
Many-particle Hamiltonian for open systems with full Coulomb interaction: Application to
classical and quantum time-dependent simulations of nanoscale electron devices

G. Albareda, J. Suñé, and X. Oriols*
Departament d’Enginyeria Electrònica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

�Received 12 July 2008; published 17 February 2009�

A many-particle Hamiltonian for a set of particles with Coulomb interaction inside an open system is
described without any perturbative or mean-field approximation. The boundary conditions of the Hamiltonian
on the borders of the open system �in the real three-dimensional �3D� space representation� are discussed in
detail to include the Coulomb interaction between particles inside and outside of the open system. The many-
particle Hamiltonian provides the same electrostatic description obtained from the image-charge method, but it
has the fundamental advantage that it can be directly implemented into realistic �classical or quantum� electron
device simulators via a 3D Poisson solver. Classically, the solution of this many-particle Hamiltonian is
obtained via a coupled system of Newton-type equations with a different electric field for each particle. The
quantum-mechanical solution of this many-particle Hamiltonian is achieved using the quantum �Bohm� trajec-
tory algorithm �X. Oriols, Phys. Rev. Lett. 98, 066803 �2007��. The computational viability of the many-
particle algorithms to build powerful nanoscale device simulators is explicitly demonstrated for a �classical�
double-gate field-effect transistor and a �quantum� resonant tunneling diode. The numerical results are com-
pared with those computed from time-dependent mean-field algorithms showing important quantitative
differences.
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I. INTRODUCTION

The exact computation of a system of interacting elec-
trons is extremely complicated1,2 because the motion of one
electron depends on the positions of all others �i.e., electrons
are correlated3�. Thus, the prediction of the collective behav-
ior of many electrons is still a very active field of research in
nanoelectronics, quantum chemistry, nanobiology, quantum
computing, materials science, etc. Several theoretical ap-
proximations have been proposed to improve the treatment
of electron-electron correlations.

In quantum systems in equilibrium, the time-independent
mean-field approximation appears as a successful solution to
treat a set of interacting electrons. It simplifies the exact
many-particle potential by an average or mean potential2 that
transforms the many-body Schrödinger equation into a much
more simple set of time-independent single-particle
Schrödinger equations. The Hartree-Fock method4,5 is a suc-
cessful example of such approximation. However, by con-
struction, the correlations among electrons can only be
treated approximately. In principle, the density-functional
theory6,7 provides an exact path to deal with full electron
correlations using single-particle potentials. However, since
the exact form of the single-particle potentials6–9 is un-
known, an educated guess for these average single-particle
potentials is needed in all practical algorithms. Therefore,
again, the electron-electron correlations are treated
approximately.9,10

The accurate treatment of the electron-electron correla-
tions in electric circuits is even a more difficult issue11–26

because we deal with nonequilibrium open systems11–13

�where the system interchanges energy and particles with its
environment�. In fact, the Coulomb interaction among elec-
trons is directly not considered in many quantum transport
formalisms11,12 under the assumption that the open system

behaves as a Fermi liquid.14 The well-known Landauer
approach15,16 is a very successful example of the applicabil-
ity of this assumption. Nevertheless, the Fermi-liquid para-
digm has difficulties dealing with high-frequency,11,17

low-dimensionality,1,2 or Coulomb blockade regimes.11,18 On
the other hand, the nonequilibrium Green’s-function formal-
ism �also referred to as the Keldysh formalism� provides an
interesting path to solve the Schrödinger equation with the
Coulomb interaction introduced perturbatively.19 Alterna-
tively, under the assumption that the system behaves like a
capacitor, one can use a simple linear relationship between
the number of electrons and the electrostatic potential in a
particular region to introduce partially Coulomb effects.12,18

The mean-field approximation appears again as a solution for
electron transport. For example, an average single-particle
time-independent potential profile can be computed, self-
consistently, from the set of wave-function solutions of a
single-particle time-independent Schrödinger equation.2,12

This represents a zero-order approximation �sometimes
called the Hartree4 approximation� to the complex problem
of electron-electron correlations. Additionally, remarkable
efforts have been done by Büttiker and co-workers20–22 to
include Coulomb interaction in their scattering matrix ap-
proach by applying different many-body approximations to
provide self-consistent electron-transport theories with over-
all charge neutrality and total current conservation. Finally,
extensions of the equilibrium density-functional theory to
deal with electron transport, by means of a time-independent
formalism,23 or with a powerful time-dependent version24–26

can also be found in the literature. The exact exchange-
correlation functionals needed in both formalisms are un-
known and they have to be approximated. Therefore, in all
the descriptions of nonequilibrium quantum systems men-
tioned here, the electron-electron correlations are approxi-
mated to some extent.
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For classical electron devices, the electrostatic interaction
among electrons is commonly obtained from an explicit so-
lution of the Poisson �Coulomb� equation. However, again,
this does not provide an exact treatment of the classical
electron-electron correlations but only an average
estimation.27,28 It is well known that the solution of a classi-
cal many-particle system can always be written as a coupled
system of single-particle Newton-type equations. However, a
classical mean-field approximation is explicitly assumed in
semiclassical transport simulators in order to deal with a
unique average electrostatic potential for all electrons.27 A
successful application of the classical mean-field approxima-
tion appears, for example, in the semiclassical Boltzmann
equation that describes the time evolution of the electron
distribution function in a one-electron phase space.27 The use
of a unique electric field �i.e., a unique average electrostatic
potential� in the Boltzmann equation neglects the correct
electron-electron correlations because each electron “feels”
its own charge.28–32 A powerful time-dependent technique to
solve the Boltzmann equation is the semiconductor Monte
Carlo method applied to electron devices.27

In this work, we are interested in revisiting the computa-
tion of an ensemble of Coulomb-interacting particles in an
open system without any of the approximations mentioned in
the previous paragraphs. With this goal, we have developed
an exact many-particle Hamiltonian for Coulomb-interacting
electrons in an open system in terms of the solutions of the
Poisson equation. To our knowledge, the type of develop-
ment of the many-particle Hamiltonian proposed in this pa-
per has not been previously considered in the literature be-
cause, up to now, it was impossible to handle the
computational burden associated with a direct solution of a
many-particle Hamiltonian. Here, we present a classical and
also a quantum solution of the many-particle Hamiltonian,
both of which are applicable to realistic three-dimensional
�3D� electron devices. The classical solution is obtained by
solving a coupled system of Newton-type equations with a
different electric field for each particle. The quantum solu-
tion of the many-particle Hamiltonian is obtained from the
use of quantum trajectories.33 The merit of the quantum so-
lution is certainly remarkable because, nowadays, the com-
putational burden associated with the direct �i.e., without any
approximation� solution of the many-particle wave function
is only accessible for very few �2,3 , . . .� electrons.1,2 Our
quantum algorithm is able to treat electron dynamics without
any �mean-field or perturbative� approximation in the de-
scription of the electrostatic interaction among a larger num-
ber ��50� of electrons. In this paper, we present the classical
and quantum algorithms together because they solve exactly
the same many-particle Hamiltonian and both share many
technical details �such a 3D Poisson solver to treat spatial-
dependent permittivity scenarios� in their implementation
into realistic 3D electron devices.

After this introduction, the rest of the paper is divided as
follows. In Sec. II, we write the many-particle Hamiltonian
for an ensemble of electrons in an open system. We discuss
the role of the boundary conditions on the borders of the
open system to include the Coulomb interaction between par-
ticles inside and outside of the open system in Sec. III. In
Sec. IV, we discuss the solution of the many-particle Hamil-

tonian in classical scenarios. The path for the quantum solu-
tion is provided in Sec. V using quantum �Bohm� trajecto-
ries. In Sec. VI, we show the numerical results for the
classical and quantum solutions of the many-particle Hamil-
tonian for nanoscale electron devices and we compare the
results with time-dependent mean-field approximation. We
conclude in Sec. VII. Appendixes A and B discuss the tech-
nical details of the image-charge method and mean-field ap-
proximation.

II. MANY-PARTICLE HAMILTONIAN IN OPEN SYSTEM

In this section, we develop an exact expression for the
many-particle Hamiltonian that describes a set of electrons in
an open system. Throughout this paper, we will assume that
the magnetic field is negligible and that the particle velocity
is small enough to assume a nonrelativistic behavior. In ad-
dition, in order to provide a discussion valid for either clas-
sical or quantum systems, we will assume spinless particles.
Let us clarify that the exchange interaction is always present
in a system of identical particles �electrons�, but it will not be
mentioned in this section because it does not affect explicitly
the expression of the �first-quantization� many-particle
Hamiltonians discussed here. The exchange interaction is in-
troduced into the symmetry �when electron positions are in-
terchanged� of the many-body wave function. We will briefly
revisit this issue in Sec. V when dealing with the quantum
solution.

A. Many-particle Hamiltonian for a closed system

First, we start our discussion with a set of M particles in a
closed system. The many-particle Hamiltonian contains ki-
netic plus Coulomb energies,

H�r�1, . . . ,r�M,p�1, . . . ,p�M� = �
k=1

M �K�p�k� +
1

2 �
j = 1
j�k

M

qk · V�r�k,r� j�� .

�1�

The factor 1
2 that appears in the second term of the right-hand

side is due to the fact that each two-particle interaction is
counted twice �i.e., V�r�k ,r� j� is identical to V�r� j ,r�k��. The con-
dition j�k takes into account the obvious restriction that a
particle cannot interact with itself. The kinetic energy K�p�k�
that appears in Eq. �1� is defined, for a classical system, as

K�p�k� =
1

2 · mk
�p�k�2, �2a�

while for a quantum system

K�p�k� = −
�2

2 · mk
�r�k

2 . �2b�

Let us notice that the position and momentum in Hamil-
tonian �1� can be either classical variables, r�k and p�k in Eq.
�2a�, or quantum �real-space representation� operators, r�k and
−i��r�k

in Eq. �2b�. In particular, it is important to emphasize
that when we refer to r�k as the electron position, we are not
referring to a fixed position but a variable vector. On the
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contrary, when we are interested in specifying a fixed elec-
tron position, we will write r�k�t�. The parameter mk is the
particle mass that, in Sec. VI, will be understood as the par-
ticle effective mass. Identically, we define the Coulomb po-
tential in Eq. �1� as

V�r�k,r� j� =
qj

4��	r�k − r� j	
, �3�

where qj is the particle charge and � is the permittivity. Al-
though we are always thinking about electrons in semicon-
ductors, the development of this section is valid for arbitrary
particles with different masses and charges.

A complete electronic circuit �including the devices, the
wires, and the batteries� behaves as a closed system with a
large �M→�� number of electrons. However, since we can
only deal with a finite number of electrons, we restrict our
system to a small part of the circuit, for example, the channel
of a transistor. Thus, we need to develop the Hamiltonian
that describes the dynamics of a subensemble of the whole
set of M particles in an open system inside a limited volume
� �see Fig. 1�.

B. Many-particle Hamiltonian for an open system

We divide the previous ensemble of M particles into a
subensemble 
1,2 ,3 , . . . ,N�t�� of particles whose positions
are inside the volume � and a second subensemble 
N�t�
+1, . . . ,M� which are outside it �see Ref. 34�. We assume
that the number of particles inside, N�t�, is a time-dependent
function that provides an explicit time dependence in the
many-particle �open-system� Hamiltonian. As drawn in Fig.
1, we assume a parallelepiped where the six rectangular sur-
faces S= 
S1 ,S2 , . . . ,S6� are the boundaries of �. Along this
paper, we use r�l as the “boundary” vector representing an
arbitrary position on the surfaces Sl.

Since we are only interested in the dynamics of the first
N�t� particles, the kinetic energy and the Coulomb interac-
tion between the particles of the second subensemble do not
appear in the new Hamiltonian of the open system. Never-
theless, the Coulomb interaction between particles of the first
and second subensembles must explicitly appear. Thus, the
many-particle Hamiltonian for the first N�t� particles can be
written as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� +
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j� + �
j=N�t�+1

M

qk · V�r�k,r� j�
 .

�4�

Let us notice also that the factor 1
2 disappears in the last term

of Eq. �4� because there is no double counting of interactions
between electrons inside and outside �. For convenience, we
rewrite Eq. �4� as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� + �
j=1

j�k

N�t�

qk · V�r�k,r� j� + �
j=N�t�+1

M

qk · V�r�k,r� j�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 . �5�

Although up to this point we have discussed the many-
particle Hamiltonian in terms of the Coulomb force, this ap-
proach is inconvenient to deal with solid-state scenarios with
a spatial-dependent permittivity.35,36 For this reason, we re-
write our many-particle Hamiltonian in terms of the more
generic Poisson �or Laplace� equation, which can be applied
to systems with �or without� a spatial-dependent permittivity
�by substituting �→��r�� in the Poisson equation�.

Each term V�r�k ,r� j� that appears in Eq. �5� can be explic-
itly obtained from a Poisson �or Laplace� equation inside the
volume �. Then, using the superposition property of the
Poisson �or Laplace� equations, we can rewrite Eq. �5� as

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t�

= �
k=1

N�t�

�K�p�k� + qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 , �6�

where the term Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� is a particular solution
of the following Poisson equation:

�r�k

2 
� · Wk�r�1, . . . ,r�N�t��� = �k�r�1, . . . ,r�N�t�� . �7�

The term �k�r�1 , . . . ,r�N�t�� in Eq. �7� depends on the position
of the first N�t� electrons,34

�k�r�1, . . . ,r�k, . . . ,r�N�t�� = �
j=1

j�k

N�t�

qj · ��r�k − r� j� , �8�

but Eq. �8� is independent of the position of the external
particles because they only affect the boundary conditions of
Eq. �7�. Let us notice that there are still terms, V�r�k ,r� j�, in

S1(Drain)

z

y
x

� �N tr
� lr�

Mr
�

jr
�

S2 S6

�
S3 S5

Lx Ly

Lz

S4(Source)

FIG. 1. �Color online� Schematic representation of the volume
�=Lx ·Ly ·Lz and its limiting surface S= 
S1 ,S2 , . . . ,S6�. There are
N�t� particles inside and M −N�t� outside this volume. The vector r�l

points an arbitrary position at the boundary surface Sl.
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Eq. �6� that are not computed from Poisson equation but
from Eq. �3�. However, we will show that these terms
V�r�k ,r� j� have no role in the classical �i.e., Sec. IV� or quan-
tum �i.e., Sec. V� solutions of Eq. �6�.

By construction, comparing Eqs. �5� and �6�, the term
Wk�r�1 , . . . ,r�N�t� , t� can be rewritten as

Wk�r�1, . . . ,r�N�t�,t� = �
j=1

j�k

N�t�

V�r�k,r� j� + �
i=N�t�+1

M

V�r�k,r�i� . �9�

The dependence of Wk�r�1 , . . . ,r�N�t� , t� on the positions of the
external particles is explicitly written in the last sum in Eq.
�9�, while in Eq. �7� this dependence is hidden in the bound-
ary conditions of Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� on the surface S
= 
S1 ,S2 , . . . ,S6�. In fact, the boundary conditions are a deli-
cate issue that we will discuss in Sec. III. Finally, we want to
remark that this discussion is valid for either classical or
quantum Hamiltonians because the expression �9� �or its
equivalent definition in �7� and �8�� of Wk�r�1 , . . . ,r�N�t� , t� at
r�1 , . . . ,r�k , . . . ,r�N�t� is identical for a classical or a quantum
system.

III. BOUNDARY CONDITIONS FOR THE
ELECTROSTATIC POTENTIAL Wk(r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N(t) , t)

ON THE BORDERS OF THE OPEN SYSTEM

Since we want to deal with solutions of the Poisson equa-
tion �Eq. �7��, the boundary conditions for the N�t� terms
Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� have to be specified on the border
surface S= 
S1 ,S2 , . . . ,S6�. Such boundary conditions will
provide, somehow, information on the electrostatic effect
that outside electrons �i.e., N�t�+1, . . . ,M� have on the elec-
trons inside �. In order to provide a clear notation for dis-
cussing the boundary conditions of Wk�r�1 , . . . ,r�k , . . . ,r�N�t��,
we distinguish between the “source” vectors
r�1 , . . . ,r�k−1 ,r�k+1 ,r�N�t� and the additional “observation” vector
r� that runs over all space.36 In particular, the electrostatic
potential that appears in Hamiltonian �6� is defined as the
value of the potential Wk�r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N�t� , t� at the
particular position r�=r�k,

Wk�r�1, . . . ,r�k−1,r�k,r�k+1,r�N�t�,t�

= Wk�r�1, . . . ,r�k−1,r�,r�k+1,r�N�t�,t�	r�=r�k
. �10�

Our goal is to find an educated guess for all the N�t� terms
Wk�r�1 , . . . ,r�k−1 ,r� ,r�k+1 ,r�N�t� , t� at all observation points r�=r�l

on all surfaces l=1, . . . ,6. For example, the information of
such boundary conditions can come from the value of the
total voltage �due to internal and external electrons� at posi-
tion r�l and time t. We define the total voltage
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� as the electrostatic potential asso-
ciated to an additional probe charge qM+1 situated on that
boundary, r�l�r�M+1�Sl �see Fig. 2�. The electrostatic poten-
tial “seen” by this extra charge due to the presence of the rest
of the particles is just

B�r�1, . . . ,r�N�t�, . . . ,r�M,r�l,t� � 	�
j=1

M

V�r�M+1,r� j�	r�M+1=r�l,

�11�

where the expected restriction j�M +1 is hidden in the limit
of the sum.

Once relationship �11� is established, we can easily define
the boundary conditions of any of the N�t� electrostatic po-
tential Wk�r�1 , . . . ,r� , . . . ,r�N�t�� from the function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�. In particular, from Eq. �9�, we
know that

Wk�r�1, . . . ,r�k−1,r�,r�k+1,r�N�t�,t�	r�=r�l

= �
j=1

j�k

M

V�r�l,r� j� = B�r�1, . . . ,r�M,r�l,t� − V�r�l,r�k�,

l = 1, . . . ,6. �12�

The discussion done here is valid for either classical or quan-
tum systems �see Ref. 37�. In the previous discussion we
have assumed Dirichlet boundary conditions; however it is a
straightforwardly procedure to develop the same argumenta-
tions for Neumann boundary conditions.

The reader can be surprised by the fact that the right-hand
side of expression �12� tends to infinite, V�r�l ,r�k�→�, when
r�k→r�l. However, when r�k→r�l, the extra particle at r�l

�r�M+1�Sl will also provide an infinite value of the electro-
static potential, i.e., B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→�, due to
the presence of the k particle on the surface. Therefore, the
first infinite, V�r�l ,r�k�→�, is canceled by the second infinite,
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→�. This discussion will be rel-
evant in Sec. VI when we discuss the numerical implemen-
tation of these boundary conditions.

Gate

z

y
x

1
l

Mr r ��
� �

Mr
�

jr
�

�
1( ,..., , , )l

MB r r r t� � �

Lz

Lx
Ly

� �N tr
�

FIG. 2. �Color online� The electrostatic potential
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� measured on a surface Sl at position r�l

and time t �due to internal and external electrons� by an additional
probe charge qM+1 situated on the boundary r�l�r�M+1�Sl.
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Up to here, our argumentation might seem somehow
tricky. We have defined the value of Wk�r�1 , . . . ,r� , . . . ,r�M� 	r�=r�l

on the volume boundaries without mentioning the position of
the external particles but using the function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� which is unknown. This strategy
transforms the complexity of finding the boundary conditions
of N�t� electrostatic potential Wk�r�1 , . . . ,r� , . . . ,r�N�t�� into pro-
viding an educated guess for a unique function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�. In our numerical results in Sec.
VI, we will fix B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� based on standard
arguments for electron devices. We will assume a uniform
value of the voltage on the l surface independent of
the external electrons, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�
�Bl�r�1 , . . . ,r�N�t� , t�. Such value can be obtained taken into
account the voltage fixed by the external battery and the
requirement of charge neutrality at the contacts.35,38

Finally, we want to enlighten the physical interpretation of
the many-particle Hamiltonian �6� and boundary conditions
of Eq. �12� developed here. To do this, we compare our ap-
proach with the image-charge method applied to electron
transport. The image-charge method is a basic solving tool in
electrostatics36 that has been successfully applied, for ex-
ample, in the calculation of the electric field in field-emission
devices39 or the barrier-reduction in the metal-semiconductor
Schottky contacts.40 The name of the method originates from
the replacement of certain “real” charges by a set of few
“imaginary” charges that replicate the real boundary condi-
tions at the surface �see Fig. 3�. From the uniqueness theo-
rem of electrostatics,36 once the charge of the 1 , . . . ,N�t�
particles inside a volume is fixed and the correct electrostatic
potential �or electric field� is specified at the boundaries of
that volume, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�, the solution of the
Poisson equation inside the volume is unique and does not
depend on whether the external charges are real or imagi-
nary. Then, according to the image-charge method, the elec-
trostatic potential seen by the k particle is equal to the elec-
trostatic potential generated by the sum of the imaginary plus
the real particles except the k particle. Thus, identically to
our many-particle Hamiltonian, the image-charge method
goes beyond the mean-field approximation �discussed in Ap-
pendix B� because each particle feels its own potential pro-
file that excludes the Coulomb interaction with itself. In Ap-
pendix A, we show in detail that the boundary conditions in

Eq. �12� are identical to the boundary conditions found with
the image-charge method.

However, although the outcome of the image-charge
method and our many-particle Hamiltonian are identical, the
Hamiltonian presented in this paper has an unquestionable
advantage over the image-charge method: the former can be
directly implemented into practical 3D electron device simu-
lators as we will see in Sec. VI while the latter cannot. For
example, let us consider the numerical simulation of the tran-
sistor done in Sec. VI. The system consists in a large number
��20� of electrons inside a volume � limited by surfaces

S1 ,S2 , . . . ,S6� with Dirichlet and Neumann boundary condi-
tions. Then, the exact application of the image-charge
method faces up to the following serious difficulties. The
computation of the imaginary charges in an arbitrary surface
�different from the standard infinite plane whose imaginary
charges are found in textbooks41� is not at all obvious.42 Let
us notice that each imaginary charge that provides the correct
value of the Neumann boundary condition on Si does also
affect the Neumann �or Dirichlet� boundary condition on all
other surfaces 
S1 ,S2 , . . . ,S6�. Finally, even after assuming
that we would be able to find somehow the density distribu-
tion of imaginary charges that reproduces simultaneously the
boundary conditions on all six surfaces, the practical appli-
cation of this method in a time-dependent simulator with a
3D Poisson solver �to be able to deal with spatial-dependent
permittivity scenarios� would require simulating much more
particles �the real plus the imaginary� in a larger simulation
box �to include the location of those imaginary particles out-
side of ��. In summary, the image-charge method is an ex-
cellent approach to obtain analytical expression for the
many-body description of electron transport in simple sys-
tems �such as one electron crossing an infinite ideal41 metal-
lic surface�, but it is not practically possible to implement it
in simulators for actual 3D electron devices.42 On the con-
trary, as we will show in our numerical result in Sec. VI, the
many-particle Hamiltonian �6� and the boundary conditions
of Eq. �12� can be implemented in a extremely simple and
transparent way in, either classical or quantum, realistic elec-
tron device simulators using a 3D Poisson solver for arbi-
trary surfaces.

IV. EXACT MANY-PARTICLE HAMILTONIAN FOR
CLASSICAL OPEN SYSTEMS

In this section, we discuss the classical solution of the
many-particle open-system Hamiltonian of expression �6�.
Interestingly, the results obtained here can partially be used
for the quantum solution of the many-particle Hamiltonian
developed in Sec. V.

The classical description of the particle dynamics sub-
jected to the many-particle Hamiltonian �6� can be computed
by using the well-known Hamilton’s equations. In particular,
we can obtain the �Newton-type� description of the classical
trajectory r�i�t� in the real space through

�
1( ,..., , , )l

MB r r r t� � �

lr�kr
�

� �N tr
�

Imaginary particles

' ';M Mr q�

( 1) ' ( 1)';N Nr q� �
�

Lz

Lx
Ly

FIG. 3. �Color online� The imaginary charges q�N + 1�� and qM�,
located outside the volume � at r��N + 1�� and r�M�, together with the
real particles inside � reproduce the electrostatic potential
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� on all l surfaces.
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dp� i�t�
dt

= �− �r�i
H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�

, �13a�

dr�i�t�
dt

= ��p� i
H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t��r�1=r�1�t�,. . .,p�N�t�=p�N�t��t�

. �13b�

For the many-particle Hamiltonian studied in this work, ex-
pression �13b� gives the trivial result m ·v� i�t�= p� i�t�, while the
evaluation of expression �13a� requires a detailed develop-
ment. We know that the r�i gradient of the exact many-particle
Hamiltonian �6� can be written as

��r�i
H�R� =R� �t� = ��r�i�

k=1

N�t�

�qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
�
R� =R� �t�

. �14�

We define the multidimensional vector R� = �r�1 , . . . ,r�N�t�� to
account, in a compact way, for the classical trajectories of

N�t� electrons, R� �t�= �r�1�t� , . . . ,r�N�t��t��. Substituting the defi-
nition of Wk�r�1 , . . . ,r�N�t� , t� done in expression �9� into Eq.
�14�, we find

��r�i
H�R� =R� �t� = ��r�i�2�

j=1

j�i

N�t�

qjV�r� j,r�i� + �
j=N�t�+1

M

qjV�r� j,r�i�

− �r�i�

j=1

j�i

N�t�

qj · V�r� j,r�i��
R� =R� �t�

. �15�

Note the elimination of the factor 1
2 in the last term of the

right-hand part of Eq. �15� that accounts for those terms
qk ·V�r�k ,r� j� in Eq. �14�, where r�k�r�i and r� j =r�i that are iden-
tical to the term qi ·V�r�i ,r�k� in Eq. �15�. For the same reason,
we include a factor 2 on the first term of right hand of Eq.
�15�. From expressions �9� and �15�, we realize that

��r�i
H�R� =R� �t� = ��r�i

Wi�r�1, . . . ,r�N�t���R� =R� �t�. �16�

Only the term Wi�r�1 , . . . ,r�N�t�� of whole Hamiltonian �6� be-
comes relevant for a classical description of the i particle. In
fact, since we only evaluate a r�i gradient, the rest of particle
positions can be evaluated at their particular value at time t,
i.e., r�k→r�k�t� for all k� i. Therefore, we define the single-

particle potential W̄i�r�i , t� from the many-particle potential as

W̄i�r�i,t� = Wi�r�1�t�, . . . ,r�i−1�t�,r�i,r�i+1�t�, . . . ,r�N�t��t�� .

�17�

We use a “hat” to differentiate the �time-dependent� single-
particle electrostatic potential from the many-particle poten-

tial. Each i term of the single-particle electrostatic potential,

W̄i�r�i , t�, is a solution of one particular 3D-Poisson equation,

�r�i

2 ���r�i� · W̄i�r�i,t�� = �̄i�r�i,t� , �18�

where the single-particle charge density is defined as

�̄i�r�i,t� = �
j=1

j�i

N�t�

qj��r�i − r� j�t�� , �19�

and the boundary conditions �Eq. �12�� are adapted here as

W̄i�r�i,t�	r�i=r�l = Bl�r�1�t�, . . . ,r�N�t��t�,t� − V�r�l,r�i�t��,

l = 1, . . . ,6. �20�

where we have included the approximation
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�� , t��Bl�r�1 , . . . ,r�N�t� , t� mentioned in
Sec. III. Let us remind that expressions �17�–�20� provide an
exact treatment of the many-particle correlations in classical
scenarios. They imply a coupled system of Newton equa-
tions. The N�t� Newton equations are coupled by N�t� Pois-
son equations. Therefore, as mentioned in Sec. I, the many-
particle Hamiltonian of Eq. �6� can be written exactly
�without mean-field approximation� as a sum of single-
particle Hamiltonian for classical scenarios,

H�r�1, . . . ,r�N�t�,p�1, . . . ,p�N�t�,t� = �
k=1

N�t�


K�p�k� + qk · W̄k�r�k,t�� .

�21�

The term W̄k�r�k , t� in Eq. �21� means that each particle “sees”
its own electrostatic potential �or electric field�, which is dif-
ferent from that of others.

V. EXACT MANY-PARTICLE HAMILTONIAN FOR
QUANTUM OPEN SYSTEMS

The many-particle open-system Hamiltonian developed in
expression �6� is also valid for quantum systems. In this sec-
tion, we will explain its practical quantum solution using the
recent quantum �Bohm� trajectory formalism in Ref. 33. For
convenience, we rewrite the many-particle Hamiltonian in
Eq. �6� as

ALBAREDA, SUÑÉ, AND ORIOLS PHYSICAL REVIEW B 79, 075315 �2009�

075315-6



H�r�1, . . . ,r�N�t�,t� = ��
k=1

N�t�

−
�2

2 · mk
�r�k

2 + U�r�1, . . . ,r�N�t�,t�� ,

�22�

where we explicitly write the electron momentum as
p�k=−i��r�k

in the kinetic energy �as mentioned in Eq. �2b��.
According to Eq. �6�, the many-particle electrostatic poten-
tial U�r�1 , . . . ,r�N�t� , t� is defined as

U�r�1, . . . ,r�N�t�,t� = �
k=1

N�t�

�qk · Wk�r�1, . . . ,r�N�t�,t�

−
1

2 �
j=1

j�k

N�t�

qk · V�r�k,r� j�
 . �23�

Then, the many-particle time-dependent Schrödinger equa-
tion that provides the many-particle wave function,
	�r�1 , . . . ,r�N�t� , t�, which describes the electron dynamics as-
sociated to our many-particle �open-system� Hamiltonian, is

i�
�	�r�1, . . . ,r�N�t�,t�

�t
= ��

k=1

N�t�

−
�2

2 · m
�r�k

2

+ U�r�1, . . . ,r�N�t�,t�� · 	�r�1, . . . ,r�N�t�,t� .

�24�

The practical utility of expression �24� in understanding
quantum scenarios can seem quite doubtful because its direct
solution becomes computationally inaccessible for more than
very few electrons.1,2,43 However, one of the authors has re-
cently developed a transport formalism33 in terms of Bohm
trajectories that simplifies the complexity of evaluating Eq.
�24�.

Some introductory explanations about Bohm trajectories
in single-particle and many-body scenarios can be found in
Refs. 44–47. Here, we go directly to the main result of Ref.
33 where it is shown that a many-particle electron Bohm
trajectory r�a�t� computed from the many-particle wave func-
tion, 	�r�1 , . . . ,r�N�t� , t�, solution of the Eq. �24� can be
equivalently computed from the single-particle wave-
function 
a�r�a , t� solution of the following single-particle
Schrödinger equation:

i�
�
a�r�a,t�

�t
= �−

�2

2 · m
�r�a

2 + Ua�r�a,R� a�t�,t� + Ga�r�a,R� a�t�,t�

+ i · Ja�r�a,R� a�t�,t��
a�r�a,t� , �25�

where we have defined R� a�t�= 
r�1�t� ,r�a−1�t� ,r�a+1�t� ,r�N�t� , t�
as a vector that contains all Bohm trajectories except r�a�t�.
The exact definition of the other potentials that appear in Eq.

�25�, Ga�r�a ,R� a�t� , t� and Ja�r�a ,R� a�t� , t�, can be obtained from
Ref. 33. The total many-particle electrostatic potential in Eq.
�24� has been divided into two parts,

U�r�a,R� a�t�,t� = Ua�r�a,R� a�t�,t� + Ub�R� a�t�,t� . �26�

From expressions �9� and �23�, we realize that Ua�r�a ,R� a�t� , t�
can be greatly simplified as

Ua�r�a,R� a�t�,t� = 2 �
j=1

j�a

N�t�

qa · V�r�a,r� j�t�� + �
i=N�t�+1

M

qa · V�r�a,r�i�t��

− �
j=1

j�a

N�t�

qa · V�r�a,r� j�t�� = W̄a�r�a,R� a�t�,t� . �27�

The rest of the terms V�r� j�t� ,r�i�t�� of expression �26� appear

in Ub�R� a�t� , t� and they are included in the potential

Ga�r�a ,R� a�t� , t�. However, this term Ub�R� a�t� , t� has no role
on the single-particle wave function 
a�r�a , t� because it has
no dependence on r�a and it only introduces an irrelevant
global phase on 
a�r�a , t�.

Let us notice that, in the right-hand side of expression
�27�, we have used the same definition of the potential profile
as in classical expression �17�. The only difference here is

that R� a�t� are not classical trajectories but quantum �Bohm�
trajectories. Therefore, the computation of the potential pro-

file W̄a�r�a ,R� a�t� , t� that appears in the single-particle
Schrödinger equation �Eq. �25�� just needs 3D Poisson equa-
tions �Eqs. �18� and �19�� with the boundary conditions �Eq.

�20��. Interestingly, since the term W̄a�r�a ,R� a�t� , t� is com-
puted from a Poisson equation, our quantum-trajectory algo-
rithm can also be directly extended to spatial-dependent per-
mittivity systems.

In fact, in order to effectively solve the Schrödinger equa-
tion �Eq. �25��, we need to know the position of the rest of

Bohm particles R� a�t�= 
r�1�t� ,r�a−1�t� ,r�a+1�t� ,r�N�t� , t�. There-
fore, all N�t� Bohm trajectories have to be computed simul-
taneously within a system of N�t� Schrödinger equations
coupled by N�t� Poisson equations. The keystone of our
quantum-trajectory algorithm is that, in order to find r�a�t�,
we do not have to evaluate the electrostatic potential,
U�r�1 , . . . ,r�N�t� , t�, and the wave function, 	�r�1 , . . . ,r�N�t� , t�,
everywhere in the N-multidimensional configuration space

r�1 , . . . ,r�a , . . . ,r�N�t� , t�, but only over a smaller number of
configuration points where all positions of electrons are

fixed, R� a�t�, except r�a, i.e., 
r�1�t� , . . . ,r�a , . . . ,r�N�t��t� , t�. We
want to remark that the full �short- and long-range� Coulomb
interaction present in Eq. �6� is considered explicitly in Eq.
�25� without any �mean-field or perturbative� approximation.

Finally, according to the summary done in Sec. I of this
work, we want to emphasize the similarities between the
�open-system� Bohm-trajectory computational algorithm dis-
cussed in Ref. 33 and the �electron-transport version�
density-functional theory mentioned in Sec. I. For the latter,
the decomposition of the many-particle system into a set of
coupled single-particle Schrödinger equations is exact and
demonstrated by the Hohenberg-Kohn-Sham theorem.6,7

However, from a practical point of view, the exact exchange-
correlation functionals that appear in the single-particle
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Schrödinger equations are unknown and, therefore, require
some approximation. Identically, in the quantum �Bohm� tra-
jectory algorithm, the use of single-particle Schrödinger
equation �Eq. �25�� is exact to treat many-particle system as
demonstrated in the theorem considered in Ref. 33. However,

the exact values of the terms Ga�r�a ,R� a�t� , t� and

Ja�r�a ,R� a�t� , t� that appear in Hamiltonian �25� are unknown
�because they require the partial knowledge of the shape of
the many-particle wave function�. Thus, from a practical
point of view, they need to be approximated by some edu-
cated guess as in the density-functional theory.

Finally, the exchange interaction among the �fermions�
electrons can also be considered in the present quantum al-
gorithm. A brief explanation of how the exchange interaction
can be introduced in the present quantum �Bohm� trajectory
algorithm is mentioned in Ref. 33, but the discussion of this
issue is far from the goal of the present paper.

VI. NUMERICAL RESULTS FOR THE MANY-PARTICLE
HAMILTONIAN IN CLASSICAL AND QUANTUM

ELECTRON DEVICES

In Secs. I–V of this paper, a many-particle Hamiltonian
has been developed for an arbitrary ensemble of particles
with Coulomb interaction among them. In this section, our
numerical examples will deal with electrons in solid-state
semiconductors. Therefore, first of all, we have to specify
under what approximations the theoretical many-particle
Hamiltonian developed in the first part can be used to de-
scribe solid-state semiconductors. Only the dynamics of the
free electrons will be studied in our numerical results. The
interaction with the rest of the charges �associated to core
electrons and ions� will be considered as average polarization
charges via a spatial-dependent permittivity.36 We do also
assume an effective mass48 for the free electrons that ac-
counts for their interaction with the periodic atomic structure
under the standard Born-Oppenheimer approximation49 �that
neglects the interaction of valence electrons with other kind
of particle such as phonons�. These are reasonable approxi-
mations in most electron-transport models of ballistic
devices.12,27

We solve the many-particle �open-system� Hamiltonian
from expression �6� to compute the current-voltage charac-
teristic for classical and quantum electron devices. We use
the classical algorithm discussed in Sec. IV for the simula-
tion of a double-gate field-effect transistor50 �DG-FET�,
while we use the quantum algorithm discussed in Sec. V for
a resonant tunneling diode47 �RTD�. As mentioned above, no
phonon, impurity, or roughness scattering mechanism is in-
cluded in the simulations and only the full Coulomb interac-
tion is considered explicitly. In order to emphasize the im-
portance of our treatment of the electron-electron
correlations in such nanoscale devices, we will compare
these current-voltage characteristics with the results obtained
with a time-dependent “mean-field” approach that will be
discussed in Appendix B. We refer to “many-electron” re-
sults to describe the simulation done with either classical
�Sec. IV� or quantum �Sec. V� algorithms that requires solv-
ing N�t� Poisson equations with N�t� different boundary con-

ditions and charge densities �expressions �17�–�20�� at each
time step. Alternatively, we refer to the time-dependent
‘‘mean-field’’ results when a single Poisson equation �expres-
sions �B1�–�B4�� is solved for all electrons at each time step
of the simulation.

For all simulations �quantum, classical, mean field, or
many electron�, the same electron injection model is used.
We use an injection model applicable to systems with arbi-
trary electron confinement, which is a time-dependent ver-
sion of the Landauer boundary conditions, valid for degen-
erate and nondegenerate systems. We inject electrons
according to the Fermi-Dirac statistics defined by a Fermi
level �an electrochemical potential� deep inside the
contacts.38 The applied bias provides a difference between
the values of the Fermi level at each injecting surface. Our
injection model, coupled to the boundary conditions of the
Poisson equation, also ensures charge neutrality at the
contacts.35

All simulations use a 3D finite-difference Poisson solver
scheme. The whole volume � of the active region drawn in
Fig. 1 is divided into Nx ·Ny ·Nz cells. Each 3D cell has
spatial dimensions of DX, DY, and DZ. Thus, the active re-
gion of our simulating device has a volume equal to
�Nx ·DX� · �Ny ·DY� · �Nz ·DZ�=Lx ·Ly ·Lz. The boundary con-
ditions of the Poisson equation on the six rectangular sur-
faces S= 
S1 ,S2 , . . . ,S6� of Fig. 1 are defined using either
Dirichlet or Neumann arguments. In general, on the surfaces
S2, S3, S5, and S6, Neumann boundary conditions are used
with the educated guess that the component of the electric
field normal to the surface is zero there, E� l�r�l , t� ·n� l=0, where
n� l is a unit vector normal to the mentioned surfaces and
pointing outward. The continuity of the displacement vector
normal to surfaces justifies the assumption E� l�r�l , t� ·n� l=0 at
the boundaries when the relative permittivity inside � is
much higher than the corresponding value outside. On the
other hand, in the surfaces S1 and S4 of Fig. 1 we use the
Dirichlet boundary conditions discussed in Sec. III,
Bl�r�1 , . . . ,r�N�t� , t�, with final expression �20�.

Finally, a technical remark about the application of ex-
pression �20� in the classical or quantum many-electron
simulations is mandatory. Strictly speaking, our assumption
that the potential at one particular surface is position inde-
pendent, B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t��Bl�r�1 , . . . ,r�N�t� , t�, is
not completely accurate because we known from the discus-
sion in Sec. III that the original function
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t� in expression �11� has to repro-
duce, somehow, the atomistic charge distribution on the
surface.41 In particular, one can expect
B�r�1 , . . . ,r�N�t� , . . . ,r�M ,r�l , t�→� when the electron is close to
the border, r�k→r�l. However, due to our ignorance about the
atomistic description of the contact interface,41 we apply the
boundary conditions �Eq. �20�� assuming that the distance
between r�k and r�l is always greater than 1 nm �this value is
interpreted as a measure of range of the atomistic
pseudopotential2 in the spatial-dependent permittivity sce-
narios discussed here�.

A. Classical simulation of two-electron system: Many electron
versus mean field

In this section we will explain the origin of the important
differences that will appear later between the mean-field and
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many-electron algorithms using a simple semiclassical two-
electron system. We consider one electron �labeled as one
electron� injected from the source surface, S4, at an arbitrary
position. A second electron is injected, arbitrarily, from the
drain surface, S1. A battery provides an external voltage
equal to zero at the drain and source surfaces. A 3D cubic
system with a volume of �= �20 nm�3 is considered as the
active device region. We consider silicon parameters for the
numerical simulation. Within the mean-field approximation

only the potential profile W̄mean�r� , t� is calculated for the two-
electron system using expressions �B1�–�B4�. Then, we real-
ize from Fig. 4 that each electron can be reflected by an
artificial alteration of the potential profile related to its own
charge. In Figs. 5 and 6 we have plotted the energy potential

profile seen by the one electron, W̄1�r�1 , t�, and by the two

electron, W̄2�r�2 , t�, using the many-electron algorithm de-
scribed by expressions �17�–�20�. Electrons are not affected
by their own charge. We clearly see that, within the mean-
field approximation, electrons can be unable to overcome the
large potential barrier that appears at their own position �due
to their own charge�. In addition, the simple results confirm
that the mean-field error is equal to expression �B7�, i.e., the

error of the mean-field potential profile at each position of
the active region is Errork�r� , t�=V�r� ,r�k�t��.

Finally, a discussion about the role of the spatial mesh
used for the numerical solution of the Poisson equation is
relevant. For an electron device with a length of hundreds of
nanometers, we need a mesh of the 3D active region with
spatial step DX�DY �DZ�10 nm to deal with not more
than 1000 nodes in the numerical solution of the Poisson
equation. This computational limitation in the resolution of
the potential is present when solving either the mean-field or
the many-electron algorithm. With such spatial resolution,
the short-range interaction is missing in both procedures be-
cause two electrons inside the same spatial cell will not repel
each other. In addition, the error between both procedures,
Errork�r� , t�=V�r� ,r��t�k�, is reduced because the numerical
Coulomb potential profile is smoothed due to the low reso-
lution �i.e., the diameter of the region where V�r� ,r��t�k� has a
strong influence is shorter than the cell dimensions�. There-
fore, we obtain roughly identical results with both schemes.
In the subplots of Fig. 7, the same electron trajectory is pre-
sented for different mesh resolutions. As can be seen, for the
best mesh resolution �DX=DY =DZ=2 nm�, the differences
between both treatments are maximized due to the important
spurious autoreflection effect found in the mean-field trajec-
tory. On the other hand, as the resolution of our mesh is
reduced, differences between both treatments disappear, giv-
ing roughly equal trajectories for cell dimensions above 5
nm.

In summary, when the spatial cells are large, the mean-
field and the many-electron schemes correctly model the
long-range Coulomb interaction, but both neglect the short-
range component. On the contrary, with smaller spatial steps
DX�DY �DZ�5 nm, the many-electron resolution takes
into account long- and short-range Coulomb interactions cor-
rectly, whereas the description of the short-range component
within the mean-field approximation is completely incorrect
�i.e., electrons are repelled by themselves�. In other words,
when DX ,DY ,DZ→0 the mesh error in our many-electron
algorithm reduces to zero, while the error in the mean-field
approach tends to infinite, Errork�r� , t�→� �see a schematic
summary of the explanation of this discussion in Fig. 8�.

FIG. 4. �Color online� Potential energy profile W̄mean�r� , t� com-
puted with a 3D Poisson solver using the classical mean-field ap-
proximation on the plane X-Y of the active region �= �20 nm�3 at
z=6 nm at 0.4 fs. The solid points are electron positions.

FIG. 5. �Color online� Potential energy profile of the one elec-

tron, W̄1�r�1 , t�, with the many-electron algorithm in the plane X-Y of
the active region �= �20 nm�3 at z=6 nm at 0.4 fs. The solid point
is the one-electron position.

FIG. 6. �Color online� Potential energy profile of the two elec-

tron, W̄2�r�2 , t�, with the many-electron algorithm in the plane X-Y of
the active region �= �20 nm�3 at z=6 nm at 0.4 fs. The solid point
is the two-electron position.
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Finally, it is important to remark that the electron trajec-
tories in Fig. 7 are computed using the classical scheme of
Sec. IV, but the electrostatic potential profiles are computed
from a 3D Poisson solver that is identical for the classical or
quantum algorithms. Therefore, the conclusions drawn here
for the classical algorithm can be directly extrapolated to our
quantum algorithm. In the classical algorithm, the wrong po-
tential profile of Fig. 4 affects the electric field �Eqs. �13a�
and �13b�� that modifies the electron dynamics. Identically,
the wrong mean-field potential in expression �25� will affect
the solution of the Schrödinger equation that will modify
Bohm trajectories.

B. Classical simulation of a double-gate field-effect transistor

Now, we use the classical solution of the many-particle
Hamiltonian �6� to provide a full simulation51 for the DG-
FET depicted in Fig. 9. Electron transport in the x direction
�from source to drain� takes place along a silicon �100� ori-
entation channel at room temperature. In particular, the elec-
tron mass is taken according to the six equivalent ellipsoidal
constant energy valleys of the silicon band structure.27,50 The
effective masses of the ellipsoid are ml=0.9163m0 and mt
=0.1905m0, with m0 as the free-electron mass. For details on

the particular effective mass taken by the electrons in each
direction and valley see Ref. 38. The dimensions of the chan-
nel of devices Lz and Ly are both small enough, so that the
active region becomes an effective one-dimensional �1D�
system �a quantum wire� and the energy of an electron in
one particular valley is E=�2kx / �2mt�+E1D

q , where E1D
q

=�2�2 / �2mtLy
2�+�2�2 / �2mlLz

2� represents the minimum en-
ergy of the first subband, whose value is E1D

q =0.182 eV for
Lz=2 nm and Ly =5 nm. The energies of the next lowest
subbands �E1D

q =0.418 eV or E1D
q =0.489 eV� are assumed

high enough to keep a single band simulation. Therefore, we
use a 3D Poisson solver for electrostatic, but a 1D algorithm
to describe the velocity of each electron in the x direction.
Due to the lateral electron confinement, the velocities in the
y and z directions are zero.52 We solve N�t� 1D Newton
equation �Eq. �13�� coupled by N�t� 3D Poisson equation
�Eq. �18��.

We obtain the transistor current-voltage characteristics by
computing the time evolution of many interacting electrons
inside the 1D DG-FET. The classical many-electron algo-
rithm is compared with the classical mean-field one. The
details of the simulation are described in Table I. A total
number of cells, Nx ·Ny ·Nz, on the order of 1000 and a num-
ber of electrons, N�t�, about 20–50, implies a simulation time
on the order of 3–4 h for each bias point,53 while it takes
20–30 min within the mean-field approximation.

TABLE I. Parameters for the DG-FET depicted in Fig. 9.

Units Symbol Value

Lengths �nm� Lx 15

�nm� Ly 5

�nm� Lz 6

�nm� LSI 2

�nm� Wox 2

Spatial step �nm� DX 3.0

�nm� DY 1.6

�nm� DZ 1.0

Relative permittivity Air 1.0005

Oxide 3.8000

Silicon 11.7514

Doping �cm−3� Channel Intrinsic

�cm−3� Contact N+ 2
1019

Simulation time �sec.� T 5
10−10

Temporal step �sec.� Dt 2
10−16

FIG. 7. �Color online� Electron trajectory computed with the
mean-field �circles� and the many-electron �squares� algorithms for
four different mesh resolutions. �a� DX=DY =DZ=2 nm, �b� DX
=DY =DZ=4 nm, �c� DX=DY =DZ=6 nm, and �d� DX=DY
=DZ=8 nm.

DX

� �,kError r t�

LLoonngg--rraannggeeLLoonngg--rraannggee
++

SShhoorrtt--rraannggee # e- per cell > 1

# e- per cell = 0 or 1

55nnmm

“mean-field” (1 Poisson Eq.)

“many-electron” (N Poisson Eq.)

FIG. 8. �Color online� Schematic representation of the errors in
the mean-field and the many-electron approaches as a function of
the size of the discretization mesh.
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FIG. 9. �Color online� Schematic representation of the
DG-FET.
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In Figs. 10 and 11 average values for current and number
of particles are presented for different gate and drain volt-
ages. When the FET remains under subthreshold region, the
results are quite similar for both methods. However, interest-
ingly, the average current of the FET system in the sub-
threshold region predicted by the many-electron algorithm is
slightly larger than the result obtained by the mean-field ap-
proximation. In other words, the mean-field results remain in
the subthreshold region, while the many-electron results
show a DG-FET channel partially opened. In any case, the
most important differences occur for higher gate voltages. In
order to understand the results, we have to remind that the
DG-FET tends to behave as a capacitor where the charge
inside the channel is controlled by the gate voltage. In addi-
tion, the charge at the contacts is controlled by the injection
process that achieves local charge neutrality there. Therefore,
the number of electrons inside the channel tends to be iden-
tical within both methods. However, the average current that
is sensible to electron dynamics is higher with the many-

electron method than with the mean-field approximation be-
cause fewer electrons are reflected in the former �i.e., there
are no electrons reflected by its own charge�. For the highest
gate voltages, equal results for the mean current are obtained
for both methods.

C. Quantum simulation of a resonant tunneling diode

In this section, we will provide a numerical example of
the solution of the quantum many-particle Hamiltonian �6�
for an ensemble of electrons in a RTD of Fig. 12. We again
compare our many-electron method with the mean-field ap-
proximation. We consider a RTD composed of two highly
doped drain-source GaAs regions, two AlGaAs barriers, and
a quantum well �see Table II�. We assume a constant effec-
tive mass m=0.067m0, with m0 as the electron free mass
along the whole structure. Transport takes place from emitter
to collector in the x direction. The lateral dimensions are
small enough to consider electron confinement in y and z
directions.52 The energy of an electron in one particular
valley is E=�2kx / �2m�+E1D

q , where E1D
q =�2�2 / �2mLy

2�
+�2�2 / �2mLz

2� represents the minimum energy of the first
subband, whose value is E1D

q =0.137 eV for Lz=9 nm and
Ly =9 nm. The energies of the next lowest subbands are in-
accessible to electrons �E1D

q =0.551 eV or E1D
q =1.239 eV�.

Again, room temperature is assumed.
The practical quantum algorithm for the RTD implies

solving numerically N�t� time-dependent single-particle 1D
Schrödinger equation �Eq. �25�� for the transport direction x.
Due to the confinement in the lateral directions, we assume
that the Bohm velocity in y and z directions is negligible.52

Since expression �25� deals with time-dependent potential
profiles, its solution must be computed with a numerical
finite-difference scheme method �see the numerical algo-
rithm presented in Appendix A of Ref. 54�. In particular, as
discussed in Ref. 33, we assume the zero-order Taylor ap-

TABLE II. Parameters for the RTD depicted in Fig. 12.

Units Symbol Value

Lengths �nm� Lx 6.4

�nm� Ly 9.0

�nm� Lz 9.0

Barrier dimensions �eV� High 0.5

�nm� Lwell 2.4

�nm� Wbarrier 1.6

Relative permittivity Air 1.0005

GaAs 13.1800

AlGaAs 11.7760

Spatial step �nm� DX 0.20

�nm� DY 1.12

�nm� DZ 1.12

Doping �cm−3� Channel Intrinsic

�cm−3� Contact N+ 2
1019

Simulation time �sec.� T 2
10−10

Temporal step �sec.� Dt 1
10−17

FIG. 10. �Color online� Average current for the 1D DG-FET of
Fig. 9 using the many-electron and mean-field algorithms. The open
ellipses include results with the same gate voltage indicated on the
left.

FIG. 11. �Color online� Average number of particles inside the
active region of the DG-FET of Fig. 9 using the many-electron and
mean-field algorithms. The open ellipses include results with the
same gate voltage as indicated on the left of Fig. 10.
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proximations Ga�r�a ,R� a�t� , t��Ga�r�a�t� ,R� a�t� , t� and
Ja�r�a ,R� a�t� , t��Ja�r�a�t� ,R� a�t� , t� in expression �25�. We do
also emphasize that the term Ua�r�a ,R� a�t� , t� that appears in
Eq. �25� contains the full �long and short ranges� Coulomb
interaction with the particular boundary conditions devel-
oped in Sec. III. All Schrödinger equations are coupled by
N�t� 3D Poisson equations with N�t� different boundary con-
ditions and charge densities �expressions �17�–�20��. The to-
tal number of cells, Nx ·Ny ·Nz, on the order of 1000, and the
number of electrons, N�t�, about 10–20, implies a computa-
tional time on the order of 2–3 days for each bias point,53

while it takes 10 h within the mean-field approximation. The
calculations of the mean-field approximations and our many-
electron approach are identical except in the computation of
the potential profile. In the former a unique potential profile
is computed, while in the later there is one potential profile
for each electron. Finally, let us notice that we consider reso-
nant tunneling, electron confinement, and Coulomb interac-
tion in our quantum solution of the many-particle Hamil-
tonian, but we do not include the exchange interaction
among electrons. The algorithm to include such interaction
in our quantum �Bohm� trajectory proposal is presented in
Ref. 33.

In Fig. 13 average values for current are presented for
different biases with the many-electron and mean-field algo-
rithms. We compute the average current at each bias point
using a detailed version of the Ramo-Shockley theorem54 in
surface S4 �emitter� and surface S1 �collector�. As expected,
identical results are obtained from both surfaces showing the
numerical accuracy of our simulator. When the RTD remains
far from the resonant voltage, the results are quite similar for
both methods, but the many-electron approach provides a bit
higher current because it avoids the self-reflected electrons in
the contact that are found in the mean-field approach, as
mentioned previously in Figs. 4–6. On the contrary, in the
resonant region, the correct consideration of the electron-
electron interaction is very relevant because the quantum
transport is very sensible to the quantum well electrostatics.
Now, the potential profile determines the shape of the quan-
tum well and, therefore, the resonant energies �dashed hori-
zontal line in insets �a� and �b� of Fig. 13� of the electrons.
When a “mean-field” electron tries to traverse the “empty”
double barrier structure, it “feels” a perturbation in the quan-
tum well due to its own charge implying an increase in the
resonant energy and the possibility of being finally reflected
by its own charge. In other words, the “mean-field” electron
can be Coulomb blockaded by itself. Our many-electron al-

gorithm is free from this pathological behavior. This impor-
tant difference explains the spurious reduction in the current
with the mean-field method at resonance. It also explains the
movement of the position of the resonant voltage �i.e., the
voltage at the maximum current� as schematically explained
in the insets of Fig. 13. The inset of Fig. 13�a� shows how the
electron that traverses an empty quantum well feels its own
repulsion when the mean-field approximation is used �in-
creasing the resonant energy in dotted line�, while in inset of
Fig. 13�b�, the electron with a many-electron simulation is
free from this pathological effect.

In summary, the relation between the shape of the poten-
tial profile and the behavior of the electron can be much
more complex in the quantum regime than in its classical
counterpart �where the spatial derivative of the potential pro-
file directly defines the electron acceleration�. Figure 13
shows the importance of providing the exact many-particle
Coulomb description of electrons in the current-voltage char-
acteristic of a RTD. The time-dependent mean-field approach
used here provides spurious effects on the correlations of
electrons that are evident even in the dc behavior of RTD
simulations. To be fair, let us notice that the time-dependent
mean-field approach �the same as in Ref. 47� does improve
the treatment of the Coulomb correlations when compared
with the standard Fermi-liquid approaches13,14 because, in
spite of providing a pathological “autointeraction” with it-
self, it captures the Coulomb correlation between one elec-
tron and the others.47 In any case, the many-electron ap-
proach developed here, with the exact description of the
electron Coulomb interactions, is greatly preferred.

VII. CONCLUSIONS

The prediction of the collective behavior of many elec-
trons is a very active field of research and several theoretical
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FIG. 12. �Color online� Schematic representation of the
RTD.
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FIG. 13. �Color online� Average current through surfaces S1 and
S4 for the RTD of Fig. 12 as a function of bias using the many-
electron �solid symbols� and mean-field �open symbols� algorithms
�lines are a visual help�. Nonuniform voltages steps are used to
focus on the resonant region. Insets show schematically the effect of
an electron crossing an empty well on its own electrostatic potential
using �a� the mean-field or �b� the many-electron approaches.
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approximations have been proposed to improve the treatment
of electron-electron correlations. In this work, an exact
many-particle Hamiltonian for N�t� electrons inside an open
system is developed, without any mean-field or perturbative
approximation. The many-particle Hamiltonian �6� is
built from a sum of N�t� electrostatic potentials
Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� solutions of N�t� Poisson equation
�Eq. �7�� in a 3D volume. We use the Poisson equation to
define Wk�r�1 , . . . ,r�k , . . . ,r�N�t�� instead of the Coulomb law
because the former is valid for scenarios with �or without� a
spatial-dependent permittivity. In particular, it is shown that
the boundary conditions �Eq. �12�� are different for each term
Wk�r�1 , . . . ,r�k , . . . ,r�N�t��. It is shown that these particle-
dependent boundary conditions �Eq. �12�� of the electrostatic
potentials provide the same electron dynamics than the
image-charge method applied to electron transport. However,
our many-particle approach has the fundamental advantage
that it can be directly implemented into 3D realistic �classical
or quantum� electron device simulators, while the image-
charge method is an excellent analytical approach applicable
only to very simple systems �such as one electron crossing
an ideal41 infinite metallic surface�.

A classical solution of the many-particle Hamiltonian is
presented for a DG-FET. The results are compared with a
time-dependent mean-field approach described in Appendix
B. Within the mean-field approximation only one potential

profile W̄mean�r� , t� is calculated for all electrons. Then, each
electron can be reflected by an artificial alteration of the po-
tential profile due to its own charge. On the contrary, in the
many-electron algorithm described here, electrons are not af-
fected by their own charge. The average current and the
number of particles are computed for the DG-FET showing
that the differences between the mean-field approximation
and the exact many-electron approach become important
when small geometries �that imply stronger electrostatic in-
teraction� are involved.

A quantum solution of the many-particle Schrödinger
equation with the exact many-particle �open-system� Hamil-
tonian developed here is presented in terms of the quantum
�Bohm� trajectory algorithm mentioned in Ref. 33. The rel-
evant point of the quantum-trajectory formalism is that
Bohm trajectories can be computed without the full knowl-
edge of the many-particle wave function, 	�r�1 , . . . ,r�N�t� , t�,
but with the knowledge of the single-particle wave function,

a�r�a , t�. It is emphasized that the approach presented in
Ref. 33 has similarities with the density-functional theory. In
both, the decomposition of many-particle system into a
coupled set of single-particle Schrödinger equations is exact,
but both need an approximation for the single-particle poten-
tials that appear in their equations �i.e., the exchange-
correlation functionals in the latter and the terms

Ga�r�a ,R� a�t� , t� and Ja�r�a ,R� a�t� , t� in the former�. We do also

emphasize that the electrostatic term Ua�r�a ,R� a�t� , t� that ap-
pears in the time-dependent Schrödinger equation with time-
dependent potentials, expression �25�, contains the full �long
and short ranges� Coulomb interaction with the particular
boundary conditions developed in Sec. III. Numerical results
are presented for a RTD and compared with time-dependent
mean-field approach developed in Appendix B. The many-

electron approach developed here is greatly preferred be-
cause it avoids the “self-interaction” found in the time-
dependent mean-field approach discussed in Appendix B.

Finally, since either the classical or the quantum many-
electron solutions of the Hamiltonian are time-dependent
Coulomb-interacting algorithms, apart from the average �dc�
current shown in this work, both many-particle approaches
are a really valuable simulation tools to obtain reliable infor-
mation on the high-frequency and �dc and ac� noise perfor-
mances of the state-of-the-art nanoscale devices. Future work
will follow this direction.
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APPENDIX A: THE ELECTRON DYNAMICS OBTAINED
BY THE BOUNDARY CONDITIONS [EQ. (12)] AND

BY THE IMAGE-CHARGE METHOD

In this appendix, we show that, in principle, the electro-
static potential that guides the dynamics of the i particle
obtained by the image-charge method is identical to the one
computed with our many-particle Hamiltonian. In fact, we
only have to show that the boundary conditions are identical
in both approaches.

As seen in Fig. 3 of the paper, we define a subensemble of
imaginary particles 
�N+1�� , . . . ,M�� located outside �. The
essential property of these imaginary particles is that, to-
gether with the first N�t� particles inside �, they reproduce
the expected value of the potential B�r�1 , . . . ,r�M�t� ,r�

l , t� mea-
sured at the boundary surface Sl,

�
k=1

N�t�

V�r�l,r�k� + �
j�=N�t�+1

M� qj�

4��	r�l − r� j�	
= B�r�1, . . . ,r�M�t�,r�

l,t� ,

�A1�

where the primes M� , j� in the second term remind that we
deal with imaginary charges �the generalization to a distribu-
tion of imaginary charge, rather than point particles, is also
available�. Then, the electrostatic potential seen by the i par-
ticle at the Sl boundary is just

W̄i
image�r�,t�	r�=r�l = �

k=1

k�i

N�t�

V�r�l,r�k� + �
j�=N�t�+1

M� qj�

4��	r�l − r� j�	
.

�A2�

Therefore, from Eqs. �A1� and �A2�, the electrostatic poten-
tial of the i particle at the boundary can be computed as

W̄i
image�r�,t�	r�=r�l = B�r�1, . . . ,r�M�t�,r�

l,t� − V�r�l,r�i� . �A3�

Expression �A3� is exactly the same result that we obtain
from the use of our many-particle boundary conditions �see
expression �12��. Since the charge distribution inside the vol-
ume � does not change with the image-charge method or
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with our algorithm and both have identical boundary condi-
tions, the uniqueness electrostatic theorem guarantees that
the potential distributions obtained by both algorithms are
identical not only in the boundaries but in any point inside

the volume �. Therefore, we obtain the identity W̄i
image�r� , t�

=W̄i�r� , t�; ∀r���. An explanation in terms of the electric
field, rather than the electrostatic potential, follows identical
steps.

Finally, as mentioned in the paper, let us remind that the
demonstration of the identity is quite simple, but the relevant
point to compare both methods is that finding the imaginary

charges, � j�=N�t�+1
M� qj� /4��	r�l−r� j�	, which fulfill expression

�A1� in 3D realistic scenarios is not at all trivial.41,42 On the
other hand, the ability of our many-particle Hamiltonian to
be included into 3D realistic devices is explicitly demon-
strated in Sec. VI.

APPENDIX B: TIME-DEPENDENT MEAN-FIELD
APPROXIMATION FOR THE MANY-PARTICLE

HAMILTONIAN

As described in Sec. I, the mean-field approximation pro-
vides a single average potential for computing the dynamics
of all the electrons. This average potential, which we label

here by the suffix “mean” W̄mean�r� , t�, is still capable of pre-
serving most of the collective effects of the Coulomb inter-
action. Here, we compare this approximation with our exact

many-particle Hamiltonian. The term W̄mean�r� , t� is computed
by taking into account all charges inside the volume �.
However, since one particle cannot “feel” its own charge, in

fact, W̄mean�r� , t� can be interpreted as the electrostatic poten-
tial seen for an additional probe charge whose position is r�,

W̄mean�r�,t� = W̄M+1�r�1�t�, . . . ,r�N�t��t�,r�� . �B1�

This term W̄mean�r� , t� is a solution of a unique 3D Poisson
equation,

�r�
2W̄mean�r�,t� = �̄mean�r�,t� , �B2�

where the charge density is defined as

�̄mean�r�,t� = �
j=1

N�t�

qj��r� − r� j�t�� , �B3�

and, according to expression �11� in the paper, the boundary
conditions for this additional probe charge must be

W̄mean�r�,t�	r�=r�� = B�r�1�t�, . . . ,r�N�t��t�,r�l,t�, l = 1, . . . ,6.

�B4�

Let us notice that the time-dependent mean-field approxi-
mation discussed here can be applied to either classical or
quantum systems. Both approaches share expressions
�B2�–�B4� for the computation of the electrostatic potentials
�change the classical trajectories by the quantum ones�. We
also want to remark the time-dependence of expression �B2�.
This is a common feature for classical �semiconductor Monte

Carlo51� simulations but less frequent for quantum mean-
field approaches.

Now, we estimate the error of our time-dependent mean-
field approximation. First, we show that the mean-field po-

tential can be written in terms of the potentials W̄i�r�i , t� men-
tioned in Eq. �17�. In particular, we can write the mean-field

potential W̄mean�r� , t� as

W̄mean�r�,t� =
1

N�t���
j=1

N�t�

W̄mean�r�,t�� =
1

N�t� �j=1

N�t�


W̄j�r�,t�

+ V�r�,r� j�t��� . �B5�

Now, we compute the error, Errork�r� , t�, as

Errork�r�,t� = W̄mean�r�,t� − Wk�r�,t� =
1

N�t���
j=1

N�t�

W̄j�r�,t�

+ V�r�,r� j�t��� − W̄k�r�,t� , �B6�

which can be finally rewritten as

Errork�r�,t� =
1

N�t� �j=1

N�t�


W̄j�r�,t� − W̄k�r�,t� + V�r�,r� j�t���

= V�r�,r�k�t�� , �B7�

where, according to Eq. �9�, we have used the identity

W̄j�r�,t� − W̄k�r�,t� = �
i=1

i�j

M

V�r�,r�i�t�� − �
i=1

i�k

M

V�r�,r�i�t��

= V�r�,r�k�t�� − V�r�,r� j�t�� . �B8�

Expression �B7� shows that Errork�r� , t�→� when
r�→r�k�t�. The mean-field approximation implies that the po-
tential “felt” by the k particle at r�→r�k�t� is its own potential
profile. In fact, from a numerical point of view, the use of the
mean-field approximation is not so bad. For example, classi-
cal simulators uses 3D meshes with cell sizes of few nanom-
eters, DX�DY �DZ�10 nm. Then, the error of the mean-
field approximation is smaller than the technical error �i.e.,
mesh error� due to the finite size of the cells. The long-range
Coulomb interaction is well captured with the mean-field
approximation, while this approximation is really bad strat-
egy to capture the short-range Coulomb interaction28–32 �see
Fig. 8 in the paper�.

Finally, let us remark another important point about the
mean-field approximation. Looking at final expression �B7�,
rewritten here as Wk�r� , t�=W̄mean�r� , t�−V�r� ,r�k�t��, it seems
that Wk�r� , t� can be computed from a unique mean-field so-

lution of the Poisson equation W̄mean�r� , t� when subtracting
the appropriate two-particle potential V�r� ,r�k�t��. In fact, this
is the strategy used in several recent works28–32 to improve
the treatments of the short-range Coulomb interaction in
electron device Monte Carlo simulators. However, this strat-
egy is not as general as our procedure because these works
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need an analytical expression for the two-particle Coulomb
interaction V�r� ,r�k�t��. The analytical expression of V�r� ,r�k�t��
written in expression �3� is only valid for scenarios with
homogenous permittivity. On the contrary, our procedure

with N�t� electrostatic potentials computed from N�t� differ-
ent Poisson equations in a limited 3D volume � can be ap-
plied inside general scenario with �or without� spatial-
dependent permittivity.
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