. SPIN FET EMBEDDED WITH QUANTUM DOTS

The proposed device is illustrated in Fig. 1.4,5 A series of
quantum dots is embedded in the FET structure just above
the channel. A single electron is confined in each quantum
dot and quantum information is encoded on its spin states,
�↑ � and �↓ �. Such a situation where only a single electron is
stored in each dot is realized by properly adjusting the gate
voltage VG.3,17 Each qubit would be rotated via ESR to per-
form single-qubit operations, and the qubits are entangled by
the evolution under the interactions between the neighboring
qubits.
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FIG. 1. �Color online� Spin FET embedded with quantum
dots.
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The FET structure aims at measuring the spin state of the
electron confined in the edge quantum dot X. Notice first that
one can detect the injection of an electron from the channel
into the edge dot X by looking at the channel �source-drain�
current ID as a function of the gate voltage VG. As the gate
voltage VG is increased, the channel current ID increases. But
if an electron tunnels from the channel into the edge dot in
the meanwhile, the edge dot is charged and the channel cur-
rent is suppressed. As a result, the channel current ID drops
down and exhibits a peak as a function of the gate voltage VG
�Coulomb-blockade effect�. Suppose now that the channel
electrons are spin polarized in a definite spin state, say �↑ �.
When the edge electron is in the state �↓ �, a channel electron
in �↑ � can tunnel into the edge dot at a certain gate voltage
VG, but, on the contrary, when the edge electron is in �↑ �, the
channel electron is not allowed to enter there due to Pauli’s
exclusion principle. Therefore, if the polarized channel cur-
rent ID drops down as the gate voltage VG is increased, one
recognizes that the edge electron is in �↓ �X, while the growth
of ID indicates that the edge electron is in �↑ �X. In this way,
one can measure the spin state of the edge qubit X. We call it
“spin-blockade measurement.”4,5

The feasibility of the present system is discussed in Ref.
5; �i� the selective access to each individual qubit via ESR
becomes possible by slightly modifying the compound ratio
x of the In1−xGaxAs quantum dot, since the g factor of the
electron in a dot is altered in this way18 and the ESR absorp-
tion spectra of the electrons in different dots can be sepa-
rated; �ii� the strength of the exchange interaction energy
between qubits and the corresponding characteristic time
scale are estimated, showing the feasibility; �iii� the modula-
tion of the channel current by single electron charging in a
quantum dot adjacent to the channel has been demonstrated
in a trial structure with a single layer of quantum dot with
unpolarized channel current. Spin-polarized channel will be
available by replacing the normal-metal electrode with a fer-
romagnet, candidate materials for which are being inten-
sively investigated, see Ref. 19. Spin decoherence time has
been reported to be 2 ns for InAs self-assembled quantum
dots,20 while the spin-flipping time is estimated to be 50 ps.5

One of the remarkable features of the spin-blockade mea-
surement is that one can measure �↑ �X repeatedly. Although
one is allowed to measure only the edge qubit X, this feature
enables one to perform useful operations on the chain of
qubits. The initialization of multiple qubits via repeated mea-
surements on the edge qubit and an entanglement generation
are discussed in Refs. 4 and 7. Furthermore, the present pa-
per clarifies that the tomography of the state of the whole
qubits X+A+B+¯ is also possible via the spin-blockade
measurements only on the edge qubit X.

III. IDEA

In the proposed setup, it is possible to measure the state
�↑ �X of the edge qubit X. But at the same time, the measure-
ment of �↓ �X implies that a channel electron in �↑ � has been
injected into the edge dot and the edge qubit X has been
destroyed. Furthermore, qubits other than X are out of reach
of the spin-blockade measurement. Still, there is a way to get

the full information about the state of the whole chain of the
qubits.

To measure different states of X from �↑ �X without loos-
ing it by the injection of a channel electron, we apply a spin
rotation just before a spin-blockade measurement. For in-
stance, finding X in �↑ �X just after rotating X by the angle
� /2 around the y axis is essentially the measurement of the
spin X oriented in the x direction �a superposed state ��↑ �X
+ �↓ �X� /�2� before the rotation. In this way, it is possible to
measure any state of X.

The idea for getting information about the states of qubits
other than X is to make use of the entangling dynamics of the
chain of the qubits and the collapse of the state by the mea-
surement on X. Although we are allowed to measure only X,
such measurement would reflect the state of the other qubits
due to the entanglement between X and the rest

The strategy for the state tomography of the whole chain
of the qubits is therefore the following. The qubits X+A
+B+¯ evolve, from a given state � to be reconstructed,
under the action of the Hamiltonian

H = gXA��X� · ��A� + gAB��A� · ��B� + ¯ , �3.1�

where ��Q� represents the spin operator of qubit
Q�=X ,A ,B , . . .�. During the evolution, we rotate some qubits
and measure �↑ �X a few times at definite timings according to
a certain recipe. We prepare the same initial state � and
perform such a fixed sequence of operations many times to
obtain the probability for every measurement in the sequence
to find X in the state �↑ �X. �Notice that the measurement at
the end of a sequence can be �↓ �X, since we do not need to
proceed further.�

Consider, for instance, the following series of operations:
�rotation of X by an angle � around the x axis�→ �wait
for time � � → �measurement of �↑ �X �→ ¯ → �measure-
ments of �↓ �X�. The probability of getting the relevant result
at every measurement implemented in the series is given by

p = Tr�P↓ ¯ P↑U���Rx
�X�����Rx

�X�†���U†���P↑ ¯ P↓	

= Tr���Rx
�X�†���U†���P↑ ¯ P↓ ¯ P↑U���Rx

�X�����	 ,

�3.2�

where Ri
�Q����=e−�i/2���i

�Q�
is the operator that rotates qubit

Q�=X ,A ,B , . . .� by an angle � around the i�=x ,y� axis,
P↑�↓�= �↑�↓��X
↑�↓�� is the projection operator that represents
the measurement of �↑�↓��X, and U���=e−iH� is the time-
evolution operator between two operations and entangles the
chain of the qubits. We have set �=1.

This is the quantity that we can measure in the present
system. It can be viewed as the expectation value p
=Tr��O	 of a Hermitian operator O in the relevant state �,
where O consists of P↑, U���, Rx

�X����, and so on. Therefore,
by suitably arranging the sequences of the operations, we can
collect the sufficient number �4M −1 for an M-qubit system�
of expectation values of linearly independent operators that
allow us to reconstruct the given state �.

Let us demonstrate how the above procedure works in the
simplest case, for two qubits X+A. 15 linearly independent
sequences of operations that are sufficient to reconstruct a
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two-qubit state � are listed in Table I, where Ri���
=Ri

�X����Ri
�A���� is a “global” rotation, which rotates both X

and A at the same time �we can also construct a recipe with
“local” rotations, which act separately on X or A�. Note that
p↑

�n� and p↓
�n� are obtained simultaneously by a common en-

semble of experimental data collected for the nth sequence of

operations. By substituting the probabilities p↑�↓�
�n� measured

for the sequences of operations into the formulas listed in
Table II, all of the 16 matrix elements of the two-qubit state
� are disclosed and the state � is reconstructed.

The mechanism of the tomography is understood as fol-
lows, for relatively simple cases. The curves in Fig. 2 de-
scribe the entangling dynamics according to Hamiltonian
�3.1�. If the result of a measurement on X is “no,” two of the
four components of the state of X+A are projected out. The
survival through such projections corresponds to the event
where every measurement in a sequence gives “yes,” and the
probability of such an event rephrases how much the sur-
vived component was contained in the given initial state �.
The sequences are designed so as to reflect all of the matrix
elements of �, and the inversion of a linear relationship be-
tween the probabilities and the matrix elements reconstructs
the given state �.

IV. PARTIALLY POLARIZED SPIN CHANNEL

The realization of the polarized spin channel is one of the
important issues to be tackled.19 If the channel is only par-
tially polarized, the fidelity of the spin-blockade measure-
ment on X is degraded and the performance of the tomogra-
phy deteriorates. Let us clarify the effect of the partially
polarized spin channel on the tomographic scheme presented
in Sec. III.

When the spin polarization is not perfect but r, the state of
the electron in the channel would be effectively described by
the density operator

TABLE II. Reconstruction of the two-qubit state � from the probabilities p↑�↓�
�n� obtained by the sequences

of operations listed in Table I. Here, �↑↓�= �↑ �X�↓ �A, etc.


↑↑���↑↑�= p↑
�1�, 
↓↓���↓↓�= p↑

�3�


↑↓���↑↓�= p↓
�1�, 
↓↑���↓↑�= p↓

�2�


↑↑���↑↓�=− 1
2 �p↑

�4�− p↓
�4��− i

2 �p↑
�5�− p↓

�5��

↑↓���↑↑�=− 1

2 �p↑
�4�− p↓

�4��+ i
2 �p↑

�5�− p↓
�5��


↑↑���↓↑�=− 1
2 �p↑

�6�− p↓
�6��− i

2 �p↑
�7�− p↓

�7��

↓↑���↑↑�=− 1

2 �p↑
�6�− p↓

�6��+ i
2 �p↑

�7�− p↓
�7��


↓↓���↑↓�= 1
2 �p↑

�8�− p↓
�8��+ i

2 �p↑
�9�− p↓

�9��

↑↓���↓↓�= 1

2 �p↑
�8�− p↓

�8��− i
2 �p↑

�9�− p↓
�9��


↓↓���↓↑�= 1
2 �p↑

�10�− p↓
�10��+ i

2 �p↑
�11�− p↓

�11��

↓↑���↓↓�= 1

2 �p↑
�10�− p↓

�10��− i
2 �p↑

�11�− p↓
�11��


↑↑���↓↓�= 1
4 �
�x

�X��x
�A��− 
�y

�X��y
�A��− i
�x

�X��y
�A��− i
�y

�X��x
�A���


↓↓���↑↑�= 1
4 �
�x

�X��x
�A��− 
�y

�X��y
�A��+ i
�x

�X��y
�A��+ i
�y

�X��x
�A���


↑↓���↓↑�= 1
4 �
�x

�X��x
�A��+ 
�y

�X��y
�A��+ i
�x

�X��y
�A��− i
�y

�X��x
�A���


↓↑���↑↓�= 1
4 �
�x

�X��x
�A��+ 
�y

�X��y
�A��− i
�x

�X��y
�A��+ i
�y

�X��x
�A���


�x
�X��x

�A��=2�p↑
�12�− p↓

�12��+ 
�x
�A��


�y
�X��y

�A��=2�p↑
�13�− p↓

�13��− 
�y
�A��


�x
�X��y

�A��=−2�p↑
�14�− p↓

�14��+ 
�y
�A��


�y
�X��x

�A��=−2�p↑
�15�− p↓

�15��− 
�x
�A��


�x
�A��=−�p↑

�4�− p↓
�4��+ �p↑

�10�− p↓
�10��


�y
�A��= �p↑

�5�− p↓
�5��− �p↑

�11�− p↓
�11��

TABLE I. 15 linearly independent sequences of operations suf-
ficient to reconstruct a state of two qubits. g=gXA is the coupling
constant between the two qubits.

Probabilities Sequences of operations

p↑�↓�
�1� P↑→U� �

4g �→P↑�↓�

p↓
�2� U� �

4g �→P↑→U� �

4g �→P↓
p↑

�3� Ry���→P↑→U� �

4g �→P↑
p↑�↓�

�4� P↑→U� �

4g �→Ry�
�

2 �→P↑�↓�

p↑�↓�
�5� P↑→U� �

4g �→Rx�
�

2 �→P↑�↓�

p↑�↓�
�6� U� �

4g �→P↑→U� �

4g �→Ry�
�

2 �→P↑�↓�

p↑�↓�
�7� U� �

4g �→P↑→U� �

4g �→Rx�
�

2 �→P↑�↓�

p↑�↓�
�8� Ry���→U� �

4g �→P↑→U� �

4g �→Ry�
�

2 �→P↑�↓�

p↑�↓�
�9� Ry���→U� �

4g �→P↑→U� �

4g �→Rx�
�

2 �→P↑�↓�

p↑�↓�
�10� Ry���→P↑→U� �

4g �→Ry�
�

2 �→P↑�↓�

p↑�↓�
�11� Ry���→P↑→U� �

4g �→Rx�
�

2 �→P↑�↓�

p↑�↓�
�12� Ry�

�

2 �→P↑→U� �

4g �→P↑�↓�

p↑�↓�
�13� Rx�

�

2 �→P↑→U� �

4g �→P↑�↓�

p↑�↓�
�14� Ry�

�

2 �→P↑→U� �

4g �→Rx�
�

2 �→P↑�↓�

p↑�↓�
�15� Rx�

�

2 �→P↑→U� �

4g �→Ry�
�

2 �→P↑�↓�
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�ch = r�↑�
↑ � +
1 − r

2
1 =

1 + r

2
�↑�
↑ � +

1 − r

2
�↓�
↓ � .

�4.1�

Due to the presence of the undesired ingredient, �↓ �
↓� in Eq.
�4.1�, the confirmation of the increase in the channel current
in response to the sweep of the gate voltage does not result in
the pure projection �→P↑�P↑ but would induce

� →
1 + r

2
P↑�P↑ +

1 − r

2
P↓�P↓, �4.2�

reflecting the classical mixture of the two states in Eq. �4.1�
�with other possible nonideal features omitted�.21

See Figs. 3 and 4, where the state reconstructions are
simulated with the spin-blockade measurement with partially
polarized spin channel, Eq. �4.2�, in place of the ideal pro-
jective measurement P↑ in the recipe presented in Table I.

We have considered the imperfection of the spin-blockade
measurement due to the partially polarized spin channel. The
present formalism �Eq. �4.2�� would however be applicable
to other physical origins of imperfections, including imper-
fect Pauli blocking.22 The meaning of the parameter r is just
to be reinterpreted.

V. TOWARD MULTIQUBIT SYSTEMS

Toward the tomography of multiple qubits �with M �3�,
there exists a scheme applicable for an arbitrary number of
qubits M. Here is the recipe; we consider four sequences of
operations,

R�0�0

�X� → P↑�→U��� → R��
�X� → P↑�N−1, �5.1�

with ��0 ,�0�= �0,0�, �� ,0�, �� /2,0�, �� /2,� /2�, and N
�D2 /4, where D=2M is the dimension of the M-qubit sys-
tem and R��

�X� represents a rotation of X defined by

t
¼=40 g ¼=2g

j""iXA
j"#iXA
j#"iXA
j##iXA

t
¼=40 g ¼=2g

j""iXA
j"#iXA
j#"iXA
j##iXA

t
¼=40 g ¼=2g

j""iXA
j"#iXA
j#"iXA
j##iXA

(a) (b) (c)

FIG. 2. �Color online� Mechanism of the tomography for the sequences of operations for �a� p↑
�1�, �b� p↓

�1�, and �c� p↓
�2�. The curves

describe how the components of a state evolve and entangle in time according to Hamiltonian �3.1�, while the “walls” represent the
projective measurements on qubit X. The survived curves which are not shut off by the walls correspond to the events where every
measurement gives the desired result. The probabilities of such events are nothing but the probabilities p↑�↓�

�n� for the sequences of operations
and are equivalent �in the simple cases shown here� to the occupations of the survived states in the given initial state �, yielding its relevant
matrix elements, �a� 
↑↑���↑↑�, �b� 
↑↓���↑↓�, and �c� 
↓↑���↓↑�.
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e
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�
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�
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|↓↓�|↓↑�|↑↓�|↑↑� �↓↓|
�↓↑|

�↑↓|
�↑↑|

r = 0.4

R
e
�

(a) (b)

(c) (d)

FIG. 3. �Color online� State tomography of �	−�= ��↑↓�XA

− �↓↑�XA� /�2 with partially polarized spin channel. The polarization
of the channel is defined by r= �N↑−N↓� / �N↑+N↓� with N↑�↓� as the
number of spins in the �↑�↓�� state in the channel.
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FIG. 4. �Color online� State tomography of �
−�= ��↑↑�XA

− �↓↓�XA� /�2 with partially polarized spin channel.
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R��
�X�†�↑�X = e−i�/2 cos

�

2
�↑�X + ei�/2 sin

�

2
�↓�X. �5.2�

Let p�0�0
�N� denote the probability of finding X in �↑ �X suc-

cessively N times up to the Nth measurement, which is given
by

p�0�0
�N� = Tr��P↑R��

�X�U����N−1P↑R�0�0

�X�

��R�0�0

�X�† P↑�U†���R��
�X�†P↑�N−1	

= TrAB. . .��V������N−1��0�0
�V��

† ����N−1	 �5.3�

with

V����� = X
↑ �R��
�X�U����↑�X, �5.4a�

��0�0
= X
↑ �R�0�0

�X� �R�0�0

�X�† �↑�X. �5.4b�

Then, such probabilities are related to the matrix elements of
the given density operator � of X+A+B+¯ through

�
p�0�0

�1�

p�0�0
�2�

]

p�0�0
�D2/4�

� = M�

u1�u1�
v1���0�0

�v1�


u2�u1�
v1���0�0
�v2�

]


uD/2�uD/2�
vD/2���0�0
�vD/2�

� ,

�5.5�

where

M =�
1 1 ¯ 1

�1�1
� �1�2

�
¯ �D/2�D/2

�

��1�1
��2 ��1�2

��2
¯ ��D/2�D/2

� �2

] ] � ]

��1�1
��D2/4−1 ��1�2

��D2/4−1
¯ ��D/2�D/2

� �D2/4−1
�

�5.6�

and

V������un� = �n�un�, 
vn�V����� = �n
vn� . �5.7�

The non-Hermitian operator V����� has been assumed to be
diagonalizable.7

The matrix M in Eq. �5.6� is a Vandermonde matrix of
order D2 /4, whose properties are well known.23 In particular,
its determinant is given by

det M = 
�m,n��k,��

��m�n
� − �k��

�� �5.8�

and the formula for the inverse M−1 is available, where
�m ,n� �k ,�� means Imn Ik� with Imn= �D /2��m−1�+n.
Determinant �5.8� is the product of all the differences that
can be formed by any pairs taken from ��m�n

�	. It is therefore
clear when it is possible to invert relation �5.5� to reconstruct
the density operator ��0�0

of A+B+¯; the parameters � and
�� ,�� should be chosen so as to satisfy the conditions

�m�n
�
un�um� � 0 �m,n = 1, . . . ,D/2� ,

�m�n
� � �k��

� for �m,n� � �k,�� . �5.9�

In this way, one gets a list of ��0�0
for the four indepen-

dent sets of ��0 ,�0�, which completes the tomography of the
state �.

This scheme is quite simple and general: one simply re-
peats P↑R��

�X� necessary times, the scheme works for an arbi-
trary number of qubits M, and the conditions for the param-
eters are clear �Eq. �5.9��. Only four independent sequences
are required, irrespective of the number of qubits M.

VI. SUMMARY

In this paper, we have discussed the state tomography for
a chain of qubits in the setup �Fig. 1� proposed as a possible
physical realization of a quantum information processor. In
this setup, only the state of the edge qubit of the chain is
measurable via the spin-blockade measurement. However,
the present analysis explicitly demonstrates that it is still
possible to reconstruct the state of the whole chain of qubits.
The idea is to make use of the entangling dynamics of the
qubits, which enables one to gain information on the whole
chain through the edge qubit.

Such an idea is not restricted to the current setup; there
would be various physical systems in which only limited
degrees of freedom are accessible in practice and similar
strategies are required. The present idea would find many
valuable applications.

In Sec. III, we have explicitly constructed a recipe for two
qubits. We have also presented a general scheme based on
repeated measurements that can be applied to an arbitrary
number of qubits �Sec. V�. There are, however, many other
possibilities. For instance, the latter scheme requires 22�M−1�

measurements for M qubits, i.e., four measurements for two
qubits, while each sequence in Table I involves only two
measurements. As mentioned in Sec. IV, the accuracy of the
spin-blockade measurement relies on the polarization of the
channel spins. For a partially polarized spin channel, it
would be better to seek a scheme with fewer measurements.
Shorter sequences of operations would be preferable also to
minimize other possible errors, originating for instance from
imperfect qubit rotations by ESR and decoherence during the
processes.

There would exist recipes that involve only one measure-
ment �and therefore with fewer rotations and a shorter execu-
tion time� for each sequence, but no general prescription for
generating such sequences of operations is known �at least to
the present authors�. A possible strategy would be to generate
sequences according to a certain rule anyway to select nec-
essary number of sequences �since too many sequences
might be generated for the reconstruction of a density opera-
tor with 4M −1 independent matrix elements� and to check
the invertibility of the relevant matrix, relating the matrix
elements of the target density operator to the observable data.
It is desirable to clarify how to generate the optimal se-
quences efficiently, which remains a future subject.
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