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We have simulated energy relaxation and equilibrium dynamics in Coulomb glasses using the random
energy lattice model. We show that in a temperature range where the Coulomb gap is already well developed
�T=0.03–0.1�, the system still relaxes to an equilibrium behavior within the simulation time scale. For all
temperatures T, the relaxation is slower than exponential. Analyzing the energy correlations of the system at
equilibrium C���, we find a stretched exponential behavior, C���=e−�� / �0��

. We study the temperature depen-
dence of �0 and �. �0 is shown to increase faster than exponentially with decreasing T. � is proportional to T
at low temperature and approaches unity for high temperature. We define a time �� from these stretched
exponential correlations and show that this time corresponds well with the time required to reach equilibrium.
From our data it is not possible to determine whether �� diverges at any finite temperature, indicating a glass
transition, or whether this divergence happens at zero temperature. While the time dependence of the system
energy can be well fitted by a random walker in a harmonic potential for high temperatures �T=10�, this simple
model fails to describe the long time scales observed at lower temperatures. Instead we present an interpreta-
tion of the configuration space as a structure with fractal properties and the time evolution as a random walk
on this fractal-like structure.
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I. INTRODUCTION

In a doped semiconductor at low temperature, electron
transport can be dominated by variable range hopping of
localized electrons.1 If the active impurities are sufficiently
close, the Coulomb interaction between the localized elec-
trons will give an important contribution to the energy of an
electron. Such a system is known as an electron or Coulomb
glass, where the term “glass” is due to the many features it
shares with other glasses, including slow dynamics and ag-
ing.

Although Coulomb glasses have been studied extensively,
the number of analytically well-established results is rather
limited, the classic derivation by Efros and Shklovskii of the
“Coulomb gap,”2 a gap in the distribution of single-electron
state energies at any given time, is still among the top results.
The first simulations trying to model the Coulomb glass were
performed by Kurosawa and Sugimoto.3 Since then, the
number of numerical works has been steadily growing, and it
still is. This accounts for the major part of the theoretical
understanding of Coulomb glasses.

Recently, several sets of experiments4–6 have appeared,
which emphasize the glassy properties, such as memory ef-
fects and aging, of these systems. Despite the number of
numerical studies devoted to the understanding of hopping
systems and Coulomb glasses, the understanding of the
glassy properties remains unclear.7 The experiments are
mainly conductance or conductance noise measurements un-
der various conditions. Inspired by this, we wanted to per-
form direct simulations of the Coulomb glass in the presence
of an external electric field, extracting the conductance and
its fluctuations. In this way one could duplicate the experi-
mental protocols and gain understanding of the particular
glassy properties, in particular the memory and aging effects.
However, in order to do this one has to know for which

temperatures �in units of the intrinsic scale of the model� one
can expect glassy behavior, and at what time scales these
effects are apparent. For example, one would need to know
the typical correlation or equilibration time as a function of
temperature. In principle, we need a complete understanding
of the roles of all the adjustable parameters; temperature,
electron localization length, disorder strength, disorder type,
time scale, and system size. We found that, even though we
decided to use a simple and well-studied lattice model �to be
introduced below, see Davies et al.8�, this knowledge was not
readily available. In fact, after surveying the literature, we
have realized that there is not even an agreement on whether
there is a glass transition at any finite temperature for the
lattice model in two dimensions.

The present work is an attempt to supply some of this
information, and at the same time describe the equilibration
process in this system in some detail. The paper is organized
as follows. In Sec. II we describe the model we have used for
the Coulomb glass and describe the algorithm that we have
developed to improve the efficiency of the simulations in the
relevant temperature range. The results of the numerical
work are then given in Sec. III �approach to equilibrium� and
Sec. IV �correlations in equilibrium�. Section V gives a gen-
eral discussion and interpretation of the results.

II. MODEL

The disorder of the system can be modeled in two differ-
ent ways. First, one can choose to place the sites the elec-
trons can jump between in a regular lattice and introduce
disorder through a local site energy. This means distances are
functions of site index difference only, greatly reducing cal-
culational effort. The second possibility is having sites of
equal local site energy and introducing disorder through the
position of the sites. This gives the advantage of a symmetry
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in occupation numbers, changing the occupation of all states
gives a state of the same energy, allowing a convenient defi-
nition of an order parameter.8 The applicability of this order
parameter was recently disputed by Matulewski et al.,9 who
claim that the long-range interaction of the electrons leads to
a system size dependence of the order parameter and that the
temperature where it goes to zero depends on the minimal
intersite distance allowed. It can be argued that positional
disorder requires smaller system sizes for good statistics at
low temperatures, as the energy disorder will lead to some
sites “freezing out” and having fixed occupation probability.
However, it is possible that the two models can give very
different behavior so the further study of both is definitely
justified. In this work we have used the lattice model with
site energy disorder.

The most realistic model would be to study a three-
dimensional �3D� model. Still, many simulations, including
ours, use a two-dimensional �2D� model only. The advantage
of this is that we can study systems of much larger linear
dimension, which we assume to be important due to the
long-range nature of the Coulomb interaction. Therefore,
most of our simulations have been performed on a 100
�100 lattice. In order to confirm that this is sufficiently
large, some simulations were performed on a 200�200 lat-
tice with no significant differences. Only the results on 100
�100 lattices are described below.

Next, the temperature range of the simulations greatly af-
fects the choice of algorithm. For small systems at extremely
low temperatures, it is possible to imagine that all configu-
rations relevant for the dynamics can be mapped and transi-
tions between these calculated.10,11 This allows studying the
effect of transitions involving multiple simultaneous electron
jumps. Increases in size and temperature rapidly makes this
method impossible to implement even with the best future
supercomputers. Fortunately, increasing temperature also re-
duces the role of multielectron jumps11 as a wider range of
states is accessible.

At higher temperatures, Monte Carlo simulations have
been performed in various ways, which can be divided in
two groups. At high temperatures, the Metropolis algorithm
of picking a possible jump and accepting it with a given
probability is very efficient.7,12–14 At lower temperatures,
where only a small number of jumps are probable, one can
calculate all possible jump rates and accept one jump based
on relative probabilities.15–17 Various optimizations and hy-
brids of these methods have also been used. Our simulations
belong to the latter category and includes some optimizations
we have not seen elsewhere.

We have used the standard 2D lattice model with Hamil-
tonian,

H = �
i

Ui�ni − n̄� +
1

2�
i,j

�ni − n̄��nj − n̄�
ri,j

. �1�

Here n̄ is the average occupancy, ni=0 and 1 is the occu-
pancy of site i, and ri,j is the distance between sites i and j.
Ui is the site occupancy energy of site i drawn from a uni-
form distribution on the interval �−U ,U�. All energies and
temperatures are measured in units of the nearest-neighbor

Coulomb interaction e2 /a, where a is the lattice constant and
e is the elementary charge.

We use periodic boundary conditions in both dimensions
and side lengths of L=100, forcing us to cut off the Coulomb
interaction at the distance L /2. N=L2 is the total number of
sites. In all simulations presented here, we have used U=1,
as this is standard in the literature. However, it should be
noted that at this value of the disorder, the Coulomb gap does
not have the universal shape as predicted by Efros and
Shklovskii,2 as shown in Refs. 18–20. While this may be of
importance for details in the temperature dependence of vari-
ous quantities, we do not believe that it will significantly
affect our results.

In order to calculate changes in the system energy E, we
use the “single-electron energy” �i defined by Efros and Sh-
klovskii, the energy gained by adding an electron to an
empty site or required to remove the electron from an occu-
pied site. It is given by

�i = Ui + �
j

�nj − n̄�
ri,j

. �2�

The change in system energy due to an electron hopping
from site i to j is then

�Ei→j = � j − �i − 1/ri,j . �3�

The impurities are modeled as hydrogenlike states centered
on the lattice sites with a localization length al chosen to be
2 /3a.

The relaxation has been performed by a modified Monte
Carlo simulation optimized for low temperatures but still ca-
pable of handling high temperatures. A detailed description
of the algorithm is given in Appendix A along with a discus-
sion of the chosen parameters.

We follow Efros and Shklovskii2 and write the electron
jump rate for the jump from the occupied site i to the unoc-
cupied site j as

�i→j = t0
−1e−2ri,j/al

��Ei→j�
T0

f��Ei→j� , �4�

where for processes involving phonon emission,

f��Ei→j� = 1 +
1

e��Ei→j�/T − 1
, �Ei→j � 0, �5�

while for phonon absorption,

f��Ei→j� =
1

e�Ei→j/T − 1
, �Ei→j 	 0. �6�

We have made no estimates for numbers t0 and T0; so for the
plots showing a time scale, they should both be taken as
unity. The time for one electron jump, �t, is the inverse of
the total rate,

�t =
1

�tot
, �tot = �

i�j

�i→j . �7�

This is the time during which, on average, one jump takes
place. To get the correct noise spectrum at very short time
scales, �t in general has to be drawn from a distribution with
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average 1 /�tot, which is not taken into account here.
We have not seen any other simulations stating that they

use the full expressions for the jump probability, most au-
thors seem to use the low-temperature limit of the expres-
sions to reduce computational effort. Temperature in all
equations is the phonon bath temperature.

III. RESULTS OF RELAXATION

In order to study the temperature dependence of the relax-
ation process, all relaxations were started from the same ran-
dom electron configuration, representing an infinite tempera-
ture and with the same realization of disorder. We then set
the phonon bath to a given temperature, simulating a rapid
quench. We follow the relaxation process by plotting the to-
tal system energy as a function of time, as done by Ortuño et
al.16 for the model with positional disorder. As shown in Fig.
1, the processes initially looks the same at all temperatures.
This is because the system is still at some high energy and
does not “feel” the differences in phonon temperature which
are small compared to the initial infinite temperature of the
system. In this regime, essentially all jumps reduce the total
energy of the system.

Then, starting with the highest temperatures, one by one
the systems seem to reach an equilibrium behavior, with the
energy fluctuating around some average value. For all tem-
peratures we observe that the relaxation is slower than expo-
nential. For the lowest temperatures �T
0.02� we are not
able to reach the equilibrium state, and the system continues
to relax to lower energies for our entire simulation time.
Zooming in on the different relaxation graphs, we can see
significant qualitative differences, as shown in Fig. 2. At high
temperatures where equilibrium is reached �T�0.02�, we see
something resembling a random walk in a confining potential
�Fig. 2�c��. For T=0.01 �Fig. 2�b�� we see periods with
something like a random walk around a central value, similar
to the high-temperature equilibrium case. At intervals this is
interrupted by a sudden marked decrease in the energy, and
the process continues with a lower mean energy. The periods
of apparent equilibrium can be understood as some local

equilibrium around a metastable local minimum of the en-
ergy and the steps correspond to the system crossing to a
different local minimum. We have also observed steps that
increase the energy, but they are usually smaller and less
frequent so that the long-time average still is decreasing for
the whole simulation period. For the lowest temperatures
�Fig. 2�a��, we see the energy making small fluctuations from
a clearly defined lowest level, which again decreases in clear
steps. The steps are now much larger than the width of the
distribution within one step. At these temperatures, the sys-
tem actually finds the local minimal state and spends a con-
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FIG. 1. �Color online� Plot of the relaxation from T=� at tem-
peratures T= �10,1 ,0.1,0.01�, the equilibrium energy decreases
with T. We see that for T=0.1 we still get an equilibrium, while for
T=0.01 or lower, equilibrium is not achieved at our time scale.
Close-ups of the tails of the two lowest graphs are shown in Fig. 2
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FIG. 2. �Color online� Close-up of the energy development at
T= �0.001,0.1�, 500 jumps each, and T=0.01, 250 000 jumps. T
=0.001 shows a clear local minimum performing steps, T=0.01 has
no sharp lower limit but shows both steps and a tendency of differ-
ences in going up and down, while for T=0.1 there seems to be
good symmetry around the mean and no steps can be identified. The
width of the distribution is many times the energy of single jumps,
which are of the order T.
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siderable fraction of the time in this state. We believe that
this is an effect of the finite size of our system and that if we
had increased the system size, the number of states acces-
sible close to the local minimum would also increase. The
system would then not so easily find its way to the local
minimum, and we would get a picture similar to Fig. 2�b�
even at the lowest temperatures. The nature and statistics of
the steps are discussed in greater detail in Appendix C.

One can ask whether the equilibrium that we seem to
observe at temperatures above T=0.02 really is a true equi-
librium or the system is still relaxing in energy, but so slowly
that we are not able to see this in our simulations. In order to
confirm that we have attained true equilibrium, we can ini-
tiate the system at a low energy. We have used two different
ways of initiating the system. One is to relax the system at a
lower temperature and then increase the temperature. The
other is to relax the system at zero temperature �using the
algorithm described in Ref. 19, a less CPU-consuming pro-
cedure� a great number of times and picking the configura-
tion with the lowest energy as the starting energy for the
Monte Carlo algorithm. Both of these were tested, giving the
same result. As shown in Fig. 3, we see that even though we
initiate the system at a low energy, it relaxes right up to the
equilibrium energy range. We consider this as proof that true
equilibrium was reached at temperatures T0.03. T=0.03 is
the lowest temperature for which we have been able to
achieve such a confirmation of equilibrium simply because
we have not found any state with E lower than at the end of
the T=0.02 simulation. Thus we have no low-energy starting
point—at even lower temperature, the relaxation is so slow
that we have not reached energies lower than those of the
T=0.02 simulation.

One could still worry that the system does not reach a full
equilibrium but instead the configuration space breaks into
several ergodic components. In order to test this we started
the system in several different initial configurations both at
high and low energy, thereby possibly ending up in different
ergodic components if they exist. In all cases we observed
that the system reached the same final average energy, thus

indicating that we have achieved full equilibrium.
If we believe that there exists some glass transition tem-

perature Tg, below which the system will show typical glassy
behavior, we could expect that the time needed to reach equi-
librium would diverge at this temperature. Just looking at the
energy relaxation graphs it is difficult to decide when equi-
librium is reached. A better idea is to combine the graphs
starting from high and low energies and use the point where
they start overlapping as a measure of the time needed to
reach equilibrium. As seen in Fig. 3 this can at least be used
to get an order of magnitude estimate. However, the method
can never be very accurate for several reasons. First, because
of the combination of low and high frequency thermal
noises, the time when the two graphs starts overlapping is
not well defined. This is illustrated in Fig. 4. Second, the
result will clearly depend on the initial states chosen for the
high and low starting energies, respectively.

As an alternative, we can study the energy correlations of
the system after it has reached equilibrium. We believe that
the same time scales should be present both in the correlation
function and in the final part of the relaxation process.

IV. ANALYSIS OF SYSTEM AT EQUILIBRIUM

A. Energy correlations

The two-time energy correlation function is defined as

C�t,t + �� =
1

�2 	�E�t� − Ē��E�t + �� − Ē�
 , �8�

where Ē is the true average energy �over all realizations of
the dynamics� and � is the standard deviation of the distri-
bution of energies. The average should be the overall real-
izations of the equilibrium dynamics. When studying the sys-
tem at equilibrium, we use the fact that the system is
stationary and the correlation function will depend only on
the time difference �. We can then use one simulated time
evolution and average over the time t instead of over differ-
ent realizations of the system and write
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FIG. 3. �Color online� Plot of the relaxation from high-energy
and low-energy starting points for T= �0.03,0.05,0.1�. The straight
line at the bottom shows the starting energy of the rising graph at
T=0.03. For T=0.03 the graphs starting at high and low energy do
not overlap fully because we have not continued the low-starting
simulation for a sufficient number of steps. One can check that the
average at the final part of both graphs are very close to the same.
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FIG. 4. �Color online� Plot demonstrating the difficulties in de-
fining a clear time for whether and when equilibrium is reached.
The dotted line represents the mean of the last half of the data
points for the falling graph.
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C��� =
1

�2 	�E�t� − Ē��E�t + �� − Ē�
t, �9�

where now Ē is the average energy over the simulated time
evolution. The average should include a large number of un-
correlated times, and this is only true if the period we aver-
age over is longer than the time scale of the correlations.
Therefore the value of the correlation function for time dif-
ferences �	106 should not be trusted for our time series of
107 steps. Also, for long � the correlation function shows a
lot of noise, but interesting effects can be demonstrated at

significantly shorter times than this. C��� at a number of
temperatures is plotted in Fig. 5.

Kolton et al.7 made a similar analysis of the occupation
correlation function for the three-dimensional random site
model. They proposed that one should plot the curves as a
function of the scaled variable cT�, where cT is some
temperature-dependent relaxation rate. Based on a previous
study21 they assumed an activated law cT=e−T0/T. We wanted
to avoid this assumption and instead extract the relevant rate
from our numerical data using the following reasoning.

We try to model the evolution of the system as a random
walk in energy. The probabilities of increasing or decreasing
the energy at a particular step of the random walk is given by
a combination of the transition rates given in Eq. �4� and the
density of states �DOS�. It can be shown that this is equiva-
lent to the problem of a random walk in a harmonic poten-
tial. The details of the derivation are given in Appendix B,
the main results are that we expect the correlation function to
decay exponentially, C���=e−cT�, with

cT =
�T

2

2�T
2�T

, �10�

where �T is the mean of the absolute value of the energy
change per electron jump at temperature T, �T is the standard
deviation of the distribution of the system energy at the same
temperature, and �T is the average time per step. All these
parameters are accessible from our simulations. Plots of the
relevant �T, �T, �T, and cT are given in Fig. 6.
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FIG. 5. �Color online� Plot of C��� at T= �0.03,0.04,
0.05,0.06,0.07,0.08,0.09,0.1,1 ,10�.
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For the �T, we see that it simply rises as �T=2T until the
temperature becomes comparable with the spread of the
single-particle energies. �T, �T, and cT all give fairly straight
lines in the log-log plots, but we do not have sufficient data
to conclude what functional dependency they follow. How-
ever, the previous suggestion of an activated law for cT does
not seem to fit our data.

The interpretation of cT is also clear. Since the variance of
a random walk grows linearly in time, 1 /cT is the time
needed for the random walk to spread over a range equal to
the equilibrium standard deviation, �T. In other words, it is
the time at which the random walk starts to feel the effect of
the constraining potential. While cT includes the size-
dependent quantities �T and �T, it can be assumed that cT
itself is size independent as �T�N−1 while ��N1/2.

Figure 7�a� shows the scaled correlation functions C�cT��,
and as can be seen this gives an excellent collapse for the
initial stage of the relaxation but very poor for longer �.

Inspired by the apparent success of Kolton et al.7 in col-
lapsing the curves, we made several attempts with other res-
caling factors. The most successful was using �T as scaling
factor, simply plotting the correlation as a function of num-
ber of steps performed, as shown in Fig. 7�b�. We see that we
get a picture resembling the collapse demonstrated by Kolton
et al.7 for the random position model. But the deviations
from a collapse are systematic, and by closer inspection of
the inset of Kolton’s Fig. 2 we believe that they have no true

collapse either; it only appears to collapse because of the
narrow range of temperatures included and the small size of
the figure.

If we instead use the assumption of the exponential decay
and plot ln�C���� versus time, we expect to see straight lines.
Figure 8 shows that this does indeed come close to the truth
for T=1 and 10, but for the lower temperatures the lines are
far from straight. Only at short times one might think that
there can be some exponential decay. This can to some ex-
tent be further justified by plotting the scaled graphs
ln�C�cT��� �Fig. 8�b��. We see that the high-temperature �T
=1,10� graphs are close to straight lines, whereas at lower
temperature the graphs show a decay slowing with time as
longer and longer time scales come into play. At short times
they approach the straight lines defined by the high-
temperature graphs, indicating short time exponential behav-
ior, with the predicted cT.

In disordered systems, it has previously been observed22,23

that correlation functions can be well fitted by a stretched
exponential function C���=Ae−�� / �0��

. If that is true,

ln
− �

ln�C����
= ln

− �

ln A − ��/�0�� � �1 − ��ln � + ln �0
�,

�11�

for �� ln�A�, and plotting ln � vs ln�−� / ln C���� we should
get a straight line for large �. For a pure exponential, the line
is horizontal as �=1 and 1−�=0. As the correlation function
reaches the regime where only noise is left, C��� approaches

10
−3

10
0

10
3

10
6

0

1

c
T
τ

C
(c

T
τ)

(l
in

ea
r

sc
al

e)

10
−3

10
0

10
3

10
6

0

1

n

C
(n

)
(l

in
ea

r
sc

al
e)

FIG. 7. �Color online� Attempts at collapsing the correlation
functions. T= �0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,1 ,10�. �a�
Scaling by 1 / �2cT�. High temperatures correspond to steep slopes
�b� C�n�, where n is the number of steps regardless of time spent.
T= �1,10� lie far away from the others.
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FIG. 8. �Color online� �a� C���, �b� C�cT��, and T
= �0.03–0.1,1 ,10�, we see signs of collapse at very short times, but
only the highest temperatures give close to straight lines.
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a constant, �=0 and 1−�=1, giving a line with slope 1. As
shown in Fig. 9, at short times we get a horizontal line for all
temperatures corresponding to the exponential decay that we
have seen above. At low temperatures this crosses over to a
straight line with some slope. We get straight lines for at
least 2 orders of magnitude for the temperatures T
=0.03–0.1 before the correlation function drops below the
noise level in our data, and the graphs end in a noise domi-
nated line of slope 1. At T=1 and 10 we find straight hori-
zontal lines that cross directly into the noise within our
precision without any intermediate region of stretched
exponential behavior. From the lines in Fig. 9 we can extract
three values: the slope gives us 1−�, the offset at large �
allows us to determine �0, and the offset at short times,
where the behavior is exponential, gives us cT since it corre-
sponds to 1 /�0 in Eq. �11� in the case �=1. This gives an
independent way of extracting cT from the simulations and
should be compared with those obtained from Eq. �10�,
which are indicated by dotted lines in Fig. 9. The fact that
these initial levels are consistently slightly below the previ-
ous estimates for cT reflects the fact that locally the width of
the energy distribution is slightly smaller than for the full
simulation time. Plots of � and �0 vs temperature are given in
Fig. 10. We see that as temperature goes down �0�T� in-
creases faster than exponential and ��T� decreases almost
linearly for small T in both cases with the exception of T
=0.022,0.024. We have also observed that the uncertainty,
determined from the scattering of the points, increases for
lower temperatures as the time before all correlations are lost
approaches the length of our time series. For the lowest two
data points, we assume that our data are insufficient to give

correct estimates for the standard deviation, �T, and mean, Ē.
Especially, if we look at too short time, we expect to measure
too small �T; so the correlation functions will therefore sys-
tematically underestimate the correlation. This will again
give too high values for ��T� and too low for �0�T�.

Again following Ogielski22 we can also define a weighted
time

�� =
� �C���d�

� C���d�

, �12�

which can be seen as a weighted average time scale for pro-
cesses in the equilibrium. Plotting ���T�, obtained by numeri-
cal integration, we see that it increases dramatically as T
decreases �Fig. 11�. If we assume C���=e−�� / �0��

we can find
a relation between ��, �0, and �:

�� =
� �C���d�

� C���d�

= �0
��2/��
��1/��

, �13�

where � denotes the � function. This value is also plotted in
Fig. 11. The errors in these plots are huge, especially at low
temperatures, due to the following two effects. First, due to
the extreme sensitivity of the analytical estimate Eq. �13� to
the value of �, any uncertainty in � translates into a much
larger uncertainty in ��. Second, the long and noisy tail of
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FIG. 9. �Color online� T= �0.03,0.04,0.05,0.06,0.07,0.08,
0.09,0.1,1 ,10�. Horizontal lines indicate exponential behavior,
slope of 1 indicates noise, while straight lines at other slopes indi-
cate stretched exponential behavior. The dotted lines indicate 1 /cT,
as calculated using Eq. �10�.
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FIG. 10. �Color online� �a� ��T� and �b� �0�T�. The dashed line
indicates a possible extrapolation toward T=0. The difference be-
tween the symbols denotes use of different cut-off limits when cal-
culating jump rates, as discussed in Appendix A. � �� denotes a
limiting value �min=10−10�tot and �+� denotes �min=10−7�tot. For
�0 this makes no significant difference, but for ��T� we see that the
more accurate simulation gives a slightly higher value of ��T�. This
is the only graph in this paper where the choice of limiting rate is
noticeable, confirming that our algorithm is sufficiently accurate.
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C��� makes numerical integration difficult. In cases where
C��� does not reach zero within our simulation time, numeri-
cal integration becomes impossible. The correlation C�t1 , t1
+��, as defined in Eq. �8�, cannot be considered independent
of C�t2 , t2+�� unless t2− t1	�. When using Eq. �9�, the num-
ber of independent time intervals we average over can be
estimated as the total simulation time divided by �. There-
fore, the noise increases with �. To improve this, we have
averaged over from 3 to 10 independent time series at the
lowest temperatures. Still, both estimates for �� show an in-
crease that is at least exponential as T decreases. This again
justifies disregarding T= �0.024,0.026� as our simulation
time does not come near these time scales.

If we assume ��T��T, which does not seem impossible
for small T, the gamma functions in Eq. �13� can be esti-
mated using Stirling’s formula to give an estimate for �� as

�� � �0�T� 1

T
�1/T

e−1/T21/T. �14�

It is very difficult to differentiate between this kind of behav-
ior, which diverges only at zero temperature, and a diver-
gence at a finite temperature. Any divergence in �� would
have to come from either � going to zero, which appears to
happen at T=0 if we extrapolate linearly, or from a diver-
gence in �0, which we have not been able to identify.

B. Global density of states

Originally, the dynamics of the Coulomb glass were un-
derstood mainly from the single-electron jump picture, giv-
ing rise to the theory of the Coulomb gap,2 which is a gap in
the single-electron density of states. But in order to say
something about behavior at higher temperatures, we should
also know something about the global density of states far
away from the ground state especially as our results show
that all our visited states are likely to be far from the ground
state.

The probability P�E� of the system being at an energy E
is assumed to be simply the product of the probability of a
given state being occupied times the density of states at this
energy, g�E�, giving

P�E� =
1

Z
g�E�f�E,T�, Z = �

E�

f�E�,T�g�E�� , �15�

where f�E ,T�=e−�E, with �=1 /T, as we have chosen to
measure temperature in the same units as energy. If we as-
sume that the simulation time suffices for the distribution of
energies we observe to be representative for the behavior at
infinite times, we can use the observed P�E� to estimate
g�E�. If we furthermore assume the system to be ergodic,
g�E� will be the actual density of states of the full system. If
not, g�E� is just the density of states accessible from the set
of states we have visited, while the global density of states is
a sum of different g�E�’s. We have tried relaxing the system
from different electron configurations and seen no trace of
variation in the equilibrium distribution. While this does not
constitute any proof, we can at least conclude that the system
is either ergodic or that g�E� is the same for multiple separate
sets of configurations.

At low temperatures, where we are not able to reach equi-
librium we can still consider one step �as defined in Fig.
2�b�� on a descending graph. Then we get the density of
states for the set of states accessible by likely transitions; a
set sometimes referred to as a valley in configuration space.
This is the case in the plots for T=0.01 in Figs. 12 and 13.

Figure 12 shows P�E� calculated from the number of
times a state with energy E is visited, weighted by the time
spent in that configuration.

Solving Eq. �15� for g�E� we write

g�E� = P�E�f�E,T�−1�
E�

f�E�,T�g�E�� . �16�

Note that g�E� is written as a vector of values for discrete
energies E. This is due to our discretization of P�E� in the
form of histogram boxes. Defining the matrix MEE�
= P�E�f�E ,T�−1f�E� ,T� we can write this as

g�E� = �
E�

MEE�g�E�� . �17�

Thus g�E� must be an eigenvector of the matrix MEE� with
eigenvalue 1. In this way we can find g�E� except for a
constant prefactor g0.

The calculated g�E� /g0 for our equilibrium distributions
are shown in Fig. 13. Note that the plot shows
ln�g�E� /g�ET��, where ET is the highest energy obtained at
equilibrium for this temperature. Within the energy region
covered by each run, the density of states approaches a
straight line for more than hundred orders of magnitude in g
in the case of T=0.1.

Based on the obtained results, we choose to write g�E�
=g0e��E�, where ��E� is well defined for energies well above
the ground state, E0.

P�E� =
e��E�−�E

Z
�18�

has a maximum when
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FIG. 11. �Color online� ���T� from numerical integration de-
noted by � ��, ���T� from Eq. �13� denoted by �+�, and the visual
estimate of the relaxation time denoted by �x�.

M. KIRKENGEN AND J. BERGLI PHYSICAL REVIEW B 79, 075205 �2009�

075205-8



dP�E�
dE

=
1

Z
d��E�

dE
− ��e��E�−�E �19�

equals zero. We can thus expect the maximum of the distri-
bution, Em, to be in an area where the rise in DOS is com-
parable to the inverse temperature, ���Em�=�. Lower tem-
perature requires a steep rise in DOS to reach equilibrium,
whereas at higher-temperature equilibration will occur with
slower increases in DOS.

To find the width of the distribution we write E=Em
+�E, where Em is the previously obtained energy corre-
sponding to the maximum of the distribution, for which we
know that ���Em�=�. An expansion of P�E� to the second
order in �E then gives

P�E� =
1

Z
e��E�−�E =

1

Z
e��Em�+���Em��E+���Em��E2/2−��Em+�E�.

�20�
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FIG. 12. �Color online� Histograms of P�E� for T
= �0.01,0.05,0.1�. The histogram is for the last 106 jumps of a run
of 107 jumps, except for T=0.01, where only 8�105 where in-
cluded to stay within one step. It is seen that at high temperature the
distribution is symmetric, whereas the lack of symmetry for T

=0.01 is clear. The vertical lines indicate Ē, the mean of the equi-
librium distribution.

−3608.6 −3608.4 −3608.2

10
−20

10
−10

10
0

a) T=0.01

E

ρ(
E

)
−3602 −3600 −3598 −3596 −3594

10
−100

10
−50

10
0

b) T=0.05

E

ρ(
E

)

−3560 −3550 −3540 −3530

10
−100

10
−50

10
0

c) T=0.1

E

ρ(
E

)

FIG. 13. �Color online� Estimated g�E� /g�ET� from the distribu-
tion at T= �0.01,0.05,0.1�. For T=0.01 we clearly see that �
=ln�g�E�� has a strong curvature, and for T= �0.05,0.1� the curva-
ture is less pronounced but still present.
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Separating the Em dependence from the �E dependence this
gives

P�E� =
e��Em�−�Em

Z
e���Em��E2/2, �21�

which shows that the standard deviation of the distribution is
�=1 /�����Em��. In this way we can readily find both ���E�
and ���E� at as many energies as the number of temperatures
at which we run relaxations.

The most immediate use of this information is probably
for algorithms requiring the mapping of all states accessible
for the system.11 Estimating P�E� gives an upper temperature
limit for which one can hope to map all states for a given
system size.

V. DISCUSSION

A. Validity of the random-walk model

We see that for high temperatures, T= �1,10� the model of
the random walker seems to be a good description of the
observed dynamics. Regarding both the density of states and
the short-time correlations, the same is true for the lowest
temperatures still reaching an equilibrium. But for longer
times, the correlations persist much longer than our estimates
for cT should indicate.

Some general understanding that has been suggested24 is
that at high temperatures the network of thermally allowed
transitions is sufficiently dense in the space of configurations
that the number of possible jumps is a function of the DOS
only. The system performs a random walk on this network,
which when projected on the energy gives the random walk
in energy that we have considered above, and exponential
decay of the correlation function. Below some temperature
Tc the network of allowed transitions becomes diluted and
has some fractal structure. A random walk on this fractal
leads to anomalous diffusion 	r2
� t�, which is believed to
correspond to a stretched exponential e−�� / �0��

for the corre-
lation function of any confined quantity such as our energy
both with the same exponent � �As far as we are aware, this
has only been numerically confirmed for hypercubes24 and
hyperspheres23 and not rigorously established�. Thus, we ex-
pect that as temperature increases, � should also increase and
approach 1 at Tc. We see from Fig. 10 that this seems to be
the case, but our data are not sufficient to determine Tc. In
this temperature regime a standard Metropolis algorithm
would be more suitable than our low-temperature algorithm.
It has also been suggested24 that because the configuration
space has a large dimension, � should approach the mean-
field value of percolation, 1

3 , at the glass transition. This was
indeed the case in the work of Ogielski22 but is clearly not
the case in our simulations. � reaches a value of approxi-
mately 0.15 at T=0.03 but can possibly be estimated to even
lower values with better data sets.

B. Possible model system

To give a picture of what kind of model could adequately
describe this picture, we start from a landscape of local

minima defined by the fact that there exist no single electron
transitions taking the system down in energy. We have pre-
viously shown that there exist a huge number of such
minima.19

From each local minimum, we can find all states that can
be reached by one single-electron jump, by definition taking
the system up in energy. From each of these states, we can
again add states accessible by another jump and so on but
keeping only those that increase the energy. In this way we
create a tree growing up from each local minimum. It is easy
to imagine these single trees having an initial exponential
growth in the density of states. As the states of one tree
become identified with states of other trees, the exponential
growth slows because the number of identified states in-
creases drastically. We have attempted to illustrate this in
Fig. 14. The branch thickness is described by the wave-
function overlap of the two states involved in that specific
transition and is temperature independent. In addition, at
each temperature, there is a likelihood of passing up the
branch different from that of passing down the branch given
by energy difference, temperature, and branch thickness. If
we define a minimum jump probability given by the time
scale of our experiment, we can cut away all branches with
lower probabilities than the limiting value, like in a random
resistor network. As temperature goes down, more and more
branches will be cut or made one-way streets for the purpose
of system development. The resulting network will resemble
a fractal network with a temperature-dependent dimension.

A random walker on such a network will show dynamics
on many competing time scales. First, within the branches of
one “tree,” there is the time scale to make single jumps cor-
responding to our �T. Then comes the time scale for getting
from the bottom of a tree to the top or opposite, which is
approximately 1 /cT. Then there is the probability of jumping
from one tree to another, from one cluster of trees to another,
between clusters of clusters, and so on. The average energy
of the clusters can vary, giving correlations over long time
scales as we slowly climb from one cluster to the next. This
process is described by the slow decay of the correlation
function C���. When temperature is lowered, the probability
of reaching the top branches will be reduced, and there will
be fewer or less likely connections between the different
trees and clusters. The probability of jumping to lower clus-
ters will decrease, but that of jumping to higher energy clus-
ters will decrease even more. Such a random walk should
behave much like our simulation.

FIG. 14. �Color online� Simplified picture of the configuration
space. The dotted lines indicate regions with similar increase in
density of states but at different energies due to different starting
points.
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While we believe that such a model will lead to the ob-
served behavior, we have no independent verification that
this model actually corresponds to our system.

C. Temperature and time scales

As mentioned in Sec. I, one of our objectives in undertak-
ing this project was to identify a glass transition temperature
and a dynamic phase diagram for the lattice model. While we
have not been able to identify a transition temperature or
determine whether such a finite temperature exists, we have
identified time scales where the system will equilibrate as a
function of temperature. If we wish to study the time evolu-
tion of some quantity, we have to average over time intervals
shorter than this equilibration time.

Tsigankov et al.13 studied the lattice model that we have
used and compared it with the random site model. They were
interested in the long-time relaxation of the conductance ob-
served in experiments,4 but since the direct simulation of this
process would take too long time, they calculated the con-
ductance and the shape of the Coulomb gap for various ini-
tial states arguing that if one is to observe slow relaxation
one would need to find metastable states with sufficient
spread in conductance. Their simulations were performed at
T=0.04 as this was the lowest temperature they were able to
use for their algorithm to be efficient. They observed that the
variation in the conductance for the lattice model was too
small to explain the observed change in the conductance dur-
ing slow relaxation and concluded that the lattice model can-
not be used to explain the experiments. With our optimized
algorithm we are able to go below this, and we have shown
that we are able to reach equilibrium for temperatures at least
down to T=0.03, possibly as low as T=0.02. Therefore we
believe that the results of Tsigankov et al.13 were probably a
result of using a temperature where the system equilibrates
and that their conclusion could be different if they could
repeat their simulation at lower temperature, below some
glass transition temperature Tg or at least in a region where
�� is greater than the simulation time span. It should be noted
that Tsigankov et al.13 used localization length al=1 rather
than our al=2 /3. We believe that increasing al allows more
connections between the different regions of the configura-
tion space in the same way as an increase in temperature.
Thus, Tsigankov’s temperature T=0.04 would be equivalent
to a higher temperature in our simulations. This argument
agrees well with the relation between temperature and local-
ization length in the expression for conductance, which is a
function of the product alT.2,25

VI. CONCLUSIONS

Based on the above analysis, we have reached the follow-
ing conclusions:

�i� For temperatures down to a limiting Tmin�0.02 we
have demonstrated that the system equilibrates within our
simulation time. This equilibration occurs at a total system
energy for which the total number of accessible states is so
high that a full mapping of the states is only possible for very
small systems.

�ii� At temperatures close to but above Tmin we observe
energy correlations following a stretched exponential law.
The exponent of this stretched exponential, �, decreases with
temperature, seemingly with a linear dependence for low
temperatures. At temperatures T�1, � approaches unity, but
determining the exact behavior requires further study.

�iii� ��, the average relaxation time weighted by the cor-
relation function, increases rapidly with decreasing tempera-
ture. It seems to roughly follow the time needed to establish
equilibrium.

�iv� The rapid increase in �� with decreasing temperature
means that the low-temperature limit for when equilibrium
can be established is only weakly dependent on the total
simulation time. From our data we cannot conclude whether
�� actually diverges at any finite temperature or whether it
can be used to define a glass transition.

�v� The observed behavior is compatible with a model of
the system as a random walk on a fractal configuration space.

�vi� There exists a temperature range for which the lattice
model with single-electron hops only can probably be used
to study slow dynamics.

It is important to stress that we have shown the time
scales of the single jump dynamics only. At low temperatures
processes that are unlikely when looking at single changes in
state may still be important for the long term dynamics of the
system since they can provide the transitions between differ-
ent parts of the configuration space. We have only shown that
single jumps can give long time scales, not that these time
scales will actually be present in the model if other dynamics
are also allowed. Specifically, multielectron jumps are likely
to hasten the transitions between state clusters at low tem-
peratures, giving shorter correlation times and larger values
for ��T�.
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APPENDIX A: DETAILS OF RELAXATION ALGORITHM
AND PARAMETER CHOICES

We use Monte Carlo simulation, calculating the probabili-
ties of all those jumps that are likely to occur from a given
configuration and choosing one of them to actually happen.
The physical time spent on one such step is calculated as the
inverse of the sum of all the rates for individual jumps. The
limitation of the basic model is therefore that it allows
single-particle jumps only.

The rate for a single jump is given in Eq. �4�. This ex-
pression is only strictly valid when there is a constant barrier
height. In our system this is not the case as the charge dis-
tribution gives valleys and peaks in the barrier over the vol-
ume the electron wave function covers. A proper treatment
would have to include an integral over all possible paths. We
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still follow the tradition in the field and use the expression
above as the exact alternative would be very hard to imple-
ment.

Calculating all possible jumps is still a very time-
consuming process. Following Ortuño et al.16 we therefore
limit ourselves to calculating those jumps that are probable
to occur. We see that Eq. �4� decays exponentially both with
distance and energy difference. Therefore, a very few rates
will be big, while the majority of rates will be neglectably
small. It is therefore possible to write

�tot = �
i,j

�i→j = �
prob

�i→j + �
improb

�i→j � �
prob

�i→j ,

�A1�

assuming the latter sum, over improbable jumps, to be neg-
ligibly small. The first sum, the probable jumps, can be
shown to include only a relatively small number of jumps
depending on the configuration. A similar thought is used in
the algorithm presented by Matulewski et al.26 even though
their implementation is more static than ours.

We define a limiting rate �min so that only jumps where
�i→j 	�min are included in the first sum.

�min = �0e−M , �A2�

where M is the maximal allowable exponent to give rates
higher than �min. For the simulations presented we have cho-
sen to set �min to 10−7�tot for the higher temperatures where
our algorithm is slow and 10−10�tot for low temperatures.
Since �tot is only known after all the rates are calculated, we
use the �tot from the previous step in calculating �min. The
validity of our approach can be tested by varying the ratio
�min /�tot, and see whether it influences the dynamics, as
shown in Fig. 9. A simple estimate on the error made can be
obtained as illustrated in Fig. 15. Here we have calculated
the rates of all jumps and sorted them by magnitude. We
define �n as the nth largest rate. Plotting the individual and
cumulative probabilities together, we can immediately read
off the error we make if we cut off all rates with a value less
than a certain fraction of the total rate. Our cutoff at 10−7�tot
means that in this randomly chosen instance at T=0.02, we
would need to include 1200 jumps and make an error in the
total rate of less than 2�10−5�tot. This means that approxi-
mately 10 jumps are erroneously cut off in 106 steps. The

selection of which rates to calculate is optimized using the M
defined above. We wish to cut off improbable rates, which
are rates where the increase in energy is much larger than
temperature or where distances are very long. From the ex-
pression given for the tunneling rate in Eq. �4�, using the
expression for phonon absorption, we can take 1 in the de-
nominator to be small, which simplifies our requirement for
the limiting tunneling rate to the expression,

��Ei→j�/T + 2ri,j/al � M , �A3�

disregarding the pre-exponential factor which further reduces
the rate for low temperatures. We also know that the energy
difference is given as

�Ei→j = � j − �i − 1/ri,j , �A4�

and the minimum values for � j and � j,min can easily be found
from the list of single-particle energies. So

� j,min − �i −
1

ri,j
� � j − �i −

1

ri,j
= �Ei→j � TM −

2ri,j

al
� .

�A5�

Thus for each �i there is a given maximal radius that can
potentially give probable jumps. Conversely, for each radius,
there is a lowest allowable �i�r�. If �i�r� is below this limit,
there is no point in looking for empty sites further away than
the given radius.

In the initial stages, many jumps are very likely; so �tot
and therefore also �min are very large. This gives a small
maximal radius for all sites, regardless of �i. While long
jumps could possibly happen, it is much more likely that a
short jump happens first.

As soon as the Coulomb gap has formed, there will be
very few sites where the �i is sufficiently high to allow long
jumps to be probable. Only for these occupied sites do we
have to check many possible destinations, and many sites
will have no likely jumps at all. Thus for both situations,
with and without gap, the number of calculated rates scale
roughly as N rather than N2.

As observed by Ortuño et al.,16 there is often a limited
number of jumps that are repeated for very large number of
times. Ortuño et al.16 solved this by calculating the rate to
escape from an ensemble of configurations. We have used a
faster and easier approach where we simply save the state
and jump rates for each configuration until a jump occurs
that is unlikely to be reversed. Every time a state is revisited,
we only have to switch some pointers. The disadvantage of
this approach is that we record a huge number of jumps that
are simply repetitions, but it does not cost us much compu-
tation time. The advantage is that we record the time spent at
all configurations explicitly, making it possible to easily ex-
tract information on thermal properties, noise, etc. Also, our
algorithm is faster in those cases where a configuration is not
revisited. For very low temperatures, T
0.001, the number
of repeated jumps becomes impracticable large. In this case
Ortuño’s algorithm will probably work better than ours.

The algorithm used is optimized to work best for tempera-
tures where the Coulomb gap has formed properly so both
the energy and the distance terms give fast convergence for
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FIG. 15. �Color online� �n /�tot and ��n��n�n�� /�tot vs n. Dotted
lines indicate the cut-off limit and corresponding error.
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the sums. Thus the initial phase of relaxation will be compu-
tationally slower per step. Also, higher temperatures give a
slower convergence in the energy term and thus longer pro-
cessing times. At some temperature, the optimized Metropo-
lis algorithm of Ref. 13 becomes significantly more efficient.
Preliminary tests indicate that this happens around T=0.05.

In order to have a constant ground state and density of
states, all simulations presented in this paper are based on the
same realization of disorder of the lattice. Some preliminary
results for conductance simulations indicate that a system of
1002 sites may still be too small to avoid size effects for
diffusive processes. On the other hand, we expect a require-
ment for longer time series for bigger systems, and the com-
bined increase in computational effort of the bigger system
and longer time makes it impractical to simulate.

The localization length is somewhat arbitrarily set to
2 /3a, where a is the lattice constant. If we use localization
lengths larger than a, mixing of the states would give signifi-
cant changes in the wave functions. If we use a very short
localization length, jumps longer than to the nearest neighbor
will become highly improbable at all but the very lowest
temperatures, enhancing the importance of the quadratic lat-
tice. al=2 /3a gives a significant number of jumps at dis-
tances up to three sites away but rarely longer for the most
relevant temperature range.

APPENDIX B: THEORY OF A RANDOM WALKER
IN A POTENTIAL

Let u�x , t� be the probability of finding the random walker
with position x at time t. Let it take steps of length � either
increasing or decreasing its energy, and let � be the time of
each step. Then the master equation for u�x , t� is

u�x,t + �� = p�x − ��u�x − �,t� + q�x + ��u�x + �,t� ,

where p�x� is the probability of making a step in the direc-
tion of increasing x when the walker is at energy x and q�x�
the probability of making a decreasing step. Expanding to
first order in � and second order in �, we get

�u

�t
= �q − p�

�

�

�u

�x
+

�

�x
�q − p�

�

�
u +

�2

2�

�2u

�x2 , �B1�

where we have used that

�

�x
�p + q� =

�2

�x2 �p + q� = 0. �B2�

We need to find expressions for p�x� and q�x�. The require-
ment of microscopic balance �and one can check that our
Monte Carlo algorithm satisfies this� is

p�x�P�x� = q�x + ��P�x + �� , �B3�

where P�x� is the probability of finding the system at posi-
tion x. As discussed in Sec. IV B this can be written as
P�x�=Ae��/2x2

close to the equilibrium position. We will as-
sume that the probability q�x� changes slowly on the scale of
a single step �. This allows us to replace q�x+�� with q�x� on
the right-hand side of Eq. �B3� and using p�x�+q�x�=1, we
get

p�x� =
e���x

1 + e���x
, q�x� =

1

1 + e���x
,

where we have omitted the �2 term in the exponent. Expand-
ing to lowest order in � we find

q�x� − p�x� = −
1

2
���x .

Inserting this in Eq. �B1� we get

�u�x,t�
�t

= D
�2u�x,t�

�x2 + c
�

�x
�xu�x,T�� , �B4�

where D= �2

2� and c= �2

2�2�
. Equation �B4� is the diffusion

equation in the presence of a harmonic potential. This is
identical to the problem of momentum distribution of a par-
ticle under Brownian motion, and an exact solution has been
provided by Chandrasekhar:27

u�x,x0,t� =
1

�2�
� c

D�1 − e−2ct�
e−�x − x0e−ct�2c/2D�1−e−2ct�,

�B5�

where x0 is the starting position. We see that this solution has
the properties we expected, becoming a delta function for t
→0; it always has a Gaussian shape, and as t→� we get
standard deviation �=�D /c and mean zero as expected.

Looking at the expectation value of the position as a func-
tion of time, we find

	x�t�
 = x0e−ct. �B6�

Thus if we initiate the system at position x0, we expect it to
relax exponentially toward the equilibrium value as e−ct.

We can now define the probabilities P�E0�, the probability
of starting at a given energy E0, and P�E , t �E0 ,0�, the prob-
ability of being at E at time t given that the system was at E0
at time 0. From the two-time energy correlation function we
can identify P�E0�=u�t=��, while P�E , t �E0 ,0�=u�E ,E0 , t�,
giving

C�t� =
1

�2� � dE0dEE0Eu���u�E,E0,t� , �B7�

=
1

2��2

c

D

1
�1 − e−2ct

�� � dE0dEE0Ee−�cE0
2/2D+�E − E0e−ct�2c/�1−e−2ct�2D�,

�B8�

which integrates out surprisingly beautifully to give simply

C�t� = e−ct, c =
�E

2

2�2�
. �B9�

We see that all information on the diffusion rate D has been
removed from the correlation function; only the relation be-
tween step length and the standard deviation remains.
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APPENDIX C: STATISTICS OF STEPS AT LOW
TEMPERATURES

We made a simple analysis to see whether any informa-
tion could be extracted from the distribution of the steps
observed. We define a “step” by the setting of a new record
low energy. We define tw to be the waiting time from one
record energy to the next, while the energy difference be-
tween the two records is defined as the step size �s. If mul-
tiple consecutive jumps take the system down in energy, only
the state after the last one is accepted as a step. This still
gives some artificial small �s whenever it takes several steps
before a local minimum is reached so we can ignore those
steps that correspond to very small �s. In this region there is
also a rounding error in the saved files, giving an artificial
discretization of measured �s.

There is also evidence of steps going up in energy. These
will not be found by our algorithm, but for sufficiently low
temperatures they do not seem to play an important role.

Plots of tw and �s as functions of time are given in Fig. 16.
The data are for four different relaxations at T=0.001. We
see that while there is a tendency that the step size ��s� de-
creases with time, the tw shows a much more pronounced
behavior. The maximum waiting time increases close to lin-
early with t. Thus the slowing down of the relaxation seems
to be due to longer waiting times than due to smaller records
being set. We have not attempted any theoretical explanation
of these results.
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FIG. 16. �Color online� �a� tw vs t. �b��s vs t, four separate runs
�o, + , � ,x� at T=0.001.
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