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We generalize the quantum waveguide approach to Hückel or tight-binding models relevant to unsaturated
� molecular devices. A Landauer-type formula for the current density through internal bonds is also derived
which allows for defining a local conductance. The approach is employed to study internal circular currents in
two-terminal rings. We show how to predict the occurrence and the nature of large vortex currents in coinci-
dence with vanishingly small currents in the leads. We also prove a remarkably simple formula for the onset of
a vortex regime.
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I. INTRODUCTION

The quantum waveguide approach �WGA� introduced in
Refs. 1 and 2 has been extensively used to study multitermi-
nal mesoscopic structures, such as quantum rings or quantum
wires, possibly in the presence of impurities, magnetic fields,
Rashba interactions, or Dresselhaus interactions. The basic
idea of the WGA is to calculate the one-particle wave func-
tion �n�x�=aneikx+bne−ikx in the nth wire by imposing the
continuity at each vertex, i.e., �1�0�=�2�0�= ¯ =�N�0� �N
is the number of intersecting wires at the vertex�, and the
additional condition �n=1

N �n��0�=0, which implies current
conservation at the vertex �the derivative is taken along the
incoming direction�. It is worth noticing that current conser-
vation is actually fulfilled by the weaker condition

�
n=1

N

�n��0� = r�1�0� , �1�

where r is an arbitrary real number. To our knowledge such
arbitrariness has never been discussed.

In recent years it became possible to attach aromatic mol-
ecules or atomic chains to leads. These structures are geo-
metrically similar to their mesoscopic counterparts and call
for a Hückel-type or tight-binding �TB� generalization of the
WGA due to the inadequacy of the continuum free-particle
description. In the discrete case the difficulty stems from the
fact that we cannot impose a condition on the derivative of
the wave function. Approaches based on the Green’s
functions,3 iterative procedures,4 or source-and-sink
potentials5,6 have been proposed but none of them is directly
related to the WGA.

It is the purpose of this work to show how to generalize
the WGA to the TB case �TBWGA� and to use the method to
predict the occurrence of large vortex currents in quantum
rings observed for the first time in Ref. 4. The continuum
case is recovered by a proper limit of the TB parameters and
allows us to understand the physical meaning of the real
constant r in Eq. �1�.

II. TIGHT-BINDING WGA

We consider a generic system consisting of TB chains
with at least one endpoint in common. In Fig. 1 we illustrate

a vertex of the system with N=4 intersecting chains. Let �n
be the onsite energy of the nth chain, tn be the hopping
parameter between the nearest-neighbor sites, and �V be the
onsite energy of the vertex. We denote with ��n�j�=a�neiknj

+b�ne−iknj the amplitude on the jth site of the nth chain of an
eigenstate of energy �=�n+2tn cos kn. As in the continuum
case the continuity of the wave function yields N−1 inde-
pendent equations,

��1�0� = ��2�0� = ¯ = ��N�0� . �2�

The additional condition, which plays the role of Eq. �1� in
the WGA, is obtained by projecting on the vertex site the
stationary Schrödinger equation

�
n=1

N

tn��n�1� + �V��1�0� = ���1�0� . �3�

Equations �2� and �3� provide N independent equations for
each vertex of the system. Thus, for a system having V ver-
tices with Ni, i=1, . . . ,V, intersecting chains at the ith ver-
tex, the above procedure yields �iNi equations. Letting P be
the number of chains with both endpoints belonging to the
set of vertices and Q be the number of semi-infinite chains
with one endpoint connected to a vertex, i.e., the number of
terminals, we have 2P+Q=�iNi and hence a degeneracy
D�Q for each energy level �the number of unknown con-
stants �a�n� and �b�n� is 2P+Q+D where D is the number of
terminals for which ��−�n��2�tn��, as should be.

To recover the WGA we employ a three-point discretiza-
tion of the kinetic term �our argument does not rely on this
specific way of discretizing�. Then, tn=−1 / �2�2� and �n
=1 /�2, where � is the spacing between two points of the
continuum wire �we use atomic units�. The amplitudes
��n�1� correspond to the amplitudes of the wave function at

FIG. 1. �Color online� Illustration of a vertex with N=4.
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a distance � from the vertex. For clarity we then rename
��n�j� with ��n�j�� and rewrite Eq. �3� as

�
n=1

N ���n��� − ��n�0�
�

� − ��̃V��1�0� = − 2����1�0� , �4�

where �̃V	2�V−N /�2. Taking the continuum limit �→0
we recover Eq. �1� provided that lim�→0 ��̃V=r, which im-
plies �̃V
r /�. Thus, the constant r is the amplitude of the
	-like potential r	�x� at the vertex and is zero only for
smooth potentials.

III. TWO-TERMINAL SYSTEMS

We now focus on two-terminal systems and obtain a
Landauer-type formula for the current density through a ge-
neric bond. Let H�0�=Hleads+Hdev+Htun be the Hamiltonian
of the system in equilibrium. The Hamiltonian of the left �L�
and right �R� leads is

Hleads = t�
j�0

�cj
†cj−1 + H.c.� + t�

j
0
�cj

†cj+1 + H.c.� , �5�

with nearest-neighbor hopping t. The device is described by
Hdev=�nm=1

N tnmdn
†dm with real parameters tnm= tmn and N is

the total number of sites. The device is connected to the left
lead through site 1 and to the right lead through site M �N
�see, e.g., Fig. 2�. The tunneling Hamiltonian is

Htun = tL�d1
†c−1 + H.c.� + tR�dM

† c1 + H.c.� . �6�
We are interested in the long-time limit of the current density
when an external bias U� is imposed on lead �=L ,R.7

At zero temperature the long-time limit of the density
matrix �x,x�, with x ,x� site indices of either the leads or the
device, is given by the sum of a steady-state contribution
�x,x�

�S� and a dynamical contribution.8 The steady-state contri-
bution can be written in terms of left-going eigenstates ���R�
and right-going eigenstates ���L� as

�x,x�
�S� = �

�=L,R
�

−2�t�+U�

�F+U� d�

2�
����x�����

� �x� , �7�

with �F as the equilibrium Fermi energy. The states are nor-
malized according to ��� �����=2�	�	��−���. Without
loss of generality we choose UL
UR and split Eq. �7� into
three terms containing the contribution of the left-going eva-
nescent states with energy in the range �−2�t�+UR ,−2�t�
+UL�, the left- and right-going current-carrying states with
energy in the range �−2�t�+UL ,�F+UR�, and the right-going
current-carrying states with energy in the range ��F+UR ,�F
+UL�. The evanescent states can be chosen real valued since
they are nondegenerate and the biased Hamiltonian is invari-
ant under time reversal. Thus, the imaginary part of �x,x�

�S�

simplifies to

J��x,x�
�S� � = �

�F+UR

�F+UL d�

2�
J���L�x����L

� �x��

+ �
−2�t�+UL

�F+UR d�

2�
�
�

J�����x�����
� �x�� . �8�

Let us first consider the case in which both x ,x� are site
indices of the same lead. The amplitude on the leads ����j�
	0�cj����� of a normalized scattering state is

��L�j� = ��L����eiqj + R�Le−iqj , j � 0

T�Leiq̃j , j 
 0,
� �9�

��R�j� = ��R����T�Re−iqj , j � 0

e−iq̃j + R�Reiq̃j , j 
 0,
� �10�

with �=2t cos�q�+UL=2t cos�q̃�+UR and �����
=1 /�4t2− ��−U��2 is the density of states in lead �. Exploit-
ing current conservation and the orthogonality condition be-
tween left- and right-going eigenstates, i.e., R�L

� T�R /�L���
+R�RT�L

� /�R���=0, it is straightforward to show that for x
= j
0 and x�= j+1 the second term in Eq. �8� vanishes while
the first term reduces to the well-known Landauer formula

J�� j,j+1
�S� � =

1

2�t���F+UR

�F+UL d�

2�
�T�L�2

�L���
�R���

. �11�

Below we show that the possibility of expressing J��x,x�
�S� � as

an integral over the bias window is valid for all sites includ-
ing those in the central device. Let us express ��R as a linear
combination of ��� and the time-reversal state ���

T =���
� ,

��R�x� =��R���
�L���

1

T�L
� ���L

� �x� − R�L
� ��L�x�� . �12�

Extracting the transmission and reflection coefficients T�R
and R�R, one can easily verify that ��R�x� is orthogonal to
��L�x�. Inserting Eq. �12� into Eq. �8� and exploiting current
conservation for the right-going scattering state, one realizes
that the imaginary part of ������x�����

� �x� is identically
zero, and hence only states in the bias window contribute to
J��x,x�

�S� �. Thus, the long-time limit of the current density
Jnm	2tnmJ��n,m

�S� � through an internal bond of the device con-
necting site n to site m can be expressed in a Landauer-type
formula. In linear response Jnm=Gnm�UL−UR� and exploiting
the above result, the local conductance Gnm is given by

Gnm 	
Jnm

UL − UR
=

tnm

�
J���FL�m���FL

� �n�� . �13�

We next specialize the analysis to devices consisting of a TB
ring and address the existence of vortex regimes.

IV. CONDUCTANCES IN TWO-TERMINAL RINGS

We consider a ring with N sites, see Fig. 2. For notational
convenience we denote with d⇑n, n=0, . . . ,M, the fermionic
operators in the upper arm and with d⇓n, n=0, . . . ,N−M, the

FIG. 2. Illustration of a ring device with M =5 and N=8. The
last site of the lower arm is M�=N−M.
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fermionic operators in the lower arm, and we identify d⇑0
	d⇓0 and d⇑M 	d⇓N−M. In terms of the operators d⇑n ,d⇓n the
device Hamiltonian reads

Hdev = t �
n=0

M−1

�d⇑n
† d⇑n+1 + H.c.� + t �

n=0

M�−1

�d⇓n
† d⇓n+1 + H.c.� , �14�

where M�=N−M and the hopping t is the same as in the
leads. For simplicity we also set tL= tR= t in the tunneling

Hamiltonian. We employ the TBWGA to calculate, e.g., the
right-going eigenstates ��L. Let ��L�j�=��L����eikj

+R�Le−ikj� be the amplitude on lead L �j�0� and ��L�j�
=��L���T�Leikj be the amplitude on lead R �j�0�. Similarly,
the wave function on the upper arm of the ring has the form
��L�n�=��L����A�Leikn+B�Le−ikn� with 0�n�M while on
the lower arm ��L�n�=��L����C�Leikn+D�Le−ikn� with 0�n
�N−M. According to the TBWGA the coefficients of ��L
are solution of

�
1 1 0 0 − 1 0

0 0 1 1 − 1 0

eikM e−ikM 0 0 0 − 1

0 0 eik�N−M� e−ik�N−M� 0 − 1

eik e−ik eik e−ik − e−ik 0

eik�M−1� e−ik�M−1� eik�N−M−1� e−ik�N−M−1� 0 − e−ik

��
A�L

B�L

C�L

D�L

R�L

T�L

� =�
1

1

0

0

eik

0

� . �15�

Left-going states ��R can be computed in a similar man-
ner and it is straightforward to show that T�L=T�R	T�,
which is the transmittance of the system. The conductance
through a bond is given by Eq. �13�. For any bond in the
leads the conductance is simply G�= �T��2g0, where g0
=1 / �2�� is the quantum of conductance for spinless elec-
trons. The conductances on the upper and lower arms of the
ring are G⇑�= ��A�L�2− �B�L�2�g0 and G⇓�= ��C�L�2− �D�L�2�g0.
From the above system of equations we obtain the following
analytical solution for the transmittance and the local con-
ductance:

T� =
ieik�2M−N� sin2�k�sin�k N

2 �cos�k�N
2 − M��

��k�
, �16�

G⇑�

g0
=

sin4�k�sin�k N
2 �cos�k�N

2 − M��sin�k�N − M��
2���k��2

,

�17�

G⇓�

g0
=

sin4�k�sin�k N
2 �cos�k�N

2 − M��sin�kM�
2���k��2

, �18�

with

��k� =
e−2ik�N−M+2�

16
�1 − 4e2ik�1 − e2ik� − e2ik�M+2� + e2ikN

− 2eikN�e2ik − 1�2 − e2ik�N−M+2�� . �19�

It is easy to verify that current conservation is fulfilled since
G⇑�+G⇓�= �T��2g0=G�. It is also worth emphasizing that G�

is bounded between 0 and g0, while G⇑� and G⇓� can be
much larger than g0 and can be either positive or negative.
We say that we are in a vortex regime if sign�G⇑��=
−sign�G⇓��. From Eqs. �17� and �18� we conclude that for

arms of different length a vortex regime always exists since

G⇑�

G⇓�

=
sin�k�N − M��

sin�kM�
. �20�

Equation �20� is simple and transparent. The onset of a vor-
tex occurs for those values of the incident momentum corre-
sponding to an eigenenergy of either the isolated lower arm
kn

�L�=�n / �N−M� or the isolated upper arm km
�U�=�m /M. In

the following we characterize the vortex regime and show
how to predict the occurrence of large ring currents in coin-
cidence with a vanishingly small current in the leads.

V. VORTEX REGIME

As already pointed out in Refs. 6 and 9 the transmittance
T� has two different kinds of zeros. The numerator in Eq.
�16� vanishes either for energies that exactly match an eigen-
value of the isolated ring, i.e., for kn

�M�=2n� /N �matching
momenta�, or for energies at which there is perfect destruc-
tive interference at the right interface, i.e., for km

�I�= �2m
+1�� / �N−2M� �interference momenta�. At these points the
transmittance vanishes provided the denominator ��k��0.
From the linear system in Eq. �15� one can easily show that
��k� cannot be zero at the interference momenta since the
wave function at the right interface vanishes and hence T�

vanishes as well. As the numerator of T� goes to zero as

�k−kn

�I�� the denominator ��k� has to be finite. On the
other hand, the denominator can vanish at the matching mo-
menta for special values of M /N. Expanding ��k� around
kn

�M� one finds to the first order ��k��−�e4iMn�/N−1�2 /16
+��n��k−kn

�M��, with ���n��
�N�2N−3�+M�4N+2�
0.
Thus ��k� approaches zero as �k−kn

�M�� for integer 2Mn /N.
In these cases the simple zero of the denominator cancels the
simple zero of the numerator and T� is finite �unless kn

�M� is

BRIEF REPORTS PHYSICAL REVIEW B 79, 073406 �2009�

073406-3



an interference momentum as well�. Our condition for the
cancellation of zeros include the symmetric case M =N /2
already discussed in Ref. 9 as well as other cases, see Fig. 3
where N=16 and M =6 and the zero at � /2 is cancelled by
the denominator �the conductance G� has the same zeros as
the transmittance since G� /g0= �T��2�.

From Eqs. �17� and �18� one can see that a zero of G�

implies a zero of both G⇑� and G⇓�. Novel zeros, however,
exist for the local conductances. Specifically, the numerator
of G⇑� vanishes for k=kn

�L� while the numerator of G⇓� van-
ishes for k=km

�U�, see Fig. 3. Thus, the conductance G⇑� is
zero at k=kn

�L� unless kn
�L� is also a zero of the denominator.

In the latter case G⇑� remains finite since there exists an
integer m such that kn

�L�=km
�M� and hence sin�Nk /2�sin�k�N

−M��
�k−km
�M��2 which cancels the double zero of

���k��2.10 In Fig. 3 this cancellation takes place at k=� /2. A
similar reasoning applies to G⇓�. To summarize, the local
conductances G⇑� and G⇓� as well as the transmittance T�

can have simple or double zeros while G� can have double or
quadruple zeros.

In accordance with the above analysis the onset of the
vortex phase occurs for incident momenta k=k�U��k�L� or
k=k�L��k�U�. Below we show that in the vortex regime there
are special values of the incident momentum yielding a cir-
cular ring current much larger than the current in the leads.
In order to quantify this effect we define the vortex function

V��� =
G⇑� − G⇓�

G�

. �21�

The modulus of V��� is in the range �0,1� when G⇑� and G⇓�

have the same sign �laminar regime� and is greater than one
in the vortex regime. At the onset either G⇑� or G⇓� vanishes
and �V����=1. The vortex function diverges at the zeros of
the total conductance and the magnitude of the vortex can be
classified according to the nature of zeros of G�. For double
zeros of G� �single zeros of T�� the difference G⇑�−G⇓� has
a single zero since a double zero would imply k�U�=k�L�

which in turn implies ��k�=0. Expanding the conductances
around the single zero �s of T�, we find V���
1 / ��−�s�.
The current flowing in the ring changes direction as � crosses
�s. It is worth noting that in the neighborhood of �s the
derivative G⇑/⇓�� can be very large �see Fig. 3 at kF=3� /8�
and �G⇑/⇓��
g0�G�
10−1g0. Even more striking is the be-
havior of V��� around a double zero �d of T�. In this case
G⇑�−G⇓� also has a double zero10 and hence V���
1 / ��
−�d�2. In this case the vortex does not change sign as �
crosses �d. Both divergences are rather remarkable since one
could naively expect that �G⇑/⇓���G� in accordance with
Kirchoff’s current laws of classical electromagnetism.

We also explored the vortex regime for nonzero onsite
energies �dev on the ring and different couplings tL/R. Varying
tL/R alters the shape of G⇑/⇓ but preserves both the position
and the nature of the zeros. On the contrary, the position of
the zeros changes as �dev is varied but a vortex regime still
exists.

In conclusion we have generalized the WGA to TB mod-
els and obtained a Landauer-type formula for the current
density through a generic bond. The TBWGA requires the
same computational effort as the WGA. Employing the TB-
WGA in combination with the obtained expression of the
local conductance, we have shown how to predict the occur-
rence of large vortex currents. The existence of a vortex re-
gime is rather robust and has to be attributed to the nontrivial
topology of the system rather than to a specific choice of the
parameters.
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