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We study nonanalytic paramagnetic response of an interacting Fermi system both away and in the vicinity of
a ferromagnetic quantum phase transition �QCP�. Previous studies found that �i� the spin susceptibility � scales
linearly with either the temperature T or magnetic field H in the weak-coupling regime; �ii� the interaction in
the Cooper channel affects this scaling via logarithmic renormalization of prefactors of the T, �H� terms, and
may even reverse the signs of these terms at low enough energies. We show that Cooper renormalization
becomes effective only at very low energies, which get even smaller near a QCP. However, even in the absence
of such renormalization, generic �non-Cooper� higher-order processes may also inverse the sign of T, �H�
scaling. We derive the thermodynamic potential as a function of magnetization and show that it contains, in
addition to regular terms, a nonanalytic �M�3 term, which becomes M4 /T at finite T. We show that regular
�M2 ,M4 , . . . � terms originate from fermions with energies of order of the bandwidth, while the nonanalytic
term comes from low-energy fermions. We consider the vicinity of a ferromagnetic QCP by generalizing the
Eliashberg treatment of the spin-fermion model to finite magnetic field, and show that the �M�3 term crosses
over to a non-Fermi-liquid form �M�7/2 near a QCP. The prefactor of the �M�7/2 term is negative, which indicates
that the system undergoes a first-order rather than a continuous transition to ferromagnetism. We compare two
scenarios of the breakdown of a continuous QCP: a first-order instability and a spiral phase; the latter may arise
from the nonanalytic dependence of � on the momentum. In a model with a long-range interaction in the spin
channel, we show that the first-order transition occurs before the spiral instability.
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I. INTRODUCTION

The Landau Fermi-liquid �FL� theory postulates that at
low enough energies a system of interacting fermions be-
haves as a weakly interacting gas of quasiparticles with
renormalized parameters: effective mass, Landé g factor,
etc.1 The thermodynamics of a canonical FL is constructed
under the assumption that the fermion-fermion interaction is
absorbed entirely into a set of the renormalization factors
�Landau parameters�, while the residual interaction between
quasiparticles can be neglected. In this approximation, the
FL behaves as a Fermi gas of free quasiparticles. In particu-
lar, the specific heat coefficient, ��T ,H�=C�T ,H� /T, and the
uniform static spin susceptibility, ��T ,H�, remain finite in
the limit of T ,H→0, while their T and H dependences fol-
low the familiar Sommerfeld expansions in powers of T2 and
H2.

It has long been known that neglecting the residual inter-
action leaves some important physics behind. In particular,
nontrivial kinetics of a FL is entirely due to the residual
interaction among quasiparticles. The effect of the residual
interaction on thermodynamics of Fermi systems has been
studied intensively in recent years �for a review, see Refs. 2
and 3�. It is well established by now that T and H depen-
dences of ��T ,H� and ��T ,H� are nonanalytic. In two di-
mensions �2D�, both � and � are linear rather then quadratic
in T and �H�.4–18 In addition, the nonuniform spin suscepti-
bility, ��q�, scales linearly with �q� for q�kF.7,19

The nonanalytic behavior originates from a dynamic long-
range component of the residual interaction mediated by vir-
tual particle-hole pairs. Two regions in the space of momen-

tum transfers contribute to the long-range dynamics. The first
one is the region of small q, where the long-range interaction
arises due to the � /q form of the fermion polarizability �this
form is also the reason for Landau damping�. In real space,
this component of the interaction falls off slowly, e.g., as
� /r in 2D. The second one is the region around 2kF, where
the Kohn anomaly generates dynamic Friedel oscillations
falling off as � cos�2kFr� /r1/2 in 2D. With this in mind, the
nonanalytic behavior of the free energy can be obtained by
the following scaling argument. The range of the interaction
via particle-hole pairs is determined by a characteristic size
of the pair, Lph, which is large at small energy scales. At
finite temperature, Lph�vF /T by the uncertainty principle.
To second order in the bare interaction, two quasiparticles
interact via a single particle-hole pair. The energy of order T,
carried by such a pair, is distributed over a volume
Lph

D �T−D. The contribution from such process to the free
energy per unit volume is of order �F�u2T /Lph

D �TD+1,
where u is the dimensionless coupling constant. Conse-
quently, ��T�=−�2F /�T2�TD−1. Likewise, at T=0 but in fi-
nite magnetic field, a characteristic energy scale is the
Zeeman splitting 2�B�H� and Lph�vF /�B�H�. Hence,
�F� �H�D+1 and ��H�� �H�D−1. For D=2, this implies that
��T��T and ��H�� �H�. For D=3, power counting misses
logarithmic factors which are recovered by an explicit calcu-
lation.

A perturbation theory indeed shows that � and � depend
linearly on T and �H� in 2D, and as T2 ln T and H2 ln�H� in
three dimensions �3D�. To second order in the interaction, it
has been found7–11 that
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where fc�	�= �m /	��U�0�−U�2kF� /2� and fs�	�
=−�m /2	�U�2kF� are the charge and spin component of the
�first-order� backscattering amplitude fc/s��=	�, correspond-
ingly, and � is the angle between the incoming momenta of
two fermions. Also in Eqs. �1.1a�, �1.1b�, �1.1c�, and �1.1d�,
�0

2D=m	 /3 is the specific-heat coefficient of a 2D Fermi gas,
�0

2D=�B
2m /	 is the spin susceptibility of a 2D Fermi gas, 
F

is the Fermi energy ,�B is the Bohr magneton, and all rel-
evant energy scales—T, �B�H�, and vF�q�—are small com-
pared to 
F. �The scaling forms as functions of all three vari-
ables can also be obtained, see Ref. 11.� Scattering processes
contributing to Eqs. �1.1a�, �1.1b�, �1.1c�, and �1.1d� are
characterized by special kinematics �“backscattering”�: two
fermions move in almost opposite directions before a colli-
sion and then either continue to move along the same path
�momentum transfer q=0� or scatter back �momentum trans-
fer 2kF�.

The intriguing feature of the perturbative results is that
the spin susceptibility is not only nonanalytic but also an
increasing function of all three arguments: H, T, and q. Since
one should expect the susceptibility to decrease at least at
energies much larger than 
F, a natural conclusion is that �
has a maximum at intermediate energies. If this behavior
survives beyond weak coupling, it implies nontrivial conse-
quences for a magnetic phase transition in such a system.
Indeed, a maximum of ��T ,H ,q=0� at finite H gives rise to
a local minimum in the free energy at finite magnetization
M. As ��M =0� increases, this minimum becomes degenerate
in energy with a nonmagnetic state implying that a ferromag-
netic state emerges via a discontinuous first-order transition
accompanied by a metamagnetic response away from the
critical point. On the other hand, a maximum of
��T ,H=0,q� at finite q implies that the system may also
undergo a transition into a spiral rather than uniform mag-
netic state. Both scenarios imply a breakdown of the Hertz-
Millis-Moriya �HMM� model of a continuous, quantum, fer-
romagnetic phase transition.20–22 The first-order instability
has been discussed in recent literature.2,3 It is not clear, how-
ever, which of the two instabilities—the first-order or spiral
one—occurs first. One of the aims of this paper is to clarify
this issue.

Experimentally, a linear T dependence of the specific-heat
coefficient has been observed in monolayers of 3He �Ref.
23�; both the sign and the magnitude of the effect are con-
sistent with Eq. �1.1a�.8,9 For the spin susceptibility, the ex-
perimental situation is less clear. A quasilinear dependence of

� on T was observed in a Si-based 2D heterostructure;24

however, the slope is opposite in sign to that in Eq. �1.1c�.
On the other hand, a number of experiments on this and
other heterostructures �Si,25n-GaAs,26 and AlAs �Ref. 27��
have found that � increases with magnetization, in agree-
ment with Eq. �1.1b�. A linear temperature dependence of �
has recently been observed in the normal phase of Fe-based
pnictides;28 the sign of the slope is consistent with Eq.
�1.1c�.29

A linear �q� dependence of ��T=0,H=0,q� has recently
been proposed to influence ordering of nuclear spins via a
Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction medi-
ated by interacting rather than free electrons.30,31 Because of
the �q� term, the dispersion of nuclear spin waves in the
RKKY-ordered state, �s�q����q�, is linear rather than qua-
dratic in q. In 2D, this implies that the nuclear magnetic
order is stable with respect to thermal fluctuations, which
opens a possibility to freeze nuclear spins at experimentally
accessible temperatures with potential applications in quan-
tum computing.

Conflicting observations of the temperature and magnetic-
field dependences of ��T ,H� and potential applications in
quantum computing call for a detailed theory of the nonana-
lytic effects in the spin response of 2D and 3D Fermi sys-
tems. In particular, it is important to understand whether the
weak-coupling results can be extended into a nonperturbative
regime near a ferromagnetic transition.

Several groups have recently investigated this
issue.12–18,31,32 It turns out that the result for the specific heat
is robust: for D3, all higher-order corrections can be ab-
sorbed into renormalization of the backscattering amplitudes
fc�	� and fs�	� in the second-order result �Eq. �1.1a��.12–15

One particular consequence of this result, which still
awaits for an experimental verification, is the additional
logarithmic dependence of the specific-heat coefficient
��T��TD−1 / �ln 
F /T�2 resulting from renormalizations of
fc/s�	� in the Cooper channel �fc/s�	�� ln−1�
F /T� in the
limit of T→0 �Refs. 13, 14, and 33��. In 3D, there are addi-
tional T2 ln T terms in �, which are not expressed via
backscattering.13,34

For the spin susceptibility, the situation is more complex:
even in 2D, not all higher-order processes can be absorbed
into renormalization of the backscattering amplitudes in the
second-order results. The remaining processes do not have
special kinematics: the momenta of incoming fermions are
not correlated and momenta transfers are generic rather than
peaked either near 0 or near 2kF. The signs of these extra
linear contributions to ��T ,H� alternate with order of the
perturbation theory, which opens a possibility for the sign of
��T ,H� to be reversed upon resummation. In addition, the
backscattering contribution is suppressed by Cooper loga-
rithms, leaving the nonbackscattering processes as the main
contributors to linear in T and �H� terms in the susceptibility
at sufficiently low T.16,18

In this paper, we develop a general theory of the nonana-
lytic behavior of the spin susceptibility in two and three di-
mensions, both in the FL regime and also in the vicinity of a
ferromagnetic quantum critical point �QCP�. In Sec. II, we
discuss the 2D case. After a brief review of the perturbation
theory for � in Sec. II A, we construct in Sec. II B an expan-
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sion of the exact susceptibility in skeleton diagrams with an
increasing number of dynamic polarization bubbles. Physi-
cally, such an expansion corresponds to collecting all pro-
cesses involving a given number of virtual particle-hole
pairs. In Sec. II B 1, we show that all diagrams with two
dynamic bubbles give effectively second-order results �1.1b�
and �1.1c� but with the exact rather than perturbative back-
scattering amplitudes. In Sec. II B 2, we consider processes
with more than two dynamic bubbles and show that they also
give rise to linear T and �H� terms in ��T ,H�. We evaluate
the diagrams up to fourth order in dynamic bubbles and cal-
culate � explicitly for a model form of the scattering ampli-
tude parameterized by the first two harmonics, fs,0 and fs,1.
In Sec. II C, we address an issue of the sign of the T and H
dependences of �. We show that higher-order process can
reverse the sign of backscattering contribution for a strong
enough interaction, even if logarithmic renormalizations in
the Cooper channel are neglected. In the same section, we
also analyze the role of Cooper renormalizations for a system
with a short-range interaction and for a 2D electron gas with
Coulomb interaction in the large N limit, relevant mostly for
valley-degenerate semiconductor heterostructures. In agree-
ment with Ref. 18, we find that the slope of ��T ,H� in a
Coulomb gas changes sign below a certain energy; however,
this energy is of order E*=
F exp�−N3/2 /�2� in the large-N
model. Already for the case of two valleys �N=4�, E* is too
low for this mechanism to be responsible for the observed
negative sign of the T dependence of � in s Si MOSFET.24

Next, we obtain a general form of the thermodynamic
potential for a 2D FL with an arbitrary strong interaction
�Sec. II D 2� and extend the analysis of the magnetic-field
and temperature dependences of ��T ,H� to both FL and
non-FL regions near a ferromagnetic QCP in 2D �Sec. III�. In
Sec. III D 2, we neglect Cooper renormalizations and show
that while ��T ,H� increases with H, T in both regimes, the
�H�, T scaling holds only up to a certain energy which de-
creases as the QCP is approached. At higher energies, the
magnetic-field and temperature dependences of ��T ,H� are
�H�3/2 and T ln T, respectively. The increase in � with H sig-
nals an imminent breakdown of the continuous ferromag-
netic transition. We discuss possible scenarios of quantum-
and finite-temperature ferromagnetic phase transitions in
Sec. IV. In particular, we show that for a large radius of the
interaction in the spin channel the first-order transition al-
ways preempts the spiral instability. Finally, in Sec. III E, we
show that the increase in � with H and T near a QCP is not
affected by renormalization in the Cooper channel, as this
renormalization becomes relevant only below an energy
which decreases exponentially as the QCP is approached.

In Sec. V, we consider the 3D case. In Sec. V A, we show
that �H2 ln�H� form of ��T=0,H� in a 3D FL transforms into
a weaker H2 ln ln�H� form near a ferromagnetic QCP. In Sec.
V B, we analyze the T dependence of ��T ,H=0� in 3D. A
3D FL is peculiar in a sense that ��T� scales as T2 without an
extra logarithmic factor.35,36 We generalize the earlier result
for the T2 scaling by Beal-Monod et al.35 and show that the
prefactor of the T2 term is nonuniversal: its magnitude and
sign depend on details of the fermion dispersion. For the k2

dispersion discussed in Ref. 35, the prefactor of the T2 term
is negative, i.e., ��T� decreases with T. However, � may

increase with T for a more complex dispersion. An increase
in ��T� with T has been observed in a number of exchange-
enhanced paramagnetic metals.37

Section VI summarizes our conclusions. Some technical
details of the derivations are given in Appendixes A–C.
Some of the results presented here were published in a
shorter form in Ref. 17.

II. MAGNETIC RESPONSE OF A 2D FERMI LIQUID

The spin susceptibility at zero temperature and in zero
magnetic field, ��T=0,H=0� is described by the conven-
tional FL theory.1 The subject of our study is the
temperature- and field-dependent parts of the susceptibility:
���T ,H�=��T ,H�−��0,0�. The most straightforward way to
obtain ���T ,H� is to evaluate the thermodynamic potential
��T ,H� and differentiate it twice with respect to the field. In
contrast to the linear-response theory, which generates a
large number of diagrams, the number of relevant diagrams
for the thermodynamic potential is rather small. The prefac-
tor of the H2 term in the thermodynamic potential gives the
T-dependent spin susceptibility, while the nonanalytic �H�3
term gives the field-dependent �nonlinear� susceptibility.

A. Second-order perturbation theory

To second order in the interaction ���T ,H� was consid-
ered in Refs. 7, 8, 10, and 11, where it was found that

�i� ��T , �H�� is nonanalytic in both arguments and scales
as max�T , �H�	�;

�ii� the nonanalyticity comes from the states near the
Fermi surface;

�iii� only 2kF scattering is relevant, thus the prefactors of
the linear terms in T and in H contain only the 2kF compo-
nent of the interaction U�q�.

In this section, we overview briefly the second-order per-
turbation theory because later we will need to understand
what replaces U�2kF� in the interaction vertices beyond the
second order.

At second order in U�q�, the field-dependent part of the
thermodynamic potential ��T ,H� is given by a single dia-
gram shown in Fig. 1. In this diagram, the spins of fermions
in one of the bubbles are opposite to those in another bubble.
The nonanalytic contribution to ��T ,H� originates from the
2kF nonanalyticity of the dynamic polarization bubble in zero
field and, hence, is proportional to U�q=2kF�. Finite mag-
netic field cuts off the nonanalyticity, but at a price that the
derivatives with respect to the field become nonanalytic in H.
With all four fermions near the Fermi surface, the 2kF dia-
gram necessarily contains two spin-up fermions with mo-
menta near kF and −kF and two spin-down fermions also
with momenta near kF and −kF. These four fermions can be
regrouped into two up-down bubbles, each with a small-
momentum transfer. This simplifies the computations sub-
stantially because the polarization bubble has a much simpler
form for small q than for q near 2kF.

The magnetic field enters the problem via the Zeeman
shifts of single-fermion energies in the Green’s functions
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G↑,↓�k,�m� =
1

i�m − 
k��/2
, �2.1�

where

�
 2�BH �2.2�

is the Zeeman energy. The up-down polarization bubble is
defined as

�↑↓�q,�m� = T�
k

G↑��m +�m,k + q�G↓��m,k� , �2.3�

where T�k is a shorthand for T��m
�d2k / �2	�2. For q�kF,

the up-down bubble can be separated into the static and dy-
namic parts as

�↑↓�q,�m� = − ��1 − P↑↓� , �2.4�

where �=m /2	 is the density of states at the Fermi surface
and

P↑↓�q,�m� =
��m�

���m − i��2 + vF
2q2

. �2.5�

Re-expressed in terms of the up-down bubbles, the diagram
in Fig. 1 reads

�2�T,H� = −
U2�2kF�

2
T�

q

�↑↓
2 ��m,q� . �2.6�

The nonanalytic part of �2�T ,H� is obtained by keeping the
square of the dynamic term in Eq. �2.4�, i.e., replacing �↑↓

2

by �2P↑↓
2 . This gives

�2�T,H� = −
u2kF

2

2
T�

q

�m
2

��m − i��2 + �vFq�2

= −
u2kF

2

8	vF
2 T�

�m

�m
2 ln

W2

��m − i��2 , �2.7�

where

u2kF

 �U�2kF� �2.8�

and W is the high-energy cutoff which, in general, is of order
of the bandwidth.

The logarithm in the frequency sum in Eq. �2.7� originates
from the �m / �q� form of the polarization bubble at
vFq��m, �, i.e., from the long-range tail of the dynamic
bubble �in real space, �m / �q� transforms into �m /r�. If not
for the logarithm, �2�T ,H� would be expandable in powers
of T2 and H2. The logarithm breaks analyticity. Replacing the
Matsubara sum by a contour integral, and subtracting off the
field-independent part, we obtain from Eq. �2.7�

�2�T,H� = −
u2kF

2

8	vF
2

0

���

d��2 coth� �
2T

� �2.9�

The integral in Eq. �2.9� can be solved exactly �in terms of
polylogarithmic functions�, but we actually do not need this
solution, as the T- and H-dependent spin susceptibility can
be obtained directly from Eq. �2.9� by differentiating it twice
with respect to H. This yields

��2�T,H� = −
�2�2

�H2 = u2kF

2 ���
2EF

S� ���
2T

��0
2D, �2.10�

where �0
2D=�B

2m /	 is the spin susceptibility of a free 2D
Fermi gas, and the scaling function S�x� is

S�x� = coth x −
x

2 sinh2 x
. �2.11�

The asymptotic limits of S are S�x→0�=1 /2x and S�x
→��=1. Substituting these limits into Eq. �2.10�, we find
that the susceptibility increases linearly with the largest of
the two energy scales, T and �. Schematically,

��2�T,H� = u2kF

2 E

2
F
�0

2D, �2.12�

where E
max�T , ���	.
If the same calculation is performed in real rather than

Matsubara frequencies, the frequency integral contains the
product of the real and imaginary parts of the retarded, dy-
namic bubble: u2kF

2 Re P↑↓
R Im P↑↓

R . This allows for a transpar-
ent physical interpretation of the two-bubble diagram.13 In-
deed, Im�R can be thought of as the spectral density of
particle-hole pairs, while u2kF

2 Re�R as of the dynamic inter-
action between the two fermions in the particle-hole pair.
The product d�d2qu2kF

2 Re�R Im�R�d�d2q�� /q�2 is then
the potential energy of a single particle-hole pair excited
above the ground state. In this language, an increase in
��2�T ,H� with both H and T can be understood as the con-
sequence of the fact that the magnetic field gaps out soft

p

p+q

k+q

k

FIG. 1. The field-dependent part of the thermodynamic potential
at second order. k , p ,q are the four momenta: k
�k ,�m�, etc. Here
and in Figs. 2, 6, and 11, thin solid lines denote bare Green’s
functions.
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particle-hole pairs, suppressing their contribution to the ther-
modynamic potential.

B. Beyond second order

Higher-order diagrams for ��T ,H� can be divided into
two groups. The first group is formed by diagrams in which
a nonanalyticity is produced in the same way as at second
order: by extracting a product of only two dynamic bubble
from the whole diagram. The rest of the diagram goes into
dressing up of the fermion propagators and renormalization
of the 2kF interaction lines into full static vertices. In real-
frequency language, these diagrams describe higher-order
corrections to the effective static interaction in a single-pair
process.13 The second group is formed by diagrams in which
a nonanalyticity is produced by combining more than two
dynamic bubbles.

These two groups of diagrams describe two distinct physi-
cal processes. As we will show in this section, the first group
corresponds to scattering events in which fermions, moving
in almost opposite directions before the collision, reverse
their respective directions of motion. We dub this process as
“backscattering.” The second group describes scattering
events with no correlation between initial directions of mo-
tion.

Third-order diagrams b ,c, and f in Fig. 2 belong to the
first group. Nonanalytic contributions to � from these dia-
grams are obtained by selecting two dynamic up-down
bubbles and setting q=�m=0 in the rest of the diagram. As
an example, we consider diagram b. Fermions from any of
the two bubbles with opposite spins can be regrouped into
two up-down bubbles in the same way as in the second-order
diagram in Fig. 1. Retaining only the dynamic part of these
two bubbles, we obtain the same nonanalyticity as at second

order. The remaining, third bubble can then be evaluated at
zero external frequency, which means that it renormalizes the
static vertex. Diagrams of the first type to all orders can be
cast into a single skeleton diagram, shown in Fig. 3. The
fermion Green’s functions in this diagram are of a FL form

G↑,↓ =
Z

i�m − ṽF�k − kF�� �̃/2
, �2.13�

where ṽF is the renormalized Fermi velocity, Z is the quasi-

particle residue, and �̃=2�̃BH with �̃B being the effective
Bohr magneton, which we discuss below. A hatched block in
Fig. 3 is the spin component of the renormalized static ver-
tex, �s�k ,p ;q�, obtained from the dynamic one in the limit
of �m / ṽFq→0. We will follow a standard procedure1 and

absorb factors of Z into �s. In the low-energy limit �T , �̃
�
F�, the fermion momenta k=nkk and p=npp are confined
to the Fermi surface so that �s depends on the angle between
nk and np �as well as on q�: �s=�s�nk ·np ;q�. At first order in
U, the vertex reduces to �s�k ,p ;q�=−U��k−p � �, and only
U�2kF� contributes to the nonanalyticity. Beyond the lowest
order, however, more complicated angular averages of the
interaction occur, and it is not a priori clear what the pref-
actor of the nonanalytic term is. We now show, using the
same procedure as in Ref. 13, that this prefactor is precisely
the square of the spin component of the backscattering am-
plitude: �2�s

2�nk ·np=−1,q=0�.

1. Contribution to the susceptibility from diagrams with two
dynamic bubbles

The nonanalytic contribution of the skeleton diagram in
Fig. 3 is given by13

�2s�T,H� = −
1

2
T�

q
 dnk dnp

� ���s�nk · np;q��2P↑↓��m,q;nk�P↑↓��m,q;np� ,

�2.14�

where

a) b)

c) d)

f)e)

FIG. 2. Diagrams for the thermodynamic potential beyond sec-
ond order.

k
p

p+q
k+q

FIG. 3. Skeleton backscattering diagram. Hatched boxes repre-
sent the spin components of the renormalized static vertex,
�s�k ,p ,q�. Thick solid lines depict fully renormalized Green’s
functions, given by Eq. �2.13�.
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P↑↓��m,q;nk� =
1

2	

i�m/ṽFq

�i�m + �̃�/ṽFq − nk · nq

�2.15�

is the propagator of a particle-hole pair moving with in the
direction of nk with small energy �m and momentum q. �P↑↓
in Eq. �2.4� is obtained from P↑↓ by averaging over nk:
P↑↓��m ,q�=�dnkP↑↓��m ,q ;nk�.� The vertex �s can be ex-
panded in angular harmonics as

�s�nk · np;q� = �
l=0

�

�s,l�q�cos�l�kp� , �2.16�

where �kp=cos−1�nk ·np�. Substituting this expansion into Eq.
�2.14�, we obtain

�2s�T,H� = −
1

2
�2T�

q
��m

ṽFq
�2

�
l,l�

�s,l�q��s,l��q�All�,

�2.17�

where

All� =
1

�2	�2   dnkdnp cos�l�kp�cos�l��kp�

�
1

iz − nk · nq

1

iz − np · nq
�2.18�

and

z =
�m − i�̃

ṽFq
. �2.19�

Using the identities

�ia − b�−1 = − i sgn�Re a�
0

�

d�e−� sgn�Re a��a−ib�

ilJl��� = 
0

	 d�

	
ei� cos � cos�l�� �2.20�

and


0

�

d�Jl���e−a� =
��a2 + 1 − a�l

�a2 + 1
�2.21�

�valid for Re a�0�, we obtain for All�

All� =
�− �l+l�

2

���z2 + 1 − z�l+l� + ��z2 + 1 − z�l−l��
z2 + 1

.

�2.22�

The expression for �2s�T ,H� reduces then to

�2s�T,H� = −
1

2
T�

q

B�z�
�m

2

��m − i�̃�2 + �ṽFq�2
, �2.23�

where

B�z� = �
l,l�=0

� � ��z2 + 1 − z�l+l� + ��z2 + 1 − z�l−l�

2
�

��− �l+l��2�s,l�q��s,l��q� . �2.24�

As it was the case for the second-order diagram, the nonana-
lyticity in �2s�T ,H� is associated with the logarithmic diver-
gence of the integral over q �see Eq. �2.7��. Because the
logarithm comes from the “tails” of the integrand, typical

ṽFq are much lager than both �m and �̃, i.e., typical z are
small. Therefore, one can safely put z=0 in the factor in
square brackets of Eq. �2.24�, upon which it reduces to unity.
On the other hand, since q is still smaller than the momen-
tum cutoff of the interaction, one can set q=0 in the vertex.
Next, we recall that the small-momentum limit of
��s�k ,p ;q� is the scattering amplitude fs��kp�.1 Therefore,

B�0� = �
l,l�=0

�

�− �l+l�fs,l f s,l� = ��
l=0

�

�− �l f s,l�2

= �fs�	��2,

�2.25�

which is a square of the exact backscattering amplitude.
The rest of the integral in Eq. �2.24� is evaluated in the

same way as it was done at second order and yields the same

scaling form as in Eq. �2.10�, with vF→ ṽF and �→ �̃.
Therefore, the contribution of the skeleton diagram in Fig. 3
to the spin susceptibility is given by

��2s�T,H� = �fs�	��2� �̃B

�B
�2 ��̃�

2
̃F

S� ��̃�
2T
��0

2D, �2.26�

where 
̃F= ṽFKF /2 is the renormalized Fermi energy.
The renormalized Fermi velocity ṽF and Bohr magneton

�̃B can be expressed in terms of the Landau parameters gc,l
and gs,l,

1 where c and s stand for charge and spin. The Fermi
velocity is given by ṽF=vF / �1+gc,1�, while renormalization
of the Bohr magneton follows from the requirement that the
Zeeman energy of a spin in the magnetic field is 2�̃BH
=2�BH / �1+gs,0�. Then,

�̃B =
�B

1 + gs,0
. �2.27�

We also recall that harmonics of the Landau interaction
function are related to harmonics of the scattering
amplitude.1 In 2D, this relation is given by

fa,n =
ga,n

1 +
ga,n

2 − �n,0

, �2.28�

where a=c ,s. To first order in the interaction,
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gc,n = fc,n = ��2U�0��n,0 − 
0

	 d�

	
cos n�U�2kF sin �/2�� ,

gs,n = fs,n = − �
0

	 d�

	
cos n�U�2kF sin �/2� . �2.29�

In general, ga,l=Z2�vF / ṽF���a,l
� , fa,l=Z2�vF / ṽF���a,l

q , where
�� and �q are renormalized vertices at small momentum and
frequency transfers, in the limits ṽFq /�m→0 and �m / ṽFq
→0, respectively.

It is convenient to re-express ���T ,H� in terms of the
actual �renormalized� spin susceptibility at T=H=0, rather
than of the susceptibility of a Fermi gas �0

2D. The renormal-
ized spin susceptibility at H=T=0 is given by1

��0,0� =
m

	

vF

ṽF

�B
2

1 + gs,0
=

vF

ṽF

�1 − fs,0��0
2D. �2.30�

Expressing �0
2D via ��0,0� and substituting the result back

into Eq. �2.26�, we obtain

��2s�T,H� = ��0,0��fs�	��2 �̃B

�B

��̃�
2
F

S� ��̃�
2T
� . �2.31�

Before concluding this section, we note that the exact
backscattering amplitude fs�	� depends logarithmically on T
and H due to singular renormalizations in the Cooper
channel.13,15,16,18,33 To see this, one needs to recall that fs�	�
is equal �up to a prefactor� to the Cooper vertex for scattering
from the states with momenta k and −k into the states with
momenta −k and k, respectively. We will discuss this special
feature of the backscattering amplitude in Secs. II C 1 and
II C 2, but for a moment continue with the consideration of
higher-order contributions to ��T ,H�.

2. Contributions to the susceptibility from diagrams with more
than three dynamic bubbles

There are other diagrams at third and higher orders, which
do not belong to the skeleton diagram in Fig. 3. In zero
magnetic field, these additional diagrams yield only analytic
contributions to ��T ,H=0�.8,9,13,33 This is not so in the pres-
ence of the magnetic field, as we are now going to demon-
strate.

At third order, there is only one diagram which cannot be
fully absorbed into Fig. 3—diagram e in Fig. 2. For a local
interaction �U�q�=const�, this diagram contains a cube of the
up-down bubble

�3e�T,H� = −
u3

3
T�

q

�1 − P↑↓�3

= −
u3

3
T�

q

�1 − 3P↑↓ + 3P↑↓
2 − P↑↓

3 � . �2.32�

As one can readily verify, the first two terms do not give rise
to nonanalyticities, while the P↑↓

2 term has already been ac-
counted for in the skeleton diagram of Fig. 3. The new con-
tribution comes from the P↑↓

3 term. Keeping only this term
and integrating over q, we obtain

�3e�T,H� =
u3

6	
T�
�m


0

�

dqq
�m

3

���m − i��2 + vF
2q2�3/2

=
u3

3	vF
2 T �
�m�0

�m
4

�m
2 + �2 . �2.33�

Subtracting off the ultraviolet contribution and summing
over �m, we find

�3e�T,H� =
u3

12	vF
2 ���3 coth

���
2T

. �2.34�

Differentiating twice with respect to the field, we obtain the
new contribution to the susceptibility

��3e�T,H� = − u3 ���

F

R� ���
2T

��0
2D, �2.35�

where

R�x� = coth x −
x

sinh2 x
+

x2

3 sinh3 x
. �2.36�

In the two limits, R�x→��=1 and R�x→0�=1 /3x. We see
that ��3e has the same nonanalytic dependence on T and H
as the second-order diagram: it scales linearly with the larg-
est of the two energy scales

��3e�T,H� = − u3max����,2T/3	

F

. �2.37�

There is one essential difference between the second- and
third-order contributions: the nonanalyticity in ��3e�T ,H�
does not arise from a logarithmically divergent integral over
q. Indeed, the momentum integral in Eq. �2.33� is convergent
and comes from the region q���m� /vF���� /vF. This means
that Eq. �2.35� cannot be obtained by replacing the dynamic
part of the bubble by its asymptotic form at large vFq /�m,
which was the case for the backscattering contribution.

Notice that the sign of the third-order nonbackscattering
contribution is opposite to the second-order result. This
opens a possibility of inverting the sign of �� in the nonper-
turbative regime �see Sec. II C for a more detailed discus-
sion�.

To go beyond the perturbation theory for this new type of
processes, we apply the same procedure as for backscatter-
ing. Namely, we combine all diagrams with three dynamic
bubbles into a “third-order” skeleton diagram by replacing
the bare interactions in Fig. 3�e� by the renormalized vertices
evaluated in the limit of �m /vFq→0. This limit ensures that
we obtain contributions with no more than three dynamic
bubbles. The renormalized vertices are then again the spin
components of the scattering amplitude fs, and the third-
order skeleton diagram reduces to

�3s,3 = −
1

3�
q
 dnk dnp dnsfs�nk · nl�fs�nl · np�

�fs�nl · np�P↑↓��m,q;nk�P↑↓��m,q;nl�P↑↓��m,q;np� .

�2.38�

As it was done for the second-order skeleton diagram, we
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replace the bare vF and � by their renormalized values and
absorb the quasiparticle residue Z into fs. We now show that
the three vertices in Eq. �2.38� do not form the cube of the
backscattering amplitude, i.e., that the nonanalyticity in ��3s
comes from scattering of fermions with uncorrelated direc-
tions of the initial momenta. To demonstrate this, we adopt a
simplified model, in which the angular dependence of
fs�nl ·np� is approximated by the first two harmonics,

fs�nk · np� = fs,0 + nk · npfs,1. �2.39�

In this model, the backscattering amplitude is equal to

fs�	� = fs,0 − fs,1 = fs,0�1 −
fs,1

fs,0
� . �2.40�

Substituting Eq. �2.39� into Eq. �2.38�, performing straight-
forward angular integrations, and differentiating twice with
respect to the magnetic field, we obtain for the three-bubble
contribution to the spin susceptibility,

��3s�T = 0,H� = �fs,0�3F3� fs,1

fs,0
�� �̃B

�B
�2 ��̃�

̃F

�0
2D, �2.41a�

��3s�H = 0,T� = �fs,0�3F3� fs,1

fs,0
�� �̃B

�B
�2 2T

3
̃F

�0
2D, �2.41b�

where

F3�x� = 1 − 3�2 ln 2 − 1�x + 3�3 ln 2 − 2�x2 + �5/2 − 3 ln 2�x3.

�2.42�

Obviously, the product �fs,0�3F3�fs,1 / fs,0� in the prefactors of
Eqs. �2.41a� and �2.41b� does not reduce to the cube of fs�	�
from Eq. �2.40�.

A similar consideration can be extended to higher orders.
At fourth order, we get an additional nonanalytic contribu-
tion to � from processes with four dynamic particle-hole
bubbles, at fifth order—from five dynamic bubbles, and so
on. Each of these contributions can be converted into a skel-
eton diagram by dressing up the fermion Green’s functions
and interaction lines, and neither of them is expressed solely
via the backscattering amplitude. For example, approximat-
ing fs�nk ·np� as in Eq. �2.39�, we obtain for the fourth-order
skeleton contribution

��4s�T = 0,H� = �fs,0�4F4� fs,1

fs,0
�� �̃B

�B
�23��̃�

2
̃F

�0
2D, �2.43a�

��4s�H = 0,T� = �fs,0�4F4� fs,1

fs,0
�� �̃B

�B
�2 3T

4
̃F

�0
2D, �2.43b�

where

F4�x� = 1 − 4�3 − 4 ln 2�x − �50 − 6 ln 2�x2 − �50 − 72 ln 2�x3

+ �20 ln 2 −
41

3
�x4. �2.44�

3. Isotropic scattering

If one further neglects fs,1 compared to fs,0, i.e., approxi-
mates the scattering amplitude by a constant, the contribu-

tions to the thermodynamic potential from skeleton diagrams
from all orders form geometric series and can be summed up.
Doing so, we obtain

��T,H� = −
��̃�3

24	�ṽF�2 �fs,0
2 + 2fs,0

3 + 3fs,0
4 + ¯ �

= −
��̃�3

24	�ṽF�2� fs,0

1 − fs,0
�2

= −
gs,0

2 ��̃�3

24	�ṽF�2

�2.45�

for ��̃��T, and

��T,H� = −
T�̃2

4	�ṽF�2�1

2
fs,0

2 +
2

3
fs,0

3 +
3

4
fs,0

4 + ¯ �
= −

T�̃2

4	�ṽF�2�ln�1 − fs,0� +
fs,0

1 − fs,0
�

= −
T�̃2

4	�ṽF�2 �ln�1 + gs,0�−1 + gs,0� �2.46�

for ��̃��T.
Differentiating ��T ,H� with respect to the field, we ob-

tain

���T = 0,H� = � fs,0

1 − fs,0
�2� �̃B

�B
�2 ��̃�

2
̃F

�0
2D

= gs,0
2 � �̃B

�B
�2 ��̃�

2
̃F

�0
2D �2.47�

and

���T,H = 0� = �ln�1 − fs,0� +
fs,0

1 − fs,0
�� �̃B

�B
�2 T


̃F

�0
2D

= �ln�1 + gs,0�−1 + gs,0�� �̃B

�B
�2 T


̃F

�0
2D.

�2.48�

Equation �2.48�, without FL renormalization of the Fermi
energy, was derived earlier in Refs. 16–18.

In what follows, we will also need a full expression for
the spin susceptibility for the case in which the angular de-
pendence of the scattering amplitude is approximated by first
two harmonics, as in Eq. �2.39�. Such an expression can be
obtained for the case when fs,1� fs,0 while fs,0 is arbitrary.
The calculation of �� is tedious but straightforward. We
present the result only for ���T ,H=0�,

���T,H = 0� = �F0�fs,0� − 2
fs,1

fs,0
F1�fs,0��� �̃B

�B
�2 T


̃F

�0
2D,

�2.49�

where

F0�x� = ln�1 − x� +
x

1 − x
,
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F1�x� = � x

1 − x
�2

− x3� 4 ln 2

�x + 1�3 −
4 ln�1 − x�

�x + 1�3

−
2

�x + 1�2�1 − x�
−

2�x2 + 1�
�x2 − 1�2 � . �2.50�

In the two limits, F1�x�1��x2 and F1�x�1��2x.

C. The sign of the temperature and magnetic-field dependences
of the spin susceptibility

In the previous section, we calculated the third- and
fourth-order skeleton diagrams for a model form of fs���
given by Eq. �2.39�. Beyond weak coupling, the expansion in
skeleton diagrams does not have a natural small parameter.
Still, it is worthwhile to analyze the result for not too strong
interaction. To fourth order in the scattering amplitude, the
field dependence of ���T=0,H� is given by the sum of Eqs.
�2.26� �taken in the limit of T→0�, �2.41a� and �2.43a�. Ex-
plicitly,

��T = 0,H� =
��̃�

̃F
� �̃B

�B
�2

�0
2DSH�fs0, fs,1� , �2.51�

where

SH�fs0, fs,1� =
1

2
�fs,0 − fs,1�2 + fs,0

3 F3� fs,1

fs,0
� +

3

2
fs,0

4 F4� fs,1

fs,0
�

�2.52�

with functions F3�x� and F4�x� defined in Eqs. �2.42� and
�2.44�, respectively. The first term in Eq. �2.52� is the square
of the backscattering amplitude in the two-harmonic approxi-
mation �cf. Eq. �2.40��.

Likewise, the T dependence of ���T ,H=0� is given by
the sum of Eqs. �2.26� �taken in the limit of H→0�, �2.41b�
and �2.43a�,

��T,H = 0� =
T


̃F
� �̃B

�B
�2

�0
2DST�fs0, fs,1� , �2.53�

where

ST�fs0, fs,1� =
1

2
�fs,0 − fs,1�2 +

2

3
fs,0

3 F3� fs,1

fs,0
� +

3

4
fs,0

4 F4� fs,1

fs,0
� .

�2.54�

In Figs. 4 and 5, we plot SH�fs,0 , fs,1� and ST�fs,0 , fs,1�,
correspondingly, as functions of fs,1 / fs,0 for a range of fs,0.
We see that if both �fs,0� and �fs,1 / fs,0� are sufficiently large
�but still less than one�, the signs of the slopes are opposite to
those of the backscattering contribution, i.e., � decreases
with T and �H�.

To get an idea about the numerical values of fs,0 and fs,1,
we use available data for Landau parameters. A system of
fermions with repulsive interaction is expected to exhibit en-
hanced ferromagnetic fluctuations, which corresponds to a
negative value of gs,0. Indeed, the Landau parameter gs,0 is
negative in He3 �in both bulk38 and film39 forms�, 2D gases
in semiconductor heterostructures,25–27 and many other fer-
mion systems. In bulk He3, gs,0=−0.70 and gs,1=−0.55 at

ambient pressure.38 In Si MOSFETs, gs,0 is also close to −0.7
in a wide interval of densities.25 The first harmonic of the
spin Landau function, gs,1 has not been measured in 2D
gases. Taking the bulk He3 values as rough estimates for the
2D case as well, we obtain with the help of Eq. �2.28�: fs,0
=−2.3, fs,1=−0.76, and fs,1 / fs,0=0.33. Although the magni-
tude of fs,0 is probably too large for our truncated perturba-
tion theory to be accurate, Figs. 4 and 5 indicate that both
���T ,0� and ���0,H� are already negative for this value of
fs,1 / fs,0.

We thus see that the field and temperature dependences of
� are nonuniversal: while the slopes are positive at weak
coupling, they well may become negative at sufficiently

−0.2 −0.1 0 0.1 0.2 0.3
−6

−5

−4

−3

−2

−1

0

1

f
s,1

/f
s,0

S
H

(f
s,

0,f
s,

1)

FIG. 4. �Color online� Function SH�fs,0 , fs,1�, which determines
the sign of the magnetic-field dependence of the spin susceptibility
calculated to fourth order in the skeleton interaction �cf. Eq. �2.52��,
plotted as a function of fs,1 / fs,0 for fs,0=−0.3 �dashed�, −0.5 �dot-
ted�, −0.7 �solid�. The curve for fs,0=−0.3 was multiplied by a
factor of 10 for clarity.

−0.2 −0.1 0 0.1 0.2 0.3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

f
s,1

/f
s,0

S
T
(f

s,
0,f

s,
1)

FIG. 5. �Color online� Function ST�fs,0 , fs,1�, which determines
the sign of the magnetic-field dependence of the spin susceptibility
calculated to fourth order in the skeleton interaction �cf. Eq. �2.54��,
plotted as a function of fs,1 / fs,0 for fs,0=−0.3 �dashed�, −0.5 �dot-
ted�, −0.7 �solid�. The curve for fs,0=−0.3 was multiplied by a
factor of 10 for clarity.
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strong coupling. �Later on, however, we will show that in the
vicinity of a ferromagnetic QCP the sign of ���T ,H� is defi-
nitely positive.�

1. Cooper renormalization

References 16 and 18 considered a more subtle mecha-
nism for changing the sign of �� as compared to the second-
order result, namely, renormalization of the backscattering
amplitude in the Cooper channel. As we have already said,
the backscattering amplitude is special in that it is given by a
fully renormalized vertex with zero total incoming momen-
tum and momentum transfer of 2kF. Therefore, it can be
expressed via angular harmonics of the irreducible Cooper
amplitude, �C, as

fs�	� = �
l

�− �l �C,l

1 + �C,l ln�W/E�
, �2.55�

where E=max�T , �̃	 is an appropriate energy scale. This
gives rise to two effects. First, if at least one of �C,l
is negative, i.e., �C,l0

0, the system undergoes a
superconducting transition of the Kohn-Luttinger type40 into
a state with orbital momentum l0 at EKL=W exp�−��C,l0

��.
The backscattering contribution to the spin susceptibility
��2s�E / �1+�C,l0

ln�W /E��2 diverges at EKL as well. Above
EKL, ��2s is nonmonotonic: it decreases with E for
EKLEe2EKL�7.39EKL and increases with E for
E�e2EKL.16 For E�e2EKL, Cooper renormalization is weak
and ��2s becomes linear in E. Second, if all �c,l are positive,
fs�	� scales down to zero as 1 / ln�W /E� for E→0. Conse-
quently, the backscattering contribution to � is reduced by a
factor of 1 / ln2�W /E�. In this situation, the dominant contri-
bution to �� comes from nonbackscattering terms,18 which
do not contain singular Cooper renormalizations. In Ref. 18,
this effect was accounted for in a model of isotropic scatter-
ing amplitude, fs���= fs,0, by subtracting off the backscatter-
ing contribution from Eqs. �2.47� and �2.48�. This gives

���T = 0,H → 0�

→ �� fs,0

1 − fs,0
�2

− fs,0
2 �� �̃B

�B
�2 ��̃�

2
̃F

�0
2D

= �2fs,0
3 + 3fs,0

4 + ¯ �� �̃B

�B
�2 ��̃�

2
̃F

�0
2D �2.56�

and

���T → 0,H = 0�

→ �ln�1 − fs,0� +
fs,0

1 − fs,0
−

1

2
fs,0

2 �� �̃B

�B
�2 T


̃F

�0
2D

= �2

3
fs,0

3 +
3

4
fs,0

4 + ¯ �� �̃B

�B
�2 T


̃F

�0
2D. �2.57�

The signs of the H and T dependences in Eqs. �2.56� and
�2.57� now coincide with the sign of fs,0; for negative fs,0,
expected for a repulsive interaction, they are opposite to the
second-order result. This mechanism was proposed in Ref.

18 as an explanation of the negative sign of the slope of
���T ,H=0��T observed in Ref. 24.

A simple way to estimate the validity of the approxima-
tion used in Eqs. �2.56� and �2.57� is to consider the scatter-
ing amplitude with two rather than one components,

fs��� = fs,0 + fs,1 cos � . �2.58�

The vanishing of fs�	� at T→0 implies that fs,0= fs,1 at
T=0. In the approximation used to derive Eq. �2.57�, this
relation was accounted for in the quadratic but not in higher-
order terms. Substituting fs,0= fs,1 into the third- and fourth-
order terms in fs, we obtain, instead of Eq. �2.57�,

���T,H = 0� = ��0.02��
2

3
fs,0

3 + �− 45.65��
3

4
fs,0

4 + ¯ �
� � �̃B

�B
�2 T


̃F

�0
2D. �2.59�

Comparing Eqs. �2.59�, �2.58�, and �2.57�, we see that the
prefactors differ substantially, making it difficult to draw a
general conclusion. At the same time, the signs of both terms
in Eq. �2.59� are negative for fs,00; hence, to this order,
���T ,H=0�0, which is consistent with Ref. 18.

2. Coulomb interaction in the large N limit

Another issue is that the results of Refs. 16 and 18, as
well as Eq. �2.59�, are valid only below a characteristic en-
ergy scale at which Cooper renormalizations of fs,0 become
significant. For a weak interaction, this scale is exponentially
small. To estimate this scale beyond the weak-coupling re-
gime, we consider the effect of Cooper renormalization of
the backscattering amplitude on the spin susceptibility in a
large-N model for the Coulomb interaction, developed earlier
in Refs. 41–43. To be specific, we assume that there are Nv
degenerate electron valleys so that the total �spin�valley�
degeneracy is N=2Nv. While this model is especially rel-
evant to Si- and AlAs-based heterostructures, which have at
least two valleys �N=4�, it can also provide a useful insight
even for a single-valley system �N=2�. The large-N model
explains well certain features of the effective mass and spin
susceptibility, observed in Si heterostructures, in particular,
the independence of the effective mass of the spin
polarization.44

In an N-fold degenerate 2D Fermi gas, the Fermi momen-
tum is scaled down by a factor of �N: kF=n /�4	N, where n
is the number density of electrons. On the other hand, the
inverse screening radius �, which is proportional to the den-
sity of states, is scaled up by a factor of N. Their ratio,

gN = �/kF = rsN
3/2/2 �2.60�

with rs=me2 /�	n, defines an effective coupling constant.
We still need to assume that rs�1; only then the mean-field
random-phase approximation �RPA� is valid. If N�1, then
gN�rs�1, which implies that there is only a weak-coupling
regime. If N�1, there are two regimes: weak coupling
�gN�1� and strong coupling �gN�1�; the latter is of the
most interest for us.
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The details of the calculation are given in Appendix A.
Here we present only the result for the field-dependent part
of the spin susceptibility,

�� =
���
8
F

�N2

LC
2 −

2

N
��0

2D, �2.61�

where LC=ln�
F / ���� is the Cooper logarithm and, as before,
�=2�BH. Equation �2.61� is valid for LC�N, i.e., for
��EC

F exp�−N�. The first term in Eq. �2.61� is the back-
scattering contribution, which is the leading term in the 1 /N
expansion. The second term is the contribution from other
processes, which is the next-to-leading term in this expan-
sion. As expected, the backscattering contribution is scaled
down by a factor of 1 /LC

2 . The change in sign occurs at
LC=N3/2 /�2 or

� = E* = 
F exp�− N3/2/�2�� EC. �2.62�

For an estimate, we consider a 2D electron gas in the
�001� plane of a Si MOSFET, where N=4; correspondingly,
EC=0.018
F and E*=0.0035
F. In the experiment of Ref. 24,
the highest Fermi energy in this measurement is about 40 K.
Then, EC=0.70 K and E*=0.14 K. Both energies are smaller
than the disorder broadening in these samples. This shows
that the mechanism of the sign reversal of �� due to Cooper
renormalization does not have room to develop until disorder
becomes important—�� in Ref. 24.

Notice also that EC is still larger than the energy scale of
the Kohn-Luttinger superconducting instability. Indeed, in
2D the Kohn-Luttinger effect starts only at third order in the
interaction,45 which implies that EKL�exp�−N3�
F�EC.

The above estimates are based on additional assumptions,
such as N�1, and therefore cannot give rigorous results re-
garding the T and H dependences measured in 2D hetero-
structures. The crucial experimental check for the many-
body nature of these effects is the T /H scaling of the
susceptibility which has not yet been performed in detail.

We should also point out that while the T dependence of �
in Si MOSFET was obtained in a thermodynamic measure-
ment �via the magnetocapacitance�,24 the H dependence of �
is all heterostructures25–27 was extracted from Shubnikov–de-
Haas oscillations. While it is known that Shubnikov–de-Haas
oscillations contain a renormalized spin susceptibility of a
FL, ��0,0�, it remains to be verified that the field depen-
dence of the susceptibility can also be extracted from such a
measurement.46

D. Thermodynamic potential of a 2D Fermi liquid as a
function of magnetization

1. Random phase approximation

Preparing the ground for the analysis of a ferromagnetic
QCP in Sec. III, it is convenient to obtain the thermodynamic
potential in terms of magnetization rather than of magnetic
field. In this formulation, the susceptibility is defined as

�−1 =
1

�B
2

�2�

�M2 , �2.63�

where M =n↑−n↓ and n↑/↓ is the number density of spin-up/
down fermions.

In the RPA, which neglects FL renormalizations
�Z= ṽF /vF=1�, the recipe for finding the free energy was
given in Ref. 35. For a local interaction U=u /�,

���,M,T� = −
��2

4
+

M�

2
−

uM2

4�
+ �� , �2.64�

where ���T ,�� is the sum of the RPA �ladder� series

�� = T�
q

�ln�1 + �u/���↑↓� − �u/���↑↓	 . �2.65�

�The second term in Eq. �2.65� compensates for the
first-order contribution not present in the ladder series.�
The relation between M and � is found from the
condition ���� /����T,M =0, which gives M =��. Neglecting
the RPA term, one obtains the Stoner-like spin susceptibility
��0,0�=2�B

2� / �1−u�, which is consistent with Eq. �2.30� for
Z= ṽF /vF=1 and f0,s=−u / �1−u� �or, equivalently, gs,0=−u�.
Evaluating further ��T ,�� with the RPA term included, and
using the relation between � and M, one reproduces Eqs.
�2.47� and �2.48� without FL renormalizations.

2. Fermi-liquid renormalizations

Equation �2.64� can be generalized to a FL. In this sec-
tion, we assume that the system is away from the immediate
vicinity of a QCP, and the effective interaction can be con-
sidered as static. We discuss specific conditions below. For a
static interaction the relevant fermion self-energy depends on
k but not on �m,

�F��m,k� � − �ṽF − vF��k − kF� . �2.66�

In this case, the quasiparticle residue Z= �1− i�� /��m�−1 is
equal to unity and the fermion Green’s function is given by

G↑,↓��m,k� =
1

i�m − ṽF�k − kF�� �̃/2
, �2.67�

where, as before, �̃=2�̃BH=2�BH / �1+gs,0�. We will see
later in Sec. III that the self-energy becomes predominantly
�m but not k dependent in the immediate vicinity of a QCP.

Since our primary interest is the spin susceptibility at
small momenta, we focus on the Pomeranchuk instability
towards a ferromagnetic state. In the FL theory, this instabil-
ity occurs when gs,0 approaches −1. All other partial compo-
nents of the spin and charge scattering amplitudes are as-
sumed to remain finite at criticality and, without loss of
generality, can be taken to be small.

The primary goal of the present section is to demonstrate
that some terms in the thermodynamic potential of Eq. �2.64�
are renormalized at energies comparable to the bandwidth,
where � is static, while others are renormalized at much
smaller energies, of order max�T ,M / �vF� / ṽF�	, where �F is
dynamic.

Consider first the �2 term in Eq. �2.64�, which is the
thermodynamic potential of free fermions. For a FL, this
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term can be calculated using renormalized Green’s function
�2.67�. Applying the Luttinger-Ward formula47 for the ther-
modynamic potential of free fermions and expanding � to

order �̃2, we obtain at T=0

��0� = − �
�=↑,↓

 d�m

2	
�

−W

W

vFd�k − kF�ln�− G�
−1�

=
��̃2

4
 d�m

2	


−W

W vFd�k − kF�
�ṽF�k − kF� − i�m�2 . �2.68�

The integrals in Eq. �2.68� are controlled by large momenta
and energies, of order �m�vF�k−kF��W. Integrating first
over k and then over �m, we find that

��0� = −
vF

ṽF

��̃2

4
. �2.69�

To evaluate the second term in Eq. �2.64�, we need the
relation between the magnetization and Zeeman energy,
which can be found by expressing the number densities of
spin-up and spin-down fermions in terms of the Green’s
functions

M = n↑ − n↓

= � d�m

2	


−W

W

vFd�k − kF��G↑ − G↓� . �2.70�

Using the Green’s functions from Eq. �2.67�, we again find
that the integrals in Eq. �2.70� are controlled by energies of
order W. Performing the integrations, we obtain

M = �
vF

ṽF

�̃ . �2.71�

Using Eq. �2.69� and recalling that the relation �2.71� must

follow from the condition �� /��̃=0, we find that the second

term in Eq. �2.64� retains its form, but � changes to �̃.
In a similar way, the Hubbard U in the Hartree term in Eq.

�2.64� is replaced by the Landau parameter

U =
u

�
→ −

ṽF

vF

gs,0

�
, �2.72�

so that the Hartree term becomes

ṽFgs,0

4vF�
M2. �2.73�

As a result, we have

��T,M,�̃� = −
vF

4ṽF

��̃2 +
1

2
M�̃ +

ṽFgs,0

4vF�
M2 + ���T,�̃� .

�2.74�

So far, all renormalizations in Eq. �2.74� are from energies of
order W.

Consider next the RPA term, ���T , �̃�. Recalculating it
with G�k ,�m� from Eq. �2.67�, we find that it retains the
same form as in Eq. �2.65�, except that U is replaced again

by the Landau parameter and the polarization bubble �↑↓
contains the renormalized Fermi velocity,

���T,�̃� = T�
q
�ln�1 −

gs,0ṽF

vF�
�↑↓� +

gs,0ṽF

vF�
�↑↓� .

�2.75�

There are both analytic and nonanalytic terms in ��. The

analytic �̃2 contribution comes from energies O�W� and can
be absorbed into the M2 term in Eq. �2.74� once the prefactor
is expressed in terms of the Landau parameter gs,0 rather than
of the bare interaction. The leading nonanalytic term has the

same ��̃�3 form, as in the perturbation theory, but the prefac-
tor now contains the FL parameters gs,0 and vF / ṽF. At T=0,

���0,�̃� → −
��̃�3

24	ṽF
2 � fs,0

1 − fs,0
�2

. �2.76�

The key point is that the �̃3 term in Eq. �2.76� comes from

small energies: �m� ṽF�k−kF�� �̃�W. Therefore, ṽF in Eq.
�2.76� is the Fermi velocity on the small-energy scale.

The equilibrium condition ���� /����T,M =0 now gives

M = �̃��vF / ṽF�+O��̃2�, consistent with Eq. �2.71�, and the
spin susceptibility at T=M =0 is obtained from Eq. �2.63�,

��0,0� = �B
2 m

	

vF

ṽF

1

1 + gs,0
= �B

2 m

	

vF

ṽF

�1 − fs,0� . �2.77�

As expected, this result coincides with the general expression
for the renormalized spin susceptibility in a FL.1

Using Eqs. �2.74� and �2.75�, we can now construct an
expansion of the thermodynamic potential in powers of mag-
netization. To order �M�3 and at T=0, we obtain

��T = 0,M� =
1

4��1 − fs,0�
ṽF

vF
M2

−
1

24	�3vF
2

ṽF

vF
� fs,0

1 − fs,0
�2

�M�3 + bM4 + ¯ ,

=
1

4�

ṽF

vF
�1 + gs,0�M2 −

gs,0
2

24	�3vF
2

ṽF

vF
�M�3 + bM4

+ ¯ . �2.78�

For completeness, we added a regular M4 term to �.
Evaluating ��T=0,M� with the help of Eq. �2.63� and

using the relation between M̃ and equilibrium �̃, we repro-
duce the linear in H term in the spin susceptibility, Eq.
�2.47�.

We emphasize again that the M2 and �M�3 terms in Eq.
�2.78� come from different energy scales. The M2 term
comes from high energies of order W, and ṽF in this term is
the renormalized Fermi velocity at energies of order W. The
�M�3 term comes from fermions with energies of order

M / �vF� / ṽF�= �̃, and ṽF in the �M�3 term is the Fermi veloc-
ity on that scale.

At finite temperature, the expression for the thermody-
namic potential becomes more involved. We present only the
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result and show the details of the derivation later, in Sec.
III D 1, where we compute ��T ,M� in the spin-fermion
model. To logarithmic accuracy, we obtain

��T,M� =
M2

4�

ṽF

vF

���1 − fs,0�−1 − � fs,0

1 − fs,0
+ ln�1 − fs,0�� ṽF

vF

T


F
�

− � fs,0

1 − fs,0
�2 M4

576	T�4vF
2 � ṽF

vF
�2

+ bM4 + ¯ ,

=
M2

4�

ṽF

vF
�1 + gs,0 − �gs,0 + ln�1 + gs,0�−1�

ṽF

vF

T


F
�

−
gs,0

2 M4

576	T�4vF
2 � ṽF

vF
�2

+ bM4 + ¯ . �2.79�

The key result here is that for T�M / �vF� / ṽF� the expansion
of � in powers of M becomes analytic: the �M�3 term is
replaced by an analytic M4 /T term. Simultaneously, the pref-
actor for the quadratic term acquires a linear in T correction,
which is just a nonanalytic temperature dependence of the
spin susceptibility. Indeed, evaluating ��T ,0�, from Eq.
�2.79�, we reproduce Eq. �2.48�.

III. MAGNETIC RESPONSE NEAR A 2D
FERROMAGNETIC QUANTUM CRITICAL POINT

A. General considerations

We now consider the immediate vicinity of a ferromag-
netic QCP. In what follows, we first assume that a continuous
ferromagnetic transition does exists and obtain the thermo-
dynamic potential ��M ,T� along a continuous second-order
transition line by extending Eqs. �2.78� and �2.79� to energies
below the scale where the self-energy crosses from static to
dynamic forms.48,49 Next, we show that this line becomes
unstable at low enough temperatures because of nonanalyt-
icities which survive even in the vicinity of the QCP. We will
argue that the instability may occur in two ways: �i� the
second-order phase transition into a uniform ferromagnetic
phase becomes first order or �ii� the transition occurs via an
intermediate magnetic phase with a spiral magnetic order.
More specific predictions are possible within more specific
models. One of such models is a model with a large radius of
the interaction in the spin channel.55 We will show that in
this model the first-order instability occurs before the spiral
one.

A tendency towards the first-order transition can be seen
already from Eq. �2.78�. Indeed, the cubic term in M in
��M ,T=0� is negative, which implies that a state with finite
magnetization is energetically favorable. Close to the critical
point, the M2 term is small and the thermodynamic potential
�2.78� is negative over some range of M. This means that the
first-order phase transition preempts the second-order one at
T=0. Indeed, for the thermodynamic potential of the form

��M� = aM2 − c�M�3 + bM4 �3.1�

with c�0, the magnetization jumps to finite value of M0
=2a /c already for a=c2 /4b�0, i.e., before the second-order
transition takes place.

At finite T, the �M�3 term in the thermodynamic potential
crosses over into a −M4 /T one, which is still negative. If T is
low enough, this negative term is larger than the regular, M4

term, and the transition remains first order until the −M4 /T
term becomes smaller than the regular bM4 term. At higher
T, the transition becomes second order.

This analysis is, however, incomplete because it is based
on the result for ��T ,M� derived under assumptions that the
quasiparticle residue Z=1 and the effective Fermi velocity
ṽF=kF /m* is finite. As we have already mentioned, this is
true only if the self-energy is static. Since the first-order
jump in magnetization, M0, is proportional to the critical
parameter 1+gs,0, the corresponding energy scale M0 /� is
also small and falls into the regime where the self-energy is
dynamic and Eq. �2.78� is no longer valid.

If the self-energy is dynamic, the Z factor and ṽF /vF are
both given by �1− i����m� /��m�−1 �so that the product
ZvF / ṽF remains intact�. This would not lead to substantial
changes if Z remained finite at a QCP. However, it is well
established by now that ����m� /��m diverges at a ferromag-
netic QCP in 2D; hence, both Z and ṽF /vF vanish.3,48,50–53

One then might be tempted to conclude that the nonanalytic
term in Eq. �2.78� vanishes, as it is proportional as an overall
factor to the renormalized velocity ṽF evaluated at low ener-
gies. We will show, however, that the nonanalytic term in the
free energy survives even at the QCP, albeit in a weaker form
��M�3 is replaced by �M�7/2�.

Before proceeding further, we mention two paradoxes
with the vanishing of Z and ṽF /vF at a ferromagnetic QCP.
First, there seems to be a contradiction with the Stoner cri-
terion which says that a ferromagnetic transition occurs at
some critical finite interaction strength. If we formally use
the FL relation gs,0=Z�ZvF / ṽF��� �Ref. 1� with Z→0 but
ZvF / ṽF=const, we find that the condition gs,0=−1 can be
satisfied only if ��→�. Second, in the FL theory, the veloc-
ity renormalization is determined by the l=1 harmonic of the
Landau function in the charge sector: v / ṽF= m̃ /m=1+gc,1.
Hence, the vanishing of ṽF implies that gc,1=�. Meanwhile,
the very idea of a Pomeranchuk instability is that it occurs
only in one particular channel, e.g., in the spin channel with
the angular momentum l=0 for a ferromagnetic QCP. All
other channels, including the charge channel with l=1, re-
main uncritical, which seems to be inconsistent with the con-
dition gc,1=�.

We make a few general remarks about these two para-
doxes first and show specific results later.

�i� The assumption of the conventional FL theory about a
single relevant l=0 spin channel near a ferromagnetic QCP is
valid if there is a wide range of energies below the cutoff W,
where the fermion self-energy is static. Within this range,
Z=1 and vF / ṽF differs from its bare value only because of a
nonsingular interaction in the l=1 channel. Then
gs,0=Z2�vF / ṽF���� is of the same order as ���, and a criti-
cal value of gs,0=−1 is approached already at finite interac-
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tion strength. As we have already demonstrated, the Stoner
enhancement of the spin susceptibility comes from fermions
with energies of order W, hence, at energies below W, the
susceptibility is already enhanced by the Stoner factor
�1+gs,0�−1�1.

�ii� At some energy scale, �W, the self-energy under-
goes a crossover between static and dynamic forms. Accord-
ingly, Z and vF / ṽF begin to vary below � and eventually
flow to zero at the QCP. In this regime, the conventional FL
theory based on the static approximation is no longer valid
and has to be replaced by a “new” low-energy FL theory, in
which the “bare” fermions are the ones on the scale of �, the
bare interaction between fermions is in the spin channel, and
the interaction potential U is replaced by the effective inter-
action, which scales as 1 / �1+gs,0�. This low-energy FL
theory is a spin-fermion model. The Landau parameters for
the low-energy FL differ from those of the conventional FL.
In particular, all harmonics gc,l, including gc,1=vF / ṽF−1 di-
verge at a 2D QCP.54

�iii� The spin-fermion model is valid only if the crossover
between static and dynamic forms of the self-energy occurs
on a scale much smaller than W. Otherwise, one cannot con-
sider only the l=0 spin channel. As we will see, the condi-
tion ��W can be satisfied if the interaction is sufficiently
long-range or, else, if the model is extended to N�1 fermion
flavors. We will assume below that at least one of these two
conditions is satisfied.

Because both Z and vF / ṽF on the scale of � are
just constants, we will absorb Z into the effective spin
interaction, and measure the velocity renormalization below
the cutoff with respect to its value at the cutoff. In other
words, we assume that the bare fermion propagator is
G−1�k ,�m�= i�m−vF�k−kF�, and use symbols Z and ṽF to
describe renormalizations at energies smaller than �.

B. Spin-fermion model in zero magnetic field

1. Main results of the diagrammatic analysis

We now consider in detail the low-energy effective theory
near a ferromagnetic QCP: the spin-fermion model We first
review briefly the properties of this model in zero magnetic
field53 and then show how the model is modified in the pres-
ence of the field.

The spin-fermion model includes low-energy fermions
with a bare propagator G�k ,�m�, collective spin excitations
Sq, whose bare propagator is the static spin susceptibility
��q�, and the spin-fermion interaction, described by the
Hamiltonian

Hint =
g

N �
k,q,�,��

ck,�
† �� �,�� · Sqck+q,��, �3.2�

where N is the number of lattice sites. The spin-fermion
coupling g is related to the Landau parameter gs,0 as
g= �	 /m��−gs,0. Near the QCP, gs,0�−1 and g�	 /m. The
bare boson propagator ��q� is proportional to 1 / �1+gs,0� for
q→0. We assume that the q dependence of � at small but
finite q is described by the standard Ornstein-Zernike for-
mula

��q� =
m

	

1

1 + gs,0 + �aq�2 =
m

	a2

1

�−2 + q2 , �3.3�

where

�−2 = �1 + gs,0�a−2. �3.4�

Similar to the 1+gs,0 term, the analytic q2 term in ��q�
comes from fermions with energies comparable to W. This
term can be obtained in the RPA scheme, but one has to
assume either that the dispersion is different from a free-
fermion one, i.e., from k2 /2m, or that the exchange interac-
tion is momentum dependent; otherwise the particle-hole po-
larization bubble does not depend on q for q 2kF in 2D. If
the q2 term is comes from the momentum dependence of the
interaction, the length a is the radius of the interaction. In
this case, the RPA is justified for a sufficiently long-ranged
interaction, i.e., for akF�1.55

The spin-fermion interaction affects both fermion and bo-
son propagators. Collective spin excitations acquire a self-
energy �B�q ,��, while fermions acquire a self-energy
�F�k ,�m�, which gives rise to renormalizations of Z and of
the Fermi velocity,

G�k,�m� =
1

i�m − vF�k − kF� + �F�k,�m�
,

��q,�m� =
m

	

1

1 + gs,0 + �aq�2 + �B�q,�m�
. �3.5�

To one-loop order, the T=0 self-energies behave as

�B = g̃2�m

vFq
,

�F�k = kF,�m�

= �i��m for �m��0/�3

i�0
1/3�m

2/3 for �0/�3��m��max � �0
1/4
F

3/4,
�

�F�k,�m = 0� � vF�k − kF���0


F
�1/4

� S��
g̃
� , �3.6�

where

�0 = 
F
3�3

4
� g̃

akF
�4

, � =
3g̃2

4akF

1
�1 + gs,0

, g̃ = 2g��
mg

	
,

�3.7�

and S�x�1��x, S�x�1�=O�1�. To simplify the formulas,
we assume that �m�0. Equation �3.6� is valid for
�0 /�3��max, i.e., for ��1.

In the RPA, a ferromagnetic transition occurs at g̃=1, but
the critical value of g̃ may differ from one in a more general
model. For akF�1, �0 is parametrically small compared to

F, i.e., the k-dependent part of the self-energy is always
smaller than vF�k−kF�.

To compare the frequency and momentum dependences of
the self-energy, we consider the Green’s function near the
renormalized mass shell: vF�k−kF�= i�m+�F�k ,�m�. For
�m��0, i�m��F and vF�k−kF���2/3�0

1/3 near the mass
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shell. Consequently, the k-dependent part of the self-energy
is smaller than the �m-dependent part. For �m��0,
�F��m�� i�m and 
kvF�k−kF���m near the mass shell.
Comparing �F�k ,�m=0� and �F�k=kF ,�m�, we find that the
two become comparable at �m��max=�0�
F /�0�3/4. For
�m��max, �

F�k ,�m� depends predominantly on �m while
for �m��max it depends predominantly on k. Note that �max
is also the upper cutoff for �m

2/3 scaling of the fermion self-
energy �see Eq. �3.6��. At larger �m, �F scales as ln �m.

The scale �max is larger than �0 but still parametrically
smaller than 
F �indeed, �max��0�akF�3�
F / �akF��. The
upper limit for the low-energy theory, �, can then be set
somewhere in between �max and W�
F; its precise location
being irrelevant as long as �max�
F.

In what follows, we will also need the fermion self-energy
at finite temperatures. At finite T, the fermions interact both
with classical ��m=0� and quantum ��m�0� spin fluctua-
tions. The quantum contribution to the self-energy is a scal-
ing function of �m /T,

�Q
F��m,T� = i�0

1/3�m
2/3Q��m/T� , �3.8�

where the scaling function Q�x� is such that Q�x�1�=1 and
Q�x�1��1 /x2/3. The classical contribution contains a
static propagator that diverges at QCP as q−2. This
divergence can be regularized in two ways: by accounting
for a thermally generated mass of spin fluctuations due to
mode-mode coupling �not present in the spin-fermion
model�21,56 or by resumming the self-consistent Born
series.57 In the first approach, the zero-temperature correla-
tion length in Eq. �3.3� ���0�=a /�1+gs,0� is replaced by
��T��a / ��T /��ln�� /T��1/2.21 The classical part of the self-
energy �C

F 
�F��m=	T ,T� then becomes

�C
F = i

3

4
g̃T
��T�
kFa2 � i� T

ln��/T��
1/2

. �3.9�

In the second approach, one obtains a self-consistent equa-
tion for � which yields a similar T dependence of �T

F.
The quantum and classical contributions become compa-

rable at a characteristic temperature

TQC = g̃6�akF�2�
3


F
2 . �3.10�

For T�TQC the classical contribution dominates over the
quantum one, and vice versa.

2. Eliashberg theory

We now focus on the low-energy region �m��max, where
�F�k ,�m� is predominantly dynamic. Within this region,
there exists another scale, �0��max / �akF�3��max, at which
the fermion self-energy becomes comparable to �m. Below
�0, �F��m���m, i.e., the system is in a strong-coupling re-
gime. Close enough to the QCP, i.e., for ��1, the strong-
coupling regime, on its turn, is divided into two more subre-
gimes: �i� �0 /�3�m�0, where the self-energy has a non-
FL, �m

2/3, form and �ii� �m�0 /�3, where the FL behavior is
restored, i.e., Re �F����� and Im �F�����2.

Since �F��m���m at �m�0, the accuracy of the one-
loop approximation for the self-energy becomes an issue.

Previous work50,53 demonstrated that the self-consistent one-
loop approximation �the Eliashberg theory� cannot be con-
trolled just by a large value of the parameter akF, as higher-
order diagrams in the strong-coupling regime are of the same
order in 1 /akF as the one-loop diagram. To put the theory
firmly under control, one needs to extend it formally to
N�1 fermion flavors; then higher-order terms in the self-
energy terms are small in �ln N� /N2. In what follows, we
neglect this subtlety and assume that the Eliashberg theory is
valid.

The frequency-dependent self-energy �F��m� from Eq.
�3.6� leads to the renormalization of the Z factor �equal to the
inverse velocity renormalization factor�. Right at the QCP,
both Z and vF / ṽF depend on �m as

Z =
ṽF

vF
= �1 − i

��F��m�
��m

�−1

= �1 + � �0

�m
�1/3�−1

.

�3.11�

The boson self-energy is generated by inserting the dy-
namic fermion bubbles, made out full propagators, into the
bare spin-fermion interaction. Summing up the RPA series
for the renormalized spin-fermion interaction, we obtain

�B�q,�m� = g̃2P̃�q,�m� , �3.12a�

P̃�q,�m� =
��m�

���m − ic��
F��m��2 + vF

2q2
, �3.12b�

where c� is a slowly varying function of �m, which interpo-
lates between two limits: c0=1 for �m��0 /�3 and

c��1.2 for �0 /�3��m��0.17,53,71 For free fermions, P̃ is
the same as P introduced in Eq. �2.4�.

In the limit of small frequencies, P̃�q ,�m� reduces to the
Landau damping form �m /vFq. The static boson self-energy
is small in 1 / �akF� and nonsingular, and we neglect it.

Equation �3.12b� has to be treated with caution because P̃
is the dynamic part of the particle-hole bubble made of
dressed fermions but without vertex corrections. The latter
are irrelevant for vFq�� but are important for vFq��, as
they are necessary for the Ward identities to be satisfied. This
problem is generic to all models in which the effective inter-
action is peaked at zero momentum transfer.58 Fortunately,
this complication does not arise in the study of nonanalytici-
ties in the thermodynamic potential and in the spin suscepti-
bility because, as it will be shown later, we will only need to

know P̃�q ,�m� for vFq��m, ���m�. Therefore, we will be
using Eq. �3.12b� in what follows.

The thermodynamic potential of the spin-fermion model
in the Eliashberg approximation was obtained in Ref. 9 �see
also Sec. III C�,

��T� =�F�T� +
3

2
T�
�m

 d2q

4	2 ln��−1�q,�m�� , �3.13�

where �F�T�=−�T��m
��m�=−	2�T2 /3 is the T-dependent

part of the thermodynamic potential of a free Fermi gas and
��q ,�m� is given by Eq. �3.5�. Differentiating ��T� with
respect to temperature, one obtains the specific heat C�T�,
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which behaves as �1+��T away from the QCP and as T2/3 at
the QCP.

C. Spin-fermion model in a magnetic field

We now return to our main discussion and consider the
spin-fermion model in the presence of a magnetic field. First,
we derive a general expression for the thermodynamic po-
tential in a magnetic field, and then analyze the structure of
the nonanalytic terms in the vicinity of a ferromagnetic QCP.
For reasons already explained in Sec. III A, we take the bare
fermion propagator as

G↑,↓
0 �k,�m� =

1

i�m − vF�k − kF�� �̃/2
, �3.14�

where �̃=2�̃BH, and �̃B=�B / �1+gs,0�.
We first derive the thermodynamic potential for the spin-

fermion model in finite magnetic field, starting from the
Luttinger-Ward functional47 and making use of the Eliash-
berg approximation, which neglects vertex corrections.9,59–62

The Luttinger-Ward functional47 contains four terms

��M,�̃,T� =�F +�B +�FB +�M , �3.15�

where �F is the potential of fermions dressed by the inter-
action with bosons, �B is the potential of bosons dressed by
the interaction with fermions, �FB is the skeleton part which
describes explicitly the fermion-boson interaction at low en-

ergies, and �M =gs,0M2 / �4��+ �1 /2�M�̃ is an extra
M-dependent high-energy contribution, same as in Eq.
�2.74�. �There is no double counting, as one can verify ex-
plicitly.� For H=0, the Eliashberg form of the Luttinger-
Ward functional was derived in Refs. 9, 59, 60, and 62. Ex-
tending the derivation to the case of finite spin polarization,
we obtain

�F = − T�
k,�

�ln�− G�
−1�k�/W	 − ��

F�k�G��k�� ,

�B =
T

4 �
q,�,��

�1 + ��,����ln�D�,��
−1 �q�	 − ����

B �q�D����q�� ,

�FB =
g̃2

4�
T2 �

kk�,�,��

�1 + ��,���G��k�D���!�k − k��G���k�� ,

�3.16�

where g̃ is the dimensionless coupling constant defined in
Eq. �3.7�, k
�k ,�m�, q
�q ,�m�, � ,��= ↑ ,↓, and as be-
fore, summation over k and q implies summation over Mat-
subara frequencies and integration over momenta. The func-
tions G↑,↓ are the exact fermion Green’s function

G↑,↓ = �i�m + �↑,↓
F ��m� − 
k� �̃/2�−1, �3.17�

and D����q� is the propagator of spin fluctuations

D�,��
−1 �q� = 1 + gs,0 + �aq�2 + ����

B �q� , �3.18�

where ��
F and ����

B are the fermion and boson self-energies,
correspondingly. Notice that the fermion self-energy does not

contain a constant part evaluated at �m=0 and k=kF—this
part has been absorbed into the renormalized Zeeman energy,

�̃.
By construction, the Luttinger-Ward functional is station-

ary with respect to variations in the fermion and boson self-
energies. The stationarity conditions

��

���
F =

��

���,��
B = 0 �3.19�

yield

����
B �q� =

g̃2

�
T�

k

G��k + q�G���k� , �3.20a�

��
F�k� = −

g̃2

�
T�

q

D�,��q�G��k + q� −
g̃2

4�
T�

q

�D�,−��q�

+ D−�,��q��G−��k + q� . �3.20b�

In the presence of a magnetic field, there are two different
boson self-energies: �↑↑

B =�↓↓
B and �↑↓

B =�↓↑
B . �↑↑

B is composed
of fermions of the same spin ��↑↑

B =�↓↓
B �. It depends on the

magnetization only via a shift of the chemical potential. This
is a regular analytic dependence which does not lead to
nonanalyticities in the thermodynamic potential. Neglecting
this dependence, we set �↑↑

B =�↓↓
B 
�B, where �B is the bo-

son self-energy in zero field, given by Eq. �3.12a�. On the
other hand, �↑↓

B is composed of fermions with opposite spins
and depends strongly on the magnetization via the Zeeman

term: �↑↓
B =�↓↑

B = g̃2P̃↑↓, where

P̃↑↓�q,�m� =
��m�

���m − ic��
F��m� − i�̃�2 + vF

2q2
.

�3.21�

This also implies that D↑,↑�q�=D↓,↓�q�
D�q� and D↑,↓�q�
=D↓,↑�q�. Expressions for �B and �FB can be then simplified
to

�B = T�
q

�ln�D−1�q�	 − �B�q�D�q��

+
T

2 �
q

�ln�D↑↓
−1�q�	 − �↑↓

B �q�D↑↓�q�� , �3.22�

�FB =
g̃2

2�
T2�

kk�
��
�

D�k − k��G��k�G��k��

+ D↑↓�k − k��G↑�k�G↓�k��� , �3.23�

while the fermion self-energy changes to

��
F�k� = −

g̃2

�
T�

q

D�q�G��k + q� −
g̃2

2�
T�

q

D↑↓�q�G−��k + q� .

�3.24�

The field-dependent part of the thermodynamic potential
involves only D↑↓�q�,
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� = − T�
k,�

�ln�− G�
−1�k�/W	 − ��

F�k�G��k��

+
T

2 �
q

�ln D↑↓
−1�q� − �↑↓

B �q�D↑↓�q��

+
g̃2

2�
T2�

kk�

D↑↓�k − k��G↑�k�G↓�k�� + gs,0
M2

4�
+

1

2
M�̃ .

�3.25�

With the help of Eq. �3.20a�, we simplify Eq. �3.25� to

� = + gs,0
M2

4�
+

1

2
M�̃ − T�

k,�
�ln�− G�

−1�k�/W	 − ��
F�k�G��k��

+
T

2 �
q

ln D↑↓
−1�q� . �3.26�

The first two terms in Eq. �3.26� need to be expanded to

order �̃2. In the first logarithmic term, we proceed in the

same way as in Eq. �2.68�. Keeping only the �̃2 term, we
obtain

− T�
k,�

ln�− G�
−1�k�/W�

=
��̃2

4
 d�m

2	


−�

� vFd�k − kF�
�vF�k − kF� − i�̃m�2

= −
��̃2

2
 d�m

2	

�

�̃m
2 + �2 , �3.27�

where �̃m=�m− i�F��m�. The integral is controlled by fre-
quencies O���, where the self-energy is small. Neglecting
the self-energy, we arrive at the free-fermion-like result

− T�
k,�

ln�− G�
−1�k�/W� = −

��̃2

4
. �3.28�

Expanding the second, �FG term in Eq. �3.26� to order �̃2

and integrating over k−kF, we obtain

T�
k,�
�FG� =

��̃2

2
 d�m

2	
�F��m�

i�̃m�

��̃m
2 + �2�2 . �3.29�

The frequency integral is of order �F��m��� /�, which
vanishes in the limit �→�.

We see, therefore, that � reduces to the sum of the free-
fermion-like contribution �up to a renormalization of the
Zeeman energy�, the Hartree interaction, and the ln D↑↓ term
from the boson part �B,

� = −
��̃2

4
+

1

2
M�̃ + gs,0

M2

4�
+�log,

�log = T�
q

ln D↑↓
−1�q� . �3.30�

Comparing this expression with Eqs. �2.74� and �2.75�, we

see that the fermionic self-energy �F��� does not affect �̃2,

M�̃ and M2 terms in �. This agrees with our earlier result
that FL renormalizations of these three terms come from en-
ergies of order W, where �F=�F�k�. However, the low-
energy �F��� is present in the last, ln D↑↓

−1 term in Eq. �3.30�,
which gives a nonanalytic contribution to �.

Minimizing Eq. �3.30� with respect to �̃, and differentiat-
ing with respect to M, we obtain the spin susceptibility as a
function of T and H. Note in passing that the approach based
on differentiation of the thermodynamic potential is com-
pletely equivalent to the diagrammatic evaluation of the lin-
ear susceptibility ��T ,H=0�, used in earlier work,7,52,53 and
also generates diagrams for the nonlinear susceptibility
��T ,H�. We illustrate this point in Appendix B.

D. Nonanalytic terms in the thermodynamic potential

In this section, we use Eq. �3.30� to derive the nonanalytic
terms in the thermodynamic potential in the vicinity of the
critical point. We will see how the nonanalytic terms change
in the non-FL regime.

1. Away from criticality

First, we discuss the FL regime, where ��
F= i�m�. The

logarithmic term in Eq. �3.30� reads

�log = T�
�m

 dqq

2	
ln�� + �aq�2 +

g̃2��m�

���̃ − i�̃�2 + vF
2q2� ,

�3.31�

where �̃=�m�1+�� and �=1+gs,0�0.
Expanding the integrand of Eq. �3.31� in 1 /q and evalu-

ating the q integral to logarithmic accuracy, we find that the
�aq�2 term under the logarithm can be neglected so that Eq.
�3.31� reduces to

�log = −
1

2	vF
2 T�

�m

��̃ − i�̃�2 ln
��0 + g̃2��m�

�0
,

�3.32�

where �0=���̃− i�̃�2. Converting the Matsubara sum into a
contour integral, we obtain

�log =
1

8	2vF
2  d� coth� �

2T
��Im f1

R − Im f2
R� ,

where f1
R and f2

R are retarded functions of frequency, obtained
via analytic continuation of the Matsubara functions

f1 = ��̃ − i�̃�2 ln ���̃ − i�̃�2,

f2 = ��̃ − i�̃�2 ln�����̃ − i�̃�2 + g̃2��m�� . �3.33�

Performing the analytic continuation, we find

Im f1
R =
	

2
��̃ + �̃�2 sgn��̃ + �̃� ,
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Im f2
R =
	

2
��̃ + �̃�2 sgn����̃ + �̃� + g̃2�� . �3.34�

Assembling the two parts, we obtain

�log =
1

16	vF
2  d� coth� �

2T
���̃ + �̃�2

��sgn��̃ + �̃� − sgn����̃ + �̃� + g̃2��	 .

�3.35�

In what follows, we choose �̃�0 without a loss of general-
ity. Because of the sign functions, the integral in Eq. �3.35� is

confined to the interval 1 /�1� ��̃���̃, where
�1=1+ g̃2 / ����. Since ��1 /��, we have �1�1 close
enough to the QCP.

The thermodynamic potential �log�T , �̄� at finite �̃ and T
is then given by

�log�T,�̃� = −
��̃�3

8	�vF
2

�1
−1

1

dx coth�x
��̃�

2�T
��x − 1�2.

�3.36�

This equation parameterizes �log�T , �̃� as a scaling function

of �̃ /2�T. At low temperatures, T��̃ /2�, one can replace
coth�x� by 1+2 exp�−2x� and extends the lower limit of the
integral to zero. This gives

�log�T� �̃/�� = −
��̃�3

24	ṽF
2�

+ O�exp�−
��̃�
�T
�� .

�3.37�

In the opposite limit of high temperatures, T��̃ /2�, one
expands coth x in series as coth x=x−1+x /3−x3 /45+¯. The
integrand is now logarithmically divergent, and the lower
limit of the integral is relevant. Performing elementary inte-
gration, we obtain

�log�T� �̃/�� = −
ln �1

4	vF
2 �̃

2T −
1

576	

�̃4

vF
2�2T

+
1

172800	

�̃6

vF
2�4T3 + ¯ . �3.38�

Next, we obtain the thermodynamic potential � as a func-
tion of magnetization. Substituting Eqs. �3.37� and �3.38�
into Eq. �3.30� and expressing �̃ in terms of M with the help

of the relation ���M , �̃ ,T� /��̃=0, we obtain

��T�M/��� =
M2

4�
�1 + gs,0� −

�M�3

24	�3vF
2

1

�
+ bM4 + ¯ ,

�3.39a�

��T�M/��� =
M2

4�
��1 + gs,0� −

T�ln�1 + gs,0��

F

�
−

M4

576	T�4vF
2

1

�2 + bM4 + ¯ .

�3.39b�

The M2 term in Eq. �3.39b� determines the temperature de-
pendence of the susceptibility

�−1�T� =
1

�B
2

�2�

�M2 =
1

2�B
2�
�1 + gs,0 −

T�ln�1 + gs,0��

F

� .

�3.40�

We can now compare Eqs. �3.39a� and �3.39b� with Eqs.
�2.78� and �2.79�, keeping in mind that one should set ṽF
=vF in regular terms in Eqs. �2.78� and �2.79� as we measure
the velocity renormalization with respect to its value at the
upper cutoff for the spin-fermion model. We see that Eq.
�3.39a� differs from Eq. �2.78� by a factor of 1 /� in the �M�3
term, while Eq. �3.39b� differs from Eq. �2.79� by a factor of
1 /�2 in the M4 term. The factors are precisely ṽF /vF and
�ṽF /vF�2, respectively, in the spin-fermion model. This con-
firms our assertion that the nonanalytic M3 term and its finite
T equivalent M4 /T are renormalized by fermions with the

energies of order �̃=M /�.
Equations �3.39a� and �3.39b� are valid in the FL regime,

where max�T ,M /��	��0 /�3. At higher energies, the
non-FL renormalization of the effective mass affects the
functional form of the nonanalytic terms. This regime is con-
sidered in the next section.

2. At criticality

The main difference between the non-FL and FL regimes
is the form of the self-energy, which enters the propagator of
spin fluctuations �see Eq. �3.21��. Also, for energies in be-
tween �0 /�3 and �0, one can neglect the bare boson fre-
quency compared to the self-energy so that the logarithmic
term in the expression for the thermodynamic potential be-
comes

�log = T�
�m

 dqq

2	
ln��aq�2 +

g̃2��m�

���̃ − i�̃�2 + vF
2q2� ,

�3.41�

where �̃=−ic�F��m ,T�, c�1.2 �see Eq. �3.12b��, and the
fermion self-energy is the sum of the quantum and classical
parts, given by Eqs. �3.8� and �3.9�, respectively.

�a� T=0. We consider first the T=0 case, when the Mat-
subara sum can be replaced by an integral and the self-

energy is purely quantum: �̃=c�0
1/3 sign��m���m�2/3. Intro-

ducing new variables

x = �vFq/�̃�2, y = c3/2�0
1/2�m/��̃�3/2, �3.42�

we rewrite Eq. �3.41� as
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�log =
c3/2��̃�7/2

4	2�0
1/2vF

2
0

�

dx
0

�

dy Re ln�x�a�̃

vF
�2

+ g̃2c3/2� �̃
�0
�1/2

y
��y2/3 − i�2 + x

� . �3.43�

For a sufficiently small �̃, the first term under the logarithm
in Eq. �3.43� can be neglected compared to the second one.
We then obtain the field-dependent part of �log as

�log = −
c3/2z

8	2vF
2

��̃�7/2

�0
1/2 , �3.44�

where z is the universal, i.e., cutoff-independent, part of the
integral

Re 
0

�

dx
0

�

dy ln��y2/3 − i�2 + x� . �3.45�

This integral can be evaluated exactly and its universal part
is equal to

z =
8�2	

35
�3.46�

so that

�log = −
�2c3/2

35	

��̃�7/2

vF
2�0

1/2 . �3.47�

Using Eq. �3.7� for �0, expressing �̃ via M, and adding the
�M�2 term, we obtain for the thermodynamic potential as a
function of magnetization M

��T = 0,M� =
M2

4�
�1 + gs,0� −

�M�7/2

�5/2Ec
3/2 + bM4, �3.48�

where the energy scale Ec is defined as63

Ec = A� g̃

akF
�4/3


F �3.49�

with

A = c−1�35

4
�6�3�1/2�2/3

� 5.22. �3.50�

We see that ��T=0,M� is still nonanalytic at QCP, but the
leading nonanalyticity becomes �M�7/2 instead of �M�3 in the
FL regime. Still, �M�7/2 is larger then the next-to-leading ana-
lytic term �M4�. Correspondingly, the nonlinear susceptibility
scales with the magnetic field as �� + �H�3/2. This scaling is
dual to the �q�3/2 form of the susceptibility at finite q.52,53

The crossover between the FL and non-FL forms of the
thermodynamic potential �Eqs. �3.39a� and �3.48�� occurs at
the same energy where �F crosses over between the FL and
non-FL forms, i.e., � is given by Eq. �3.48� for �M�
��0� /�3 and by Eq. �3.39a� otherwise. In both cases, the
nonanalytic terms are negative, which implies that a ferro-
magnetic quantum-critical point is intrinsically unstable
against a first-order transition.

�b� Finite T. The form of the thermodynamic potential at
finite temperatures depends on whether the temperature is
above or below the scale TQC, separating the regimes where
the contributions from either finite or zero boson Matsubara
frequencies dominate �T�TQC and TTQC, respectively�. In
both cases, the nonanalytic �M�7/2 term is replaced by a regu-
lar M4 one; however, the temperature dependence of the
prefactor of the M4 is different in the two regimes. To see
this, one can neglect the �aq�2 term in Eq. �3.41�, integrate

over q, expand the resulting expression to order �̃4, and con-
vert the Matsubara sum into a contour integral. Following
the same steps that led us to Eq. �3.38� away from the QCP,
we expand coth�� /2T� as 2T /�+� /6T and keep only the
second term in this expansion, which determines the coeffi-

cient of the �̃4 term

�log =
�̃4

T


0

T

d�
�

�̃2
. �3.51�

For T�TQC, �̃��2/3 and the integral in Eq. �3.51� scales as
T2/3. Correspondingly, the M4 term in � is −M4 /T1/3. For

TTQC, �̃� �T / �ln T��1/2, and the M4 term behaves as
−M4�ln T�.

In addition, the T dependence of the M2 term, which de-
termines the T dependence of the �inverse� spin susceptibil-
ity, changes from −T�ln�1+gs,0�� at small T to −T�ln T� at
higher T. The crossover occurs at T�T1, where T1�
F /�2.53

Since the fermion self-energy enters the �̃2 term only under
the logarithm, the difference between the regimes T�TQC
and T1TTQC is only in the numerical prefactor of the
T�ln T� term. As it was pointed out in Ref. 53, the negative
T�ln T� dependence dominates over the T dependence of �
within the HMM theory, which is given by the square of the
thermal correlation length �HMM

−1 ��−2�T��T / �ln T� and is
weaker by a factor of �ln T�2.

E. Cooper channel near the quantum critical point

We now address the issue of Cooper renormalization near
a ferromagnetic QCP. We recall that away from the QCP, the
backscattering amplitude vanishes at T→0 as

1 / ln�max�T , �̃	� due to singular renormalizations in the
Cooper channel. Consequently, the backscattering contribu-
tion to the spin susceptibility is reduced by a factor of

1 / ln2�max�T , �̃	� as compared to nonbackscattering contri-
butions. The question is to what extent the Cooper renormal-
ization affects the susceptibility near the QCP. This is an
important issue because the sign of ��T ,H� determines
whether the transition becomes first order or remain continu-
ous. In the preceding discussion of the phase transition, we
approximated the scattering amplitude by a single compo-
nent fs,0, which diverges at the QCP, and neglected all other
components. This is certainly inconsistent with the vanishing
of fs�	� at T=0, as it is the sum of all components that must
vanish. We now include Cooper renormalization into consid-
eration. For definiteness, we consider ���T ,H=0�.

First, we show that the logarithmical renormalization of
fs�	� starts below some temperature which becomes progres-
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sively smaller as the system approaches the QCP and �fs,0�
increases. To estimate this scale, we consider a vertex
��k , p ; p ,k�. When k and p are projected onto the Fermi
surface and corresponding frequencies are set to zero, � co-
incides with the scattering amplitude fs���, which depends
on the angle � between k and p. The backscattering ampli-
tude corresponds to �=	. This vertex can be expressed as a
series of diagrams in the Cooper channel �cf. Fig. 6�. The
dashed lines are irreducible amplitudes �C��� which, in gen-
eral, depend on the scattering angle, e.g., on the angle ��
between k and l in second term of the series. Integrating over
the magnitude of l and summing over the internal fermion
frequencies, we obtain for the Cooper bubble

�c��� �
1

�
ln

1

cos �/2
, �3.52�

where, we remind, ��1 is the mass renormalization factor.
As a result, the series for fs��� reads

fs��� = �C��� +
�C

�2����
�

ln
1

cos��/2�
+
�C

�3����
�2 ln2 1

cos��/2�

+ ¯ , �3.53�

where �C
�j� are the angular convolutions of two and more

irreducible amplitudes; for example, �C
�2����

=�d��C����C��−��, etc. Since irreducible amplitudes
�C��� and ��j���� are regular functions of � near 	, they can
be replaced by constants �C�	� and ��j��	� for ��	. Near
�=	, fs��� then becomes

fs��� � c1 +
c2

�
ln

1

cos��/2�
+

c3

�2 ln2 1

cos��/2�
+ ¯ ,

= fs,0 + �
n�0

fs,n cos�n�� . �3.54�

The Cooper bubbles in Eq. �3.54� have regular expansions
over angular harmonics; for example ln�cos � /2�=−ln 2
+�n�0�−�n+1cos�n�� /2n, etc. Equating the prefactors of the
cos�n�� terms in the first and second lines of Eq. �3.54�, we
obtain

fs,0 = c1 +
c2

�
ln 2 + ¯ ,

fs,n =
c2

�

�− �n

2n
+ ¯ . �3.55�

According to our assumption of a Pomeranchuk-like instabil-
ity, �fs,0��1 while �fs,n�0�!1. Therefore, c1= fs,0+O�1�.

Dropping terms of order unity, the first line of Eq. �3.54� can
be rewritten as

fs��� = fs,0 +
c2

�
ln

1

cos��/2�
+

c3

�2 ln2 1

cos��/2�
+ ¯ .

�3.56�

The angular-dependent terms in Eq. �3.56� are of order unity
for ��1. As � approaches 	, they increase and cancel the
large angular-independent term fs,0. This is how the vanish-
ing of fs�	� happens. However, the cancellation occurs only
for angles exponentially close to 	: 	−��exp�−�fs,0�� /c1�.
Associating typical 	−� with typical T /
F, we conclude that
the characteristic temperature, below which Cooper renor-
malization becomes crucial, is exponentially small in
�fs,0����1+gs,0�−3/2.

These exponentially small temperatures are of no rel-
evance for the preceding discussion, as they are lower that
the temperature of the tricritical point, at which the second-
order phase transition turns into a first-order one.

Still, the very fact that Cooper renormalizations bring
about higher harmonics of fs���, which scale as ln 
F /T re-
quires some attention because the divergent harmonic of the
scattering amplitude, fs,0, enters ���T� only logarithmically
�see Eq. �2.48��, and the presence of extra ln T terms may
affect the temperature dependence of �.

To address this issue, we use a simplified model, in which
partial components of fs��� with n�0 are absorbed into an
effective temperature-dependent component fs,1 modelled as

fs,1 =

t

�
ln

F

T

1 +
t

��fs,0�
ln

F

T

, �3.57�

where t�1 is a constant. This interpolation formula repro-
duces correctly the limiting forms of fs,1. Indeed, if
ln�
F /T� /��fs,0� is small, fs,1 scales as �1 /��ln 
F /T, consis-
tent with the perturbation theory. If ln�
F /T� /��fs,0� is large,
fs,1 approaches fs,0, consistent with the vanishing of
fs�	�= fs,0− fs,1 at T=0.

We now use Eqs. �2.49� and �2.50� for the susceptibility
and compare the contributions from fs,0 and fs,1. Before sub-
stituting fs,1 from Eq. �3.57� into Eq. �2.49� for the suscepti-
bility, we need to account for the mass renormalization in the
expressions for the functions F1�fs,0� and F2�fs,0�, which
amounts to replacing fs,0 by fs,0 /� in the arguments of F1
and F2. Since F1�fs,0� scales as ln�fs,0�, it is not affected by
mass renormalization. On the other hand, the asymptotic be-
havior of F2�fs,0��2fs,0 in the absence of mass renormaliza-
tion must be replaced by 2fs,0 /�.

Using the modified expressions for F1 and F2 in Eq.
�2.49� and the perturbative form fc,1��c /��ln 
F /T, valid for
all but exponentially small T, we find

� �

� �

� �

� �

� �

kp kp

k ppk k p

kk+p−lp

l

= + +

FIG. 6. Renormalization of vertex ��k , p ; p ,k� �hatched� in the
Cooper channel. Dashed lines are irreducible Cooper amplitudes.
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���T,H = 0� = �0
2D� �̃B

�B
�2 T


̃F
�ln�fs,0� −

4c

�2 ln

F

T
� .

�3.58�

This is the key result. We see that Cooper renormalization
generates a ln T correction to our earlier result for ��T� in the
isotropic scattering model. However, at all but exponentially
small T the correction is small in 1 /�2 and can be safely
neglected. We conclude, therefore, that the sign and magni-
tude of ��T ,H=0� near the QCP is not affected by renormal-
izations in the Cooper channel.

The same consideration and conclusion hold also for
��H ,T=0�.

IV. PHASE DIAGRAM OF A FERROMAGNETIC
QUANTUM PHASE TRANSITION

In this section, we analyze two possible scenarios for a
ferromagnetic quantum phase transition in 2D, namely, the
breakdown of a continuous transition and the spiral instabil-
ity of a uniform magnetic state.

A. First-order phase transition

First, we assume that finite-q fluctuations of the order
parameter are negligible, and analyze a potential instability
of a continuous second-order phase transition. Usually, the
effect of nonanalyticities in the free energy on phase transi-
tions is described in terms of the Landau-Ginzburg func-
tional of the type given by Eq. �3.1�, where the prefactors of
regular �quartic and higher order� terms are assumed to be
determined by fermions with energies of order of the
bandwidth.2 The phenomenological nature of these prefac-
tors makes it difficult to make specific predictions in this
approach. Here, we will follow a different approach and cal-
culate the entire thermodynamic potential in a model with a
long-range exchange interaction of radius a�kF

−1. The down-
side of this approach is the choice of a particular model. The
upside is that not only nonanalytic but also analytic �M2 ,M4,
etc� terms can be found explicitly, and therefore—at least
within this model—one can make certain predictions about
the nature of the phase transition.

We will show that, in this particular model, the character-
istic energy scale corresponding to the first-order phase tran-
sition is larger than the scale for the spiral instability, and
falls into the regime where the mass renormalization is small
by a factor 1 / �akF��1. For a case when the interaction is
short ranged �akF!1�, both the first-order transition and the
spiral instability occur in the strong-coupling critical regime,
and which one occurs first depends on the �unknown� pref-
actor of a regular M4 term.

For the case akF�1, we first assume and then verify that
the mass renormalization factor � in Eq. �3.48� can be set to
unity. We will also see that the jump of spin polarization at
the first-order phase transition, while still small compared to
its maximum value �unity�, is large enough so that one
should analyze the full thermodynamic potential ��M ,T�
rather than its expansion up to order M4. Keeping in mind

these two points, we write the T=0 thermodynamic potential
as a function of M as

��M� =
�M2

4�
+ d�m

2	
 d2q

�2	�2

�ln��aq�2 +
��m�

���m − iM/��2 + �vFq�2� . �4.1�

In Eq. �4.1�, we set the coupling constant ḡ to unity and
neglected � under the logarithm; we will see that typical
values of �aq�2 are much larger than �. Equation �4.1� can be
reduced to a dimensionless form by rescaling x= �aq�2,
y=�ma /vF, �=Ma /�vF, and E���=4a2��M� /�vF

2 . An ex-
pansion of the logarithmic part starts with the term of order
�M2 /��akF. We absorb this term into a renormalization of �
in �M2 / �4��, so in all formulas beyond this point � is already
a renormalized parameter. Subtracting off the M-independent
part, we obtain for the dimensionless thermodynamic poten-
tial in these variables

E��� = �2�� −
1

akF
V���� , �4.2�

where

V��� = −
1

	�2
−�

�

dy
0

�

dx ln� x +
�y�

��y − i��2 + x

x +
�y�

�y2 + x
� − d

�4.3�

and

d =
1

	


0

�

dyy
0

�

dx
�2y2x�y2 + x + y3 − x2�y2 + x − xy�

	�y2 + x�2�x�y2 + x + y�2

� 0.63. �4.4�

For small �, the expansion of V��� starts with a nonanalytic
term: V���1�= ��� /3+O��2�. Substituting the first, ��� /3,
term into Eq. �4.2�, we reproduce the nonanalytic, cubic term
in Eq. �3.39a�. At larger �, function V��� goes through a
maximum and falls off at ��1 �cf. Fig. 8�.

The first-order phase transition occurs when the minimum
in the thermodynamic potential at finite magnetization ap-
proaches zero �cf. Fig. 7�, i.e, when the following two con-
ditions are satisfied simultaneously:

E��cr� = 0 and E���cr� = 0. �4.5�

This yields

�cr = V��cr�/akF, �4.6a�

2�cr −
2

akF
V��cr� −

�V���cr�
akF

= 0. �4.6b�

Substituting Eqs. �4.6a� into �4.6b�, we see that the jump of
magnetization corresponds to an extremum of V���
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V���cr� = 0. �4.7�

In our case, this extremum is a maximum. The first-order
phase transition occurs when the line �crakF touches the
maximum of V���, as shown in Fig. 8. Numerical calculation
gives

�cr � 1.11 and �cr � 0.21/akF. �4.8�

Since �cr�1, a critical point cannot be determined by ex-
panding E��� in � and keeping only a few first terms. Coming
back to dimensional variables, we see that the jump of spin
polarization at the transition Mcr /n�1 /akF�1. The effec-

tive Zeeman splitting at the transition is �̃cr�
F /akF�
F.
We now verify whether neglecting mass renormalization

was permissible. The critical distance to the QCP
�cr�1 /akF corresponds to ��1 /�akF�1. Therefore, mass
renormalization is, indeed, irrelevant. Another way to see
this is to notice that the Zeeman splitting at the transition

�̃cr�
F /akF is parametrically larger than the characteristic
energy �0�
F / �akF�4, separating the regimes of weak and
strong mass renormalization.

At finite temperatures, the first-order transition occurs
along the dashed line in Fig. 9, which starts at �=�cr and
terminates at the tricritical point ��tc ,T=Ttc�.64,65 For
T�Ttc, the transition is second order �solid line in Fig. 9�.
The tricritical temperature can be estimated from the condi-
tion that the M4 / ��4vF

2T� term, which replaces the �M�3 one at
finite T, becomes comparable to the regular bM4 term. In our

model, b�a /�4vF
3 . This gives Ttc�vF /a� �̃cr. To find the

numerical prefactor, one needs to evaluate the entire thermo-
dynamic potential at finite T but we are not going to dwell on
it here.

B. Spiral magnetic phase

We now turn to another scenario of a phase transition,
which is possible due to a nonanalytic behavior of the spin
susceptibility as a function of the wavenumber.7,19,52,53 Away
from the QCP, ��q� scales as �q�; near the QCP, the non-FL
mass renormalization changes this scaling to �q�3/2. As in the
previous section, it will turn out that for akF�1, the insta-
bility occurs before the system enters into the �q�3/2 regime.
Therefore, we start with a FL form of ��q� derived in Ref.
53. In the long-range interaction model,

�−1�q� � � + �aq�2 −
4

3	
�1 + ��

�q�
kF

. �4.9�

Equation �4.9� is valid for a moderate mass renormalization:
�1+���1 /��. A spiral instability as q=qcr occurs when con-
ditions �−1=0 and d�−1 /d�q�=0 are satisfied simultaneously.
This gives

qcr =
2

3	

1 + �

kFa2 , �4.10�

�cr
s =

4

9	2

�1 + ��2

kF
2a2 . �4.11�

Since � depends on � itself, as specified by Eq. �3.7�, Eq.
�4.11� represents an equation for �cr

s . Solving this equation,
we find that the spiral instability occurs at

0 M

Ξ

FIG. 7. �Color online� Schematic behavior of the thermody-
namic potential � as a function of magnetization M. Upper curve:
the first-order phase transition has not been reached yet but the
system exhibits a metamagnetic transition in finite field. Lower
curve: the first-order phase transition occurs.
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F

(1.11,0.21)

FIG. 8. �Color online� Function V��� defined by Eq. �4.3�. The
first-order phase transition occurs when the maximum of V reaches
the value of �� �akF�.

TT

tcT

��� �cr�tc�

FIG. 9. �Color online� Phase diagram of a ferromagnetic phase
transition. The lines of second- and first-order transitions �solid and
dashed lines, respectively� are separated by a tricritical point.
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�cr
s = � 1

3	
+� 1

�3	�2 +
1

2	
� 1

�akF�2 � 0.52/�akF�2.

�4.12�

At this �, ��1 and �1+��2����1 so that Eq. �4.9� is,
indeed, applicable.

Comparing the critical values of � for the spiral instability
and the first-order phase transition �cf. Eq. �4.8��, we see that

�cr/�cr
s � akF� 1. �4.13�

This means that the first-order transition occurs before the
spiral instability.

C. Re-entrant second-order phase transition

Another interesting consequence of the nonanalytic be-
havior of the susceptibility is a re-entrant second-order phase
transition. This effect occurs due to a nonanalytic tempera-
ture dependence of �. Suppose that we are still far away
from the tricritical point so that the nonanalyticity of � as a
function of M does not play a role. Taking into account the
regular T dependence of �, which arises from energies of
order of the bandwidth, we have from Eq. �3.40�

�−1�T� = �0�� + �T/T0�2 − �T/
F�ln����−1�� , �4.14�

where T0�W. The critical temperature of the second-order
transition is determined from the condition �−1�Tc�=0. In the
absence of the nonanalytic term, the solution exists only for
�0 at Tc=T0

�−� and the transition line Tc��� has a nega-
tive curvature for negative �. Due to the nonanalytic term,
there exist two solutions of �−1�Tc�=0 for ��0 �see Fig. 10�.
One of them, Tc1, vanishes as � / ln��−1� at �→0, while the
second behaves as Tc2� ln��−1�. The two branches match at
some �positive� value of �=�R. As a result, the phase transi-
tion occurs at ��0, and the phase diagram exhibits a re-
entrant behavior.

V. MAGNETIC RESPONSE OF A 3D FERMI LIQUID

In this section, we discuss the nonanalytic behavior of the
spin susceptibility in 3D. The behavior of ���T ,q ,H=0� has
been considered in Refs. 7, 11, 13, 19, 35, 36, 66, and 67. As
the Kohn anomaly is logarithmic in 3D, the corresponding
nonanalyticities are also only logarithmic: ���T ,q ,H=0�

�q2 ln E, where E=max�vF�q� ,T	, and ���T=0,q=0,H�
�H2 ln�H�. In this section, we show that logarithmic nonana-
lyticities are weakened even further by the mass renormal-
ization in the vicinity of a 3D FM QCP, to q2 ln�ln E� and
H2 ln�ln�H�� forms, respectively.

Another peculiarity of the 3D case is that the T depen-
dence of ��T ,H=0,q=0� is analytic: ���T��c3DT2.35,36. For
a Galilean-invariant system �with a quadratic fermion disper-
sion�, such as He3, the coefficient c3D was shown to be nega-
tive in Ref. 35, i.e., the T dependence of � has the same sign
as in a Fermi gas. We reanalyze this result in Sec. V B and
show that the magnitude and sign of c3D are nonuniversal,
i.e., they depends on details of the fermion dispersion. This
may explain while c3D is positive in He3 �Ref. 69� but nega-
tive in some exchange-enhanced paramagnets.37

A. Magnetic-field dependence of the susceptibility

We first discuss the nonanalytic behavior of the suscepti-
bility at T=0 in the perturbation theory.

�c� Perturbation theory. To obtain the H2 ln�H� field de-
pendence of the spin susceptibility in 3D at T=0, it suffices
to expand the integral for � to order H4 and verify that the
prefactor diverges logarithmically. Cutting off the singularity
at the scale set by H, one arrives at the H4 ln�H� behavior of
� and, therefore, the H2 ln�H� behavior of ��.

At second order, � is still given by Eq. �2.6�, where �↑↓
is now the 3D polarization bubble. For simplicity, we assume
that the interaction is local, i.e., U�q�=const
U.

Similarly to the 2D case, �↑↓ can be separated into the
static and dynamic parts as

�↑↓��m,q� = − ��1 −
i�m

2vFq
ln

i�m + vFq + �

i�m − vFq + �
� . �5.1�

Here and till the end of this section �=mkF /2	2 is density of
states at the Fermi energy in 3D. Expanding the square of
�↑↓ to order �4, we obtain

�↑↓
2 ��m,q� = ¯ + �2� �

vFq
�4

Q�2���m

vFq
� + ¯ , �5.2�

where dots stand for �-independent and regular �2 terms,
and

Q�2��x� = x22 arctan�x−1�x�x2 − 1� + x2 + 4/3
�x2 + 1�4 . �5.3�

Substituting Eq. �5.2� into Eq. �2.6� and integrating over �m,
we find that the q integral is indeed logarithmic. Cutting off
the logarithmic singularity by the field, we obtain

�2�T = 0,H� = −
u2�̃4

�2	�3vF3


��̃�/ṽF

kF dq

q


−�

�

dyQ�y�

= −
u2

48	2

�̃4

vF
3 ln


F

��̃�
, �5.4�

where u=U� and we used that �−�
� dxQ�2��x�=	 /6. Conse-

quently,

T

δ

FM
PM

0

FIG. 10. �Color online� Re-entrant phase diagram of a second-
order ferromagnetic phase transition. The two curves correspond to
two solutions of Eq. �4.14�.
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���2� = u2 �
2

4
F
2 ln


F

��̃�
�0

3D, �5.5�

where �0
3D=mkF�B

2 /	2 is the spin susceptibility of a 3D
Fermi gas. We see that the sign of the field dependence of the
second-order contribution is metamagnetic, i.e., � increases
with H. This conclusion contradicts to Ref. 70, where � was
found to decrease with H as H2 �without a logarithmic fac-
tor�. Notice also that typical �m and q in Eq. �5.4� are such
that �m� ṽFq��. Therefore, even the second-order contri-
bution in 3D does not arise entirely from backscattering pro-
cesses.

Higher-order terms modify the second-order result by
renormalizing static vertices in the skeleton diagram with
two dynamical bubbles, and add new processes involving
larger number of dynamic bubbles. For example, the nonana-
lytic part of diagram e in Fig. 2 contains the cube of the
dynamic bubble. Expanding �↑↓

3 to order �4, we obtain

�↑↓
3 ��m,q� = ¯ + �2� �̃

vFq
�4

Q�3���m

vFq
� + ¯ , �5.6�

where

Q�3��x� = x23x2�x2 + 1�arctan2�x−1� + x�4 + 3x2�arctan�x−1� − 3x2 − 1

�x2 + 1�4 . �5.7�

Substituting this expansion into Eq. �2.32�, and performing
the integrations over �m and q in the same way as in Eq.
�5.4�, we obtain

���3e� = −
	2 − 8

8
u3 �̃

2

4
F
2 ln


F

��̃�
�0

3D, �5.8�

where we used that �−�
� dxZ�x�=	�	2−8� /16. As it also the

case in 2D, the signs of the second- and third-order contri-
butions are opposite.

�d� Quantum-critical behavior in 3D. The vicinity of a
ferromagnetic QCP in 3D can be analyzed within the Eliash-
berg theory, in the same way it was done in Sec. III for the
2D case. Since our goal here is to obtain only the qualitative
behavior of �, we will not repeat the manipulations within
the spin-fermion model but just consider the RPA for �,
which reproduces correctly both the weak-coupling and
quantum-critical limits. Summing up the RPA series and re-
placing u by −gs,0, we obtain

��T = 0,H� =
1

4	3
−�

�

d�m
0

�

q2dq

�ln�� +
i�m

2vFq
ln

i�m + vFq + �̃

i�m − vFq + �̃
� + ¯ ,

�5.9�

where �=−gs,0 / �1+gs,0� and dots stand for regular terms.

Expanding the integrand to fourth order in �̃, and integrating
over �m and q, we obtain

��T = 0,H� = −
1

2	3

�̃4

vF
3 Z���ln


F

��̃�
, �5.10�

where

Z��� = 
0

	/2

d� sin2 � cos2 �� cos 2�

S
+

11 cos2 � − 2

6S2

+
cos2 �

S3 +
cos2 �

4S4 � �5.11�

and S=�−1−� cot �. For small �, Z����	�2 /24, and Eq.
�5.10� reduces to Eq. �5.4�. At the QCP, �→�, and
K����0.032. Substituting this into Eq. �5.10� and differen-
tiating twice over H, we obtain at the QCP

��� 0.24
�̃2

4
F
2 ln


F

��̃�
�0

3D. �5.12�

Equation �5.12� is, however, incomplete as the RPA ne-
glects mass renormalization which becomes singular near the
QCP. Near a 3D QCP, the fermion self-energy behaves as
���m���m�ln �m�, i.e., at small frequencies it is parametri-
cally larger than a bare �m term in the fermion propagator.
Re-evaluating the polarization bubble for dressed fermions,
we obtain the same expression as in Eq. �5.1�, except for �m
under the logarithm is replaced by �m ln��m�. Substituting

this into Eq. �5.9�, setting �=�, expanding again to order �̃4,
and integrating first over �m and then over q, we obtain

�2�T = 0,H� � �̃4
��̃�/ṽF

kF dq

q ln q
� �̃4 ln�ln��̃�� . �5.13�

Consequently,

��� �0
3D�̃2
F

2lnln

F

��̃�
. �5.14�

This is a very weak nonanalytic dependence.

B. Temperature dependence of the spin susceptibility

The temperature dependence of the spin susceptibility in
3D, ���T��T2, was found perturbatively in Refs. 7 and 36
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and in the paramagnon model by Beal-Monod et al.35 Here,
we consider the temperature dependence of the spin suscep-
tibility of a 3D FL near a ferromagnetic QCP. As in Ref. 35,
we consider fermions with local interaction U near a ferro-
magnetic QCP so that U�=−gs,0�1. However, in contrast
with Ref. 35, we assume an isotropic but otherwise arbitrary
energy spectrum 
k. Correspondingly, the density of states,
��
k�, is an arbitrary function of the energy. As it will be
shown in this section, this generalization leads to a possibil-
ity of reversing the sign of the T dependence of �.

The thermodynamic potential is given by Eq. �2.64�; how-
ever, in contrast to the 2D case, the T-dependent part of the
susceptibility comes not only from the ladder but also from
the ring diagrams for �. Consequently, the ���T� term in
Eq. �2.64� contains both types of diagrams �cf. Fig. 11�:
��=��L+��R, where

��L = T�
q

�ln�1 + U�↑↓�� , �5.15a�

��R =
1

2
T�

q

�ln�1 − U2�↑�↓� + U2�↑�↓� , �5.15b�

and

�↑,↓��m,q� = T�
k

G↑,↓�k + q�G↑,↓�k� �5.16�

is the polarization bubble composed of fermions with the
same spin. The second-order diagram can be considered as a
part of either the ladder or the ring series; we associate it
with the ladder series and subtract the second-order term
from the ring sequence.

The details of the calculation are presented in Appendix
C. Here, we present the results for two different regimes near
a QCP. The first one is the FL regime of small T and finite
1+gs,0: �1+gs,0�3/2�T /
F. In this regime, ���T� scales as T2,
and the prefactor is the sum of the universal �u� and nonuni-
versal �n� contributions,

�−1�T� = ���0��−1�1 + �Au + An�� T


F
�2� , �5.17�

where ��0�=2�B
2� / �1+gs,0�. The universal contribution has

the same origin as in 2D: it arises due to a long-range dy-
namic interaction between fermions mediated by particle-
hole pairs. The prefactor of this contribution, Au, is given by

Au = −
1

3

1

�1 + gs,0�2 . �5.18�

The nonuniversal part comes from the regular terms in the
expansion of the polarization bubble in the momentum and
frequency. The magnitude and the sign of the nonuniversal
part depend on details of the fermion dispersion,

An =
	2

4

����2 − �5/3����
��2


F
2

�1 + gs,0�2 , �5.19�

where vk=d
k /dk, mk
−1=d2
k /dk2, ��= �d��
k� /d
k�
k=
F

, ��
= �d2��
k� /d
k

2�
k=
F
. The coefficient � determines the q de-

pendence of the static bubble for free fermions in 3D,

���m = 0,q� = − ��1 −
�

12
� q

kF
�2� , �5.20�

and is given by

� =
kF

2

�

d

d
k
����2

vk

k
+

1

mk
� −

2

3

d

d
k
��vk

2���

k=
F

.

�5.21�

For a power-law dispersion, 
k=Ak�, we have �= ��+1� /3.
For a quadratic dispersion, �=2, �=1, and

An =
	2

6

1

�1 + gs,0�2 . �5.22�

Comparing Eqs. �5.18� and �5.22�, we see that An is positive
and larger in magnitude than Au: Au /An=−	2 /2�−4.93.
This is the result found in Ref. 35. In this case, � decreases
with T,

��T� =
��0�

1 + gs,0 +
	2 − 2

6

1

1 + gs,0
� T


F
�2 . �5.23�

This case is perhaps most relevant for He3. However, for
more complex dispersions �relevant for anisotropic FLs in
metals�, the universal term can win over the nonuniversal
one. Indeed, because � must be positive regardless of the
dispersion �otherwise, a system of free fermions on a
lattice would have a magnetic instability at finite q�, the sign
of An is determined by the sign of the combination ����2

− �5 /3����, entering Eq. �5.19�. We see that An�0 as long as
��0. On the other hand, if the Fermi energy is near the
minimum in the density of states, where ��=0 and
���0, then An0 and � increases with T. Therefore, both
types of the T dependences are possible in metals. An in-
crease in ��T� with T was observed in a number of strongly
paramagnetic metals.37

FIG. 11. Diagrams for the thermodynamic potential that give
rise to the temperature dependence of the spin susceptibility in 3D.
Top row: ladder diagrams; bottom row: ring diagrams.
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Next, we consider the quantum critical regime:
T /
F� �1+gs,0�3/2. Here both universal and nonuniversal
terms scale as T4/3.68 A detailed calculation shows that

�−1�T� = �2�B
2��−1b�Bu + Bn��T/
F�4/3, �5.24�

where Bu=−8 /	2 is the universal low-energy contribution,
Bn is the nonuniversal contribution whose form depends
on the details of the fermion dispersion, and
b=22/3�6	�1/3��4 /3���4 /3� /35/2�0.871, with ��x� and ��x�
being the � and � functions, respectively. For the quadratic
dispersion, Bn=1�8 /	2 and the susceptibility is positive,
i.e., the system is stable. It is possible, however, that B is
smaller than 8	2 for a more complex dispersion, in which
case the susceptibility is negative at the QCP. This implies
that the transition line Tc�gs,0� may have “wrong” sign of the
slope at small T, as in Fig. 10, and the system exhibits a
reentrant ferromagnetic transition before reaching the QCP at
T=0.

There is also a more fundamental reason for the re-entrant
behavior. In the calculation that led us to Eq. �5.24�, we
neglected the fermion self-energy, which scales as �m ln �m
at the QCP. Including the self-energy, we find that the uni-
versal negative contribution to the inverse susceptibility �the
−8 /	2 term in Eq. �5.24�� acquires an extra factor of �ln T�2,
while the nonuniversal contribution remains the same. As a
result, the universal term wins at low enough T, and the
system displays a re-entrant behavior even for the quadratic
dispersion.

VI. CONCLUSIONS

In this paper, we have considered nonanalytic spin re-
sponse of an interacting Fermi system, both away from and
near a ferromagnetic quantum critical point. Our two primary
goals were �i� to establish the sign of the magnetic-field and
temperature dependences of the spin susceptibility in the
Fermi-liquid regime and �ii� analyze the stability of the con-
tinuous ferromagnetic quantum critical point in 2D. We
found that higher-order processes, involving more than one
particle-hole pair, may reverse the anomalous �positive� sign
of the single particle-hole pair contribution in a 2D Fermi
liquid. A controllable calculation within a large-N model
shows that this effect is more important than Cooper renor-
malizations of the backscattering amplitude considered in
Refs. 16 and 18. For a 3D Fermi liquid, we showed that the
sign of the T dependence of � is determined by the balance
between universal and nonuniversal contributions; while the
former depends only on the density of states and Fermi ve-
locity near the Fermi level, the latter is sensitive to the actual
form of the fermion spectrum away from the Fermi energy.
We found that whereas the sign of T and H dependences of �
in the Fermi liquid regime depends on the detailed form of
the interaction, the anomalous �positive� sign of these depen-
dences is restored near a ferromagnetic quantum critical
point. At the same time, the role of Cooper renormalizations
is diminished even further near criticality. Analyzing differ-
ent mechanisms for a breakdown of second-order phase tran-
sition, we showed, within the model of a long-range

exchange interaction, that the first-order phase transition pre-
empts an instability towards a spiral magnetic phase.
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APPENDIX A: SPIN SUSCEPTIBILITY OF A 2D
COULOMB SYSTEM IN THE LARGE-N LIMIT

In this appendix, we calculate the nonanalytic magnetic-
field dependence of the spin susceptibility for a valley-
degenerate 2D electron gas with Coulomb interaction. We
assume that there are Nv degenerate orbital valleys so that
the total �spin�valley� degeneracy is N=2Nv�1. For sim-
plicity, we consider only the T=0 case.

�a� Ring diagrams. Since each polarization bubble comes
with a large factor of N, the leading contribution to the ther-
modynamic potential is given by a series of ring diagrams
�diagrams a ,b , . . . in Fig. 2�, which contain a maximum
number of bubbles at each order. The sum of ring diagrams
gives

�N=� =
1

2
T�

q

ln�1 −
N

2
U�q���↑ +�↓�� , �A1�

where U�q�=2	e2 /q is the bare Coulomb potential. The
nonanalytic dependence of � is determined by q near 2kF.
For q�2kF, the second term under the logarithm in Eq. �A1�
is of order N�e2 /kF�m�gN, where gN is the dimensionless
coupling constant defined in Eq. �2.60�. For gN�1, one can
expand the logarithm to second order in U�q�. This repro-
duces a weak-coupling result of Ref. 11. In the opposite limit
of gN�1 �strong coupling�, the second term under the loga-
rithm dominates, and the field-dependent part of �N=� re-
duces to

�N=� =
1

2
T�

q

ln�1 − �P↑ + P↓�/2� , �A2�

where P↑,↓ are the dynamic parts of the bubbles with the
same spins, defined as

�↑,↓��m,q� = −
m

2	
�1 − P↑,↓� . �A3�

To evaluate �N=�, we expand the logarithm in Eq. �A2� in
Taylor series
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�N=� = −
1

2
T�

q
�1

2
�P↑ + P↓� +

1

2
�1

2
�P↑ + P↓��2

+
1

3
�1

2
�P↑ + P↓��3

+
1

4
�1

2
�P↑ + P↓��4

+ ¯ � .

�A4�

This expansion can be viewed as a series of fictitious ring
diagrams with each bubble being either P↑ or P↓ and the
effective interaction being equal to unity.

At T, H=0 and q�2kF,

P↑ = P↓ = � q̄

2kF
+�� q̄

2kF
�2

+ ��m

4
F
�2�1/2

, �A5�

where q̄=q−2kF and �q̄��kF. 7 For ��m�� �q̄�ṽF, Eq. �A5�
reduces to

P↑ = P↓ = ��q̄/kF�1/2 for q̄� 0

�2��m�/2ṽF�kF�q̄��1/2 for q̄ 0.
�

One can easily verify that the field dependence of the �N=�
comes only from the products of P↑,↓ with opposite spins. At
second order, there is only one such a term: P↑P↓. The q
integral of P↑P↓ diverges logarithmically for q̄0. Finite
magnetic field splits the Fermi momenta of spin-up and spin-
down fermions. This, along with finite �m, regularizes the
integral

 dq̄P↑P↓ ��m
2

−kF

−max���m�,���	

dq̄/�q̄�

= −�m
2 ln max���m�, ���	 . �A6�

This is the same logarithmic behavior that we have already
encountered in the perturbation theory �cf. Eq. �2.9��—it
leads to a ���3 term in �. At third order, the nonanalytic
dependence on � comes from P↑

2P↓. The q integral of P↑
2P↓

yields ��m�3�dq̃ / �q̃3/2���m�5/2. This leads to a ���7/2 nonana-
lyticity in �, which is weaker than the ���3 one. All higher-
order contributions produce either analytic terms or nonana-
lytic terms with higher powers of �. Therefore, as long as
only ring diagrams are considered, the only source of a ���3
nonanalyticity is the second-order term in �A4�. Hence,

�N=� = −
1

8
T�

q

P↑P↓. �A7�

This situation is to be contrasted with the regular perturba-
tion theory �cf. Sec. II A�, where ring diagrams are built from
the full bubbles �↑,↓ �see Eq. �A3��. There, diagrams to all
orders yield ���3 terms. For example, at third order one gen-
erates a ���3 term by keeping P↑,↓ parts in two out of three
bubbles and replacing the third one by its constant part
�−m /2	�. A strong-coupling expansion that we consider here
involves ring diagrams built from P↑,↓ instead of the full
bubbles. Since P↑,↓ do not contain constant terms, diagrams
with more than two P↑,↓ do not give rise to a ���3 nonanaly-
ticity.

An explicit computation of �N=� from Eq. �A7� is quite
involved because one needs to know the expressions for 2kF

bubbles in a finite field. Fortunately, there is no need to per-
form such a computation because the nonanalytic part of the
second-order diagram for a short-range interaction

�2 = −
1

2
U2T�

q

�↑�↓ �A8�

contains the same combination of P↑P↓ as Eq. �A7�. There-
fore,

�N=� =
1

4
��2�u=1, �A9�

where u=�U. Using Eq. �2.9� �2 and differentiating twice
with respect to the field, we obtain

��N=� =
���
8
F
�0

2D. �A10�

Notice that this result could be obtained from the second-
order ring diagram by replacing the wavy line by the
screened Coulomb potential for N→�,

Ũ =
2	e2

q + 2	e2�N

m
2	� �

2	

mN
. �A11�

The 2kF ring diagrams can be viewed as series of back-
scattering events, hence Eq. �A10� is the backscattering con-
tribution to the susceptibility for a Coulomb interaction in
the large-N limit.

�b� Cooper channel. Out of the subleading 1 /N diagrams
that modify the backscattering contribution to ��, the most
important ones are the Cooper diagrams which come with an
additional logarithm, LC=ln�
F / ����. At low energies, when
LC�N, the Cooper diagrams become comparable to the ring
ones.

To third order, a Cooper diagram is diagram c in Fig. 2
with wavy line replaced by the screened Coulomb interaction
from Eq. �A11�. This diagram reads

�C,3 =
1

3
�N

2
�2

Ũ3T�
q

��↑↓
C �3, �A12�

where �↑↓
C is a Cooper bubble composed of fermions with

opposite spins

�↑↓
C = T�

k

G↑�k + q�G↓�− k� . �A13�

At T=0,

�↑↓
C =

m

2	
Re ln


F

�m + i�̃ + ���m + i��2 + �vFq�2

=
m

2	
�LC + P↑↓

C � , �A14�

where
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P↑↓
C = − Re ln��m

���
+ i sgn �

+���m

���
+ i sgn ��2

+ �vFq

�
�2� . �A15�

Substituting Eq. �A14� into Eq. �A12�, we obtain

�C,3 =
T

12N
�

q

�LC
3 + 3LC

2 P↑↓
C + 3LC�P↑↓

C �2 + �P↑↓
C �3� .

�A16�

Cooper renormalization of the backscattering amplitude
comes from the third term in Eq. �A16�,

�C,3 =
1

4N
LCT�

q

�P↑↓
C �2, �A17�

while other terms either give field-independent contributions
or generate 1 /N corrections to the prefactor of the ���3 term.
We now recall that the second-order diagram �diagram a in
Fig. 2� can be represented equivalently either in the particle-
hole or the particle-particle form. The latter reads

�2 = −
1

2
u2T�

q

�P↑↓
C �2. �A18�

Comparing Eqs. �A17� and �A18�, we find that

�C,3 = −
LC

2N
��2�u=1 = −

2LC

N
�N=�. �A19�

As a result,

��C,3 = −
2LC

N
��N=�, �A20�

where ��N=� is given by Eq. �A10�.
Higher-order Cooper diagrams �diagram d in Fig. 2 and

similar diagrams at higher orders� form a ladder. At any or-
der n, we need to select only the LC

n−2�P↑↓
c �2 term from the

nth power of the Cooper bubble. The nth-order Cooper dia-
gram gives

�C,n =
�− �n−1

n
�N

2
�n�n − 1�

2
2LC

n−2C2
n�mŨ

2	
�n

T�
q

�P↑↓
c �2.

�A21�

Re-expressing again T�q�P↑↓
C �2 via �2, we obtain for the

nth-order Cooper contribution to the susceptibility

��C,n = �− �n�n − 1��LC

N
�n−2

��N=� for n" 3.

�A22�

Summing up all orders, we obtain

��C = �
n=3

�

��C,n = ��N=�� 1

�1 + LC/N�2 − 1� . �A23�

Combining this result with Eq. �A10�, we find for the total
backscattering contribution ��BS=��N=�+��C

��BS =
���
8
F

�0
2D

�1 + LC/N�2 . �A24�

In the limit of N→�, Cooper renormalizations are irrelevant
and Eq. �A24� reduces back to Eq. �A10�.

�c� 1 /N corrections. The 1 /N corrections to Eq. �A24�
come from diagrams of third and higher orders in the
screened interaction �A11�, excluding the main logarithmic
parts of Cooper diagrams. Some of these diagrams, e.g., dia-
grams b, d, and f in Fig. 2, belong to backscattering type and
contribute either nonlogarithmic corrections to the back-
scattering amplitude or subleading logarithmic corrections in
the Cooper channel. For example, fourth-order Cooper dia-
gram d contains not only the LC

2 term, already taken into
account when summing up the leading logarithmic terms, but
also a subleading, LC, term. These diagrams change the two
terms in the denominator of Eq. �A24� as 1→1+O�1 /N� and
LC /N→LC�1 /N+O�1 /N2��. At low energies, i.e., for
LC�N, the entire backscattering contribution is then given
by an asymptotic limit of Eq. �A24�,

��BS =
���
8
F

�0
2DN2

LC
2 �1 + O� 1

N
�� . �A25�

In addition, there are diagrams of different type, which do
not participate in the renormalization of the backscattering
amplitude. To leading order in 1 /N, this is diagram e in Fig.
2. This diagram has already been calculated in Sec. II B 2:
we just need to substitute u=1 /N into Eq. �2.35� and multi-
ply the result by �N /2�2. Combining this result with the
backscattering contribution, we obtain the low-energy form
of �� in the large-N model given by Eq. �2.61�.

APPENDIX B: EQUIVALENCE BETWEEN THE
THERMODYNAMIC AND KUBO-FORMULA
APPROACHES FOR THE SUSCEPTIBILITY

In this work, we were using a thermodynamic approach to
spin susceptibility, in which one first evaluates the thermo-
dynamic potential in finite magnetic field and then finds the
susceptibility by differentiating the potential with respect to
the field. Alternatively, one can find the susceptibility via the
Kubo formula for the spin-spin correlation function. Cer-
tainly, the results of the two approaches must be equivalent
in the linear-response regime. However, when going beyond
the lowest-order linear-response diagrams, it is quite easy to
miss certain diagrams which are generated automatically in
the thermodynamic approach. Moreover, the diagrams for �
generated by differentiating the thermodynamic potential
work even beyond the linear-response regime, i.e, for an ar-
bitrary ratio of the temperature and the Zeeman energy �but
for Zeeman energies still smaller than the Fermi one, when
the magnetic-field dependence of the bare interaction can be
neglected�.

We now show how the diagrams for � are generated
within the RPA in the spin channel for a local bare interac-
tion: U�q�=const=u /�. In this case, the field-dependent part
of the thermodynamic potential is given by Eqs. �2.64� and
�2.65�. The polarization operator is given by Eq. �2.3� with
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the Green’s functions from Eq. �2.13�. Differentiating Eq.
�2.65� and using the identities

�G↑,↓
�H

= # �̃BG↑,↓
2 , �B1�

we obtain

���T,H� = ��1 + ��2, �B2�

where

��1 = 2�̃B
2T2�

q
�

k

U

1 + U�↑↓�q�

��G↑
2�k�G↓

2�k + q� − G↑
3�k�G↓�k + q� − G↑�k�G↓

3�k + q�� ,

��2 = �̃B
2T3�

q
�
k1

�
k2

U2

�1 + U�↑↓�q��2

��G↑
2�k1�G↓�k1 + q� − G↑�k1�G↓

2�k1 + q��

� �G↑
2�k2�G↓�k2 + q� − G↑�k2�G↓

2�k2 + q�� . �B3�

Algebraic expressions for ��1 and ��2 are equivalent to dia-
grams in Fig. 12. The first term in ��1 is equivalent to dia-
gram a for the vertex correction insertions into the bare
particle-hole bubble; the second and third terms are equiva-
lent to diagrams b and c, which are self-energy corrections.
The contribution ��2 is equivalent to “Aslamazov-Larkin”
diagrams d and e, which contain two triads of fermion propa-
gators, connected by the interaction lines. The wavy lines in
these diagrams are spin propagators 1 / �1+U�↑↓�q��, while
the vertices contain Pauli matrices ��$. The same diagrams
have been used in Ref. 53 to analyze diagrammatically the
momentum dependence of the spin susceptibility.

APPENDIX C: TEMPERATURE DEPENDENCE OF THE
SPIN SUSCEPTIBILITY IN 3D

In this appendix, we derive Eqs. �5.17�–�5.21�, describing
the temperature dependence of the spin susceptibility in a 3D
FL near a ferromagnetic QCP.

As we said in the main text, the field-dependent part of
the thermodynamic potential is represented by a sum of the
ladder and ring diagrams, which contain polarization bubbles
made of fermions both with the same and opposite spins:

�↑,↑ ��↓,↓� and �↑↓, respectively �cf. Eqs. �5.15a� and
�5.15b��. In 2D, the nonanalytic O�T� behavior of the spin
susceptibility is associated with the field dependence of the
dynamic part of �↑↓. In 3D, the T dependence of � turns out
to be analytic, and one needs to consider the field depen-
dence of both static and dynamic parts of �↑↓, as well as the
field dependence of �↑ and �↓ �cf. Eq. �5.16��.

We begin with �↑↓. Expanding �↑↓�0,0� to order �̃2, we
obtain

�↑↓�0,0� = d3k

�2	�3  d�m

2	
G↑��m,k�G↓��m,k�

=
1

�̃


−�̃/2
k−
F�̃/2

d3k

�2	�3 = − � −
���̃2

24
.

�C1�

We will also need a q2 term in the expansion of a static
bubble in zero magnetic field. To obtain this term for an
arbitrary but isotropic dispersion, we expand the difference
���q�=���=0,q�−���m=0,q→0� to order q2,

���q� = d3k

�2	�3� f0�
k+q� − f�
k�

k+q − 
k

− f0��
k��
= d3k

�2	�3�1

2
f0��
 +

1

6
f0���
�2� , �C2�

where f0�
k� is the Fermi function and

�
 = 
k+q − 
k. �C3�

For an isotropic system 
k=
k and

�
 = 
��k2 + 2k · q + q2� − 
k

= 
k��qx +
q2

2k
� +

1

2
q2x2�
k� − 
k�/k� . �C4�

For the quadratic spectrum, the last term is equal to zero.
Integrating by parts, we find

 d3k

�2	�3 f0��
k =
q2

6

d

d
k
����
k��2


k�

k�
k�
+ 
k����


k=
F

,

 d3k

�2	�3 f0���
k�2 = � −
q2

3

d2

d
k
2 ���
k��
k��

2��

k=
F

. �C5�

Adding up these two results, we obtain

��0,q� = − � + ��
q2

12kF
2 , �C6�

where � is given by Eq. �5.21�.
Combining Eqs. �C1� and �C6� with the dynamic part of

�↑↓ from Eq. �5.1�, we obtain a complete result for �↑↓,

�↑↓��m,q� = − � − ��
�̃2

24
+ ��

q2

12kF
2

+
i��m

2vFq
ln

i�m + vFq + �̃

i�m − vFq + �̃
. �C7�

a b c

ed

FIG. 12. Diagrams for the spin susceptibility generated by dif-
ferentiating the thermodynamic potential with respect to the mag-
netic field.
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Next, we consider �↑ and �↓, which depend on �̃ only
via the static parts

�↑,↓�0,0� = − ��
F� �̃/2� = − �� � �� �̃
2

+ ��
�̃2

8
� .

�C8�

Using Eq. �5.15a� for ��L�T ,H�, we obtain

��L
−1 = � 1

��B��2

�2��L

��̃2 �
�̃=0

=
1

��B��2T�
q
�

�� U

1 + U�↑↓

�2�↑↓

��̃2
−

U2

�1 + U�↑↓�2� ��↑↓

��̃
�2��

�̃=0

.

�C9�

The derivatives of �↑↓ in Eq. �C9� are found with the help of
Eq. �C7�,

� �2�↑↓

��̃2 �
�̃=0

= −
��

12
+ 2�

�m
2

��m
2 + vF

2q2�2 , �C10a�

�� ��↑↓

��̃
�2�

�̃=0

= − �2 �m
2

��m
2 + vF

2q2�2 . �C10b�

The first term in Eq. �C9� gives a nonuniversal T2 contribu-
tion, which can be obtained by expanding the prefactor
�1+U�↑↓�−1 to first order in �m /vFq and also expanding �↑↓
itself to order �q /kF�2. Doing so, we find

���L
�n��−1 = −

1

12��B��2

��

�
T�

q
�1 + gs,0 +

	��m�
2vFq

+ �
q2

12kF
2 �−1

= −
1

12��0�
kF

2 ṽF
2

�

��

�

T2

�1 + gs,0�2�ṽF
3 , �C11�

where ��0�=2�B
2� / �1+gs,0�. The Matsubara summation was

performed using

T�
�m

��m� = const −
	

3
T2. �C12�

The second term in Eq. �C9� gives a contribution of order
T2 ln�1+gs,0� / �1+gs,0�, which diverges weaker upon ap-

proaching the QCP than the T2 / �1+gs,0�2 contribution in Eq.
�C11�. Therefore, this contribution can be neglected.

The universal part of the ladder contribution comes from
the second term of Eq. �C9�. We have

���L
�u��−1 =

1

��B��2T�
q

1

�1 + gs,0 +
	��m�
2qvF

�2

�m
2

��m
2 + vF

2q2�2

= −
2

3	2��0�
T2

�1 + gs,0�2�vF
3 . �C13�

The total ladder contribution is the sum of Eqs. �C11� and
�C13�.

The contribution to � from ring diagrams is obtained in
the same way, and the result is

��R
−1 =

1

2��B��2T�
q
�

��− U2

�2

��̃2
��↑�↓�

1 − U2�↑�↓
+ U4

� �

��̃
��↑�↓��2

�1 − U2�↑�↓�2��
�̃=0

.

�C14�

Using Eq. �C8�, we find that the second term in Eq. �C14�
vanishes, while the first one reduces to

��R
−1 =

1

4��B��2 �����2 − ����T�
�m

 d3q

�2	�3� U2

1 − U2�2� ,

�C15�

where � is the polarization operator in the absence of the
field. Obviously, the entire ring contribution is nonuniversal.

Near a ferromagnetic QCP, i.e, when gs,0�−1, Eq. �C15�
can be simplified to

��R
−1 =

1

4�B
2�

����2 − ��F�

�2 T�
q
�1 + gs,0 +

	��m�
2vFq

+ �
q2

12kF
2 �−1

=
1

8��0�
kF

2 ṽF
2

�

����2 − ���

�2

T2

�1 + gs,0�2�vF
3 . �C16�

Combining ��R
−1 with Eq. �C11� for the nonuniversal part of

the ladder contribution, we obtain Eq. �5.19�, while the uni-
versal part of ��L

−1 gives Eq. �5.18�.

1 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods
of Quantum Field Theory in Statistical Physics �Dover, New
York, 1963�; E. M. Lifshitz and L. P. Pitaevski, Statistical Phys-
ics �Pergamon, New York, 1980�.

2 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Rev. Mod. Phys. 77,
579 �2005�.

3 H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Rev. Mod.

Phys. 79, 1015 �2007�.
4 D. Coffey and K. S. Bedell, Phys. Rev. Lett. 71, 1043 �1993�.
5 M. A. Baranov, M. Yu. Kagan, and M. S. Mar’enko, JETP Lett.

58, 709 �1993�.
6 G. Y. Chitov and A. J. Millis, Phys. Rev. Lett. 86, 5337 �2001�;

Phys. Rev. B 64, 054414 �2001�.
7 A. V. Chubukov and D. L. Maslov, Phys. Rev. B 68, 155113

DMITRII L. MASLOV AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 79, 075112 �2009�

075112-30



�2003�; 69, 121102 �2004�.
8 A. V. Chubukov, D. L. Maslov, S. Gangadharaiah, and L. I.

Glazman, Phys. Rev. Lett. 95, 026402 �2005�.
9 A. V. Chubukov, D. L. Maslov, S. Gangadharaiah, and L. I.

Glazman, Phys. Rev. B 71, 205112 �2005�.
10 V. M. Galitski, A. V. Chubukov, and S. Das Sarma, Phys. Rev. B

71, 201302�R� �2005�.
11 J. Betouras, D. Efremov, and A. V. Chubukov, Phys. Rev. B 72,

115112 �2005�.
12 G. Catelani and I. L. Aleiner, JETP 100, 331 �2005�.
13 A. V. Chubukov, D. L. Maslov, and A. J. Millis, Phys. Rev. B

73, 045128 �2006�.
14 I. L. Aleiner and K. B. Efetov, Phys. Rev. B 74, 075102 �2006�.
15 G. Schwiete and K. B. Efetov, Phys. Rev. B 74, 165108 �2006�.
16 A. Shekhter and A. M. Finkelstein, Phys. Rev. B 74, 205122

�2006�.
17 D. L. Maslov, A. V. Chubukov, and R. Saha, Phys. Rev. B 74,

220402�R� �2006�.
18 A. Shekhter and A. M. Finkel’stein, Proc. Natl. Acad. Sci.

U.S.A. 103, 15765 �2006�.
19 D. Belitz, T. R. Kirkpatrick, and T. Vojta, Phys. Rev. B 55, 9452

�1997�.
20 J. A. Hertz, Phys. Rev. B 14, 1165 �1976�.
21 A. J. Millis, Phys. Rev. B 48, 7183 �1993�.
22 T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism

�Springer, Berlin, 1985�.
23 A. Casey, H. Patel, J. Nyeki, B. P. Cowan, and J. Saunders, Phys.

Rev. Lett. 90, 115301�2003�.
24 O. Prus, Y. Yaish, M. Reznikov, U. Sivan, and V. Pudalov, Phys.

Rev. B 67, 205407 �2003�.
25 V. M. Pudalov, M. E. Gershenson, and H. Kojima, in Fundamen-

tal Problems of Mesoscopic Physics: Interaction and Decoher-
ence, NATO Advanced Studies Institute Series, edited by I. V.
Lerner, B. L. Altshuler, and Y. Gefen �Kluwer, Dordrecht,
2004�, p. 309.

26 J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W.
West, Phys. Rev. Lett. 90, 056805 �2003�.

27 T. Gokmen, M. Padmanabhan, E. Tutuc, M. Shayegan, S. De
Palo, S. Moroni, and G. Senatore, Phys. Rev. B 76, 233301
�2007�.

28 See, e.g., Guang-Ming Zhang, Yue-Hua Su, Zhong-Yi Lu,
Zheng-Yu Weng, Dung-Hai Lee, and Tao Xiang,
arXiv:0809.3874 �unpublished�, and references therein.

29 M. M. Korshunov, I. Eremin, D. V. Efremov, D. L. Maslov, and
A. V. Chubukov, arXiv:0901.0238 �unpublished�.

30 P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 �2007�.
31 P. Simon, B. Braunecker, and D. Loss, Phys. Rev. B 77, 045108

�2008�.
32 S. Chesi, R. A. Zak, P. Simon, and D. Loss, arXiv:0811.0996

�unpublished�.
33 A. V. Chubukov and D. L. Maslov, Phys. Rev. B 76, 165111

�2007�.
34 C. J. Pethick and G. M. Carneiro, Phys. Rev. A 7, 304 �1973�; G.

M. Carneiro and C. J. Pethick, Phys. Rev. B 11, 1106 �1975�.
35 M. T. Béal-Monod, S.-K. Ma, and D. R. Fredkin, Phys. Rev.

Lett. 20, 929 �1968�.
36 G. M. Carneiro and C. J. Pethick, Phys. Rev. B 16, 1933 �1977�.
37 K. Ikeda, K. A. Gschneidner, R. J. Stierman, T.-W. E. Tsang, and

O. D. McMasters, Phys. Rev. B 29, 5039 �1984�.
38 D. S. Greywall, Phys. Rev. B 27, 2747 �1983�.

39 D. S. Greywall, Phys. Rev. B 41, 1842 �1990�.
40 W. Kohn and J. Luttinger, Phys. Rev. Lett. 15, 524 �1965�; D.

Fay and J. Appel, Phys. Rev. B 20, 3705 �1979�.
41 Y. Takada, Phys. Rev. B 43, 5962 �1991�.
42 S. V. Iordanskii and A. Kashuba, JETP Lett. 76, 563 �2002�.
43 S. Gangadharaiah and D. L. Maslov, Phys. Rev. Lett. 95,

186801 �2005�.
44 V. M. Pudalov, M. E. Gershenson, H. Kojima, N. Butch, E. M.

Dizhur, G. Brunthaler, A. Prinz, and G. Bauer, Phys. Rev. Lett.
88, 196404 �2002�; A. A. Shashkin, M. Rahimi, S. Anissimova,
S. V. Kravchenko, V. T. Dolgopolov, and T. M. Klapwijk, ibid.
91, 046403 �2003�.

45 A. V. Chubukov, Phys. Rev. B 48, 1097 �1993�.
46 We thank D. Loss for bringing this point to our attention.
47 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 �1960�.
48 A. Donkov and A. V. Chubukov, Phys. Rev. B 71, 224431

�2005�.
49 A. V. Chubukov, V. M. Galitski, and V. M. Yakovenko, Phys.

Rev. Lett. 94, 046404 �2005�.
50 B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 52,

5563 �1995�.
51 J. Polchinski, Nucl. Phys. B 422, 617 �1994�; V. Oganesyan, S.

A. Kivelson, and E. Fradkin, Phys. Rev. B 64, 195109 �2001�;
H. Y. Kee and Y. B. Kim, J. Phys.: Condens. Matter 16, 3139
�2004�; I. Vekhter and A. V. Chubukov, Phys. Rev. Lett. 93,
016405 �2004�.

52 A. V. Chubukov, C. Pépin, and J. Rech, Phys. Rev. Lett. 92,
147003 �2004�.

53 J. Rech, C. Pépin, and A. V. Chubukov, Phys. Rev. B 74, 195126
�2006�.

54 A. V. Chubukov and D. L. Maslov �unpublished�.
55 M. Dzero and L. P. Gor’kov, Phys. Rev. B 69, 092501 �2004�.
56 L. DellAnna and W. Metzner, Phys. Rev. B 73, 045127 �2006�;

Phys. Rev. Lett. 98, 136402 �2007�.
57 Ar. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52,

119 �2003�.
58 A. V. Chubukov, Phys. Rev. B 72, 085113 �2005�.
59 G. M. Eliashberg, Sov. Phys. JETP 11, 696 �1960�; 16, 780

�1963�.
60 J. Bardeen and M. Stephen, Phys. Rev. 136, A1485 �1964�.
61 R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 �1964�.
62 R. Haslinger and A. V. Chubukov, Phys. Rev. B 67, 140504�R�

�2003�; 68, 214508 �2003�; A. V. Chubukov, A. M. Finkelstein,
R. Haslinger, and D. K. Morr, Phys. Rev. Lett. 90, 077002
�2003�; P. Monthoux and G. G. Lonzarich, Phys. Rev. B 69,
064517 �2004�.

63 The numerical prefactor in E differs from the one obtained in
Ref. 17 because the thermodynamic potential was defined in a
different way. It agrees with the one obtained recently �Ref. 71�
in the analysis of ��T ,M� in the ferromagnetically ordered
phase.

64 D. Belitz, T. R. Kirkpatrick, and J. Rollbühler, Phys. Rev. Lett.
94, 247205 �2005�.

65 R. B. Griffiths, Phys. Rev. B 7, 545 �1973�.
66 V. M. Galitski and S. Das Sarma, Phys. Rev. B 70, 035111

�2004�.
67 D. J. W. Geldart and M. Rasolt, Phys. Rev. B 15, 1523 �1977�;

22, 4079 �1980�.
68 G. G. Lonzarich, in Electron, edited by M. Springford �Cam-

bridge University Press, Cambridge, 1997�.

NONANALYTIC PARAMAGNETIC RESPONSE OF… PHYSICAL REVIEW B 79, 075112 �2009�

075112-31



69 J. C. Wheatley, in Quantum Fluids, edited by A. F. Brewer
�North-Holland, Amsterdam, 1966�; A. C. Anderson,
W. Reese, and J. C. Wheatley, Phys. Rev. 127, 671
�1962�.

70 M. T. Béal-Monod and E. Daniel, Phys. Rev. Lett. 68, 3817
�1992�.

71 D. V. Efremov, J. J. Betouras, and A. Chubukov, Phys. Rev. B
77, 220401�R� �2008�.

DMITRII L. MASLOV AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 79, 075112 �2009�

075112-32


