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We present a general theory of stress effects on the solid solubility of impurities in crystalline materials,
including the effects of ionization and the Fermi level in semiconductors. Critical errors and limitations in
previously proposed theory are discussed, and a rigorous accurate treatment incorporating charge-carrier-
induced lattice strain and correct statistics is presented. Considering all contributing effects, we find that the
strain compensation energy is the primary contribution to solubility enhancement in essentially all material
systems of interest. An exception is the case of low-solubility charged impurities in semiconductors, where a
Fermi-level contribution is also found. We present explicit calculations for a range of dopant impurities in Si,
utilizing this system as a model example and vehicle for comparison with experiment. Our results agree closely
with experimental solubilities for dopants with widely different ionic sizes.
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The effect of stress on impurity solubility is one of the
simplest examples of a mechanical effect on the phase dia-
gram of a material system. It influences mechanical proper-
ties such as ductility1 and crack evolution2 electronic prop-
erties such as carrier density in semiconductors3 and other
phenomena, such as superconductivity.4 Consequently it has
a role to play in research topics ranging from materials sci-
ence, geophysics, and superconductivity to semiconductor
technology.

Despite this very broad significance, our basic under-
standing of impurity solubility under stress is incomplete and
no general physical model has yet emerged. In the case of
dopant solubility in silicon, where the phenomenon has been
closely studied, previously reported theoretical works have
shown either inconsistencies5,6 or important differences in
formulation.7–9 Until we understand the origin of these weak-
nesses it is uncertain whether solubility theory can be reli-
ably applied to key technology problems, for example, dop-
ant activation in nanoelectronic devices where high stress
levels are introduced for band gap and mobility engineering,
or stress-driven fracture2 during the lifetime of critical engi-
neering components. Moreover, since a small set of accurate
experimental measurements has recently been reported for
the case of impurities in Si,3,10,11 it is especially worthwhile
to develop an accurate comprehensive model to compare
with these data and test theoretical understanding.

Early theoretical work investigated stress-dependent B
solubility in Si �Refs. 5 and 6� and suggested that the main
contributing effect is a stress-induced change in the Fermi
level. It was concluded that Fermi-level change produces a
strong enhancement of B solubility in compressively strained
silicon, while a relatively small additional enhancement oc-
curs as a result of strain compensation arising from the size
mismatch between B and Si. Adey et al.6 later predicted that
Fermi level and strain compensation contributions are both
important in the case of As in Si but are of nearly equal
magnitude and opposite in sign, and thus cancel. However,
these previous works are based on the use of Maxwell-
Boltzmann �M-B� statistics in which the Fermi level varies

with doping concentrations at the same rate near and beyond
the band edges as at midgap, leading to unphysical results.

In another approach used by Diebel et al.7 and Ahn and
Dunham,8 the stress energy was calculated simply via
strain�stress ���� ·�� �, where the strain is obtained from the
energy vs strain curve for the relevant dopant �Fig. 1� using
neutral supercells rather than the charged supercells that are
conventionally used. As we shall show, this approach is rea-
sonable for the case of heavily doped semiconductors where
the Fermi level is pinned to the band edge but is not of
general validity.

Finally, Höglund et al.,9 also assuming the Fermi level at
the band edge, predicted dramatic stress effects on solubility
in pure and multilayered alloy structures using charged su-
percells. However, in multilayered structures, the band off-
sets can build an electric potential causing dopant
segregation.12,13 Therefore, in such structures, changes in
solubility are due not only to the stress effect but also to the
band offsets.

Up to now, there has been little or no discussion of the
relative accuracy of the different approaches that have been
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FIG. 1. �Color online� Energy vs hydrostatic strain curve for 64
atom supercell with As+, As0, and e−. The normalized induced
strain is defined as ��=64� �a−a0� /a0, where a is the equilibrium
lattice constant of the supercell with a dopant or an electron and a0

is the Si lattice constant.
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used, the relationships between them, and their ability or
otherwise to reproduce pertinent experimental data. Further-
more, so far no general model has been presented.

In this Brief Report, we develop a general theory for the
effect of stress on impurity solubility in crystalline solids. In
order to describe charged or neutral impurities in semicon-
ductors, metals, or insulators, the formulation is developed
for the general case of a semiconducting band gap. We use
neutral supercell methods and account for the relative posi-
tion of the Fermi level and defect energy levels within
Fermi-Dirac �F-D� statistics. Our methodology has much in
common with established methods for modeling diffusion
via the concept of “activation volume” �V0���� but is more
general and in the future will also be applied to more accu-
rate modeling of stress-dependent impurity diffusion.

At thermal equilibrium, the solid solubility of an impurity
is determined by the condition minimizing the Gibbs free
energy, and in the dilute limit it is given by14

CA
ss = Cs exp�− EA

f

kT
� , �1�

where Cs is the lattice concentration �5�1022 cm−3 for Si�
and EA

f is the impurity formation energy, frequently calcu-
lated using density-functional theory �DFT� supercell
methods.15,16 In a binary phase system the formation energy
is determined by the energy change during the phase transi-
tion and is customarily given by5,9,14

EA
f = EAq

Tot − Eref
Tot − �A + q�EF + Ev/c� �2�

where EAq
Tot is the total free energy of the charged supercell

with one impurity, q is the charge state, Eref
Tot is the total free

energy of the reference supercell without an impurity, �A is
the chemical potential of an impurity in solubility-limiting
clusters/precipitates, EF is the Fermi energy in reference to
the band edge, and Ev/c is the band edge. To predict the stress
effects, �Ef���� is calculated by evaluating Eq. �2� at various
lattice constants, which requires extensive DFT calculations,
especially under anisotropic stress conditions. In contrast,
when the neutral supercell method is used within the linear
elasticity limit, �Ef���� can be simplified to strain�stress
similar to the first term in Eq. �5�, which requires less com-
puting resources than the charged supercell method and ef-
fectively removes finite-size errors, even in 64 atom super-
cells. This is critical for predicting stress effects since the
magnitude of finite-size errors is usually comparable to the
stress energy.

In neutral supercells, charge carriers occupy dopant levels
�Ed� which coincide with the Fermi level at absolute zero
temperature. At finite temperature, the Fermi level can devi-
ate from the dopant level, and thus Eq. �2� can be rewritten
as

EA
f = EA

Tot − Eref
Tot − �A + qfEact, �3�

where f is the ionized fraction of the dopant and Eact=EF
−Ed is the activation energy. In principle this method re-
quires a correction for the underestimated band gap when the
energy level is above Ev; however, when the solubility en-
hancement factor CA

ss���� /CA
ss�0� is of interest only the change

in the formation energy �EA
f ���� is important and the DFT

band-gap problem disappears. Equation �3� is the generalized
form of Eq. �2� such that it can be applied to a partially
ionized system where f �1.

Within the linear elasticity limit, the free energy of the
M-atom supercell containing a single impurity is determined
from the generalized Hooke’s law,7

E���� = EA
0 +

MV0

2
��� −

���A

M
� · C · ��� −

���A

M
� , �4�

where EA
0 is the energy of the fully relaxed supercell, V0 is

the unit atomic volume of the lattice, �� is the applied strain,
���A is the normalized induced strain due to the impurity, and
C is the elastic stiffness tensor of the host material. The ���A
is a generalized tensor representation of the volume expan-
sion coefficient, which is conveniently applicable to all types
of strain. For an isolated impurity in an isotropic material,
there is only one independent element due to the symmetry.
Following the usual convention, tensile applied strain and
outward relaxations are defined as positive.

Applying Eq. �4� to Eq. �3�, the change in the formation
energy becomes

�EA
f ���� = − V0���A · C · �� − ��A���� + qf�Eact���� . �5�

The first term is the strain compensation energy which in-
cludes all volumetric effects due to an isolated impurity, and
the key factor ���A����Aq +���h/e can be obtained from the
lattice constant vs energy curve as shown in Fig. 1 or mea-
sured with high-resolution x-ray reciprocal-lattice
mapping.17 It is interesting to note in passing that a compari-
son between Eqs. �2� and �5� shows that q�Ev/c����=
−V0���h/e ·C ·�� where the right-hand side is the stress energy
due to a charge carrier. This identity has not previously been
reported and potentially gives an efficient method to calcu-
late the deformation potential of semiconductors.

The second term in Eq. �5� ���A����=−V0���A
cl ·C ·��� is

often ignored because the induced strain due to a single atom
in a large cluster/precipitate ����A

cl� is generally very small.
The induced strain due to the cluster can be obtained with the
same methods applied to the isolated impurity by using the
supercell with a cluster instead of an impurity. For B, the
stable cluster B12I7, known as the building block of
SiB3,7,18,19 produces an induced strain per clustered B atom
that is at least 1 order of magnitude smaller than that of the
isolated B atom, and thus effectively negligible. Likewise,
the solubility-limiting cluster As4V �Ref. 20� causes minimal
lattice distortion.8 Table I lists the induced strain due to
solubility-limiting clusters for B and As. For other elements,
although the structure is not known, the energetically favor-
able cluster is still unlikely to involve a large distortion as
this would result in a large stress energy. In the exceptional
case where a small impurity cluster becomes the solubility-
limiting cluster and results in a significant volume change,
this term should be taken into account to predict the stress
effects on solubility. In addition, if the dominant cluster is
charged, Fermi-level effects may need to be added to the
expression for ��A as discussed for the case of dopants be-
low.

BRIEF REPORTS PHYSICAL REVIEW B 79, 073201 �2009�

073201-2



The third term in Eq. �5� �qf�Eact����� varies depending on
the type of the impurity and the position of dopant impurity
energy levels. For isovalent elements or deep dopants, q or f
vanishes, respectively. Thus this term does not contribute to
the formation energy. For shallow dopants, or rather, dopants
which are within �2kT of the band edge at the annealing
temperature, two important extreme cases are possible.

�i� Solubility in the intrinsic doping range: for low-
solubility dopants giving intrinsic conditions at the annealing
temperature, the Fermi level is at midgap, leading to
�Eact�����−�Eg���� /2. In this case �Eg���� is calculated by
determining thermodynamic averages of the conduction and
valence band positions. This is necessary since at high tem-
perature a carrier may occupy any one of the split subbands
resulting from applied strain. Bi-doped Si is an example of
this type of system, having an equilibrium solubility of
�1017 cm−3.21 Likewise, In-doped Si is well described for
annealing temperatures above 700 °C since the solubility
limit of In, 1.8�1018 cm−3,22 is below the intrinsic carrier
concentration in this range, and the In level �considered deep
at room temperature� lies within 2kT of the valence band
edge.

�ii� Solubility in the degenerate doping range: in heavily
doped semiconductors, the Fermi level converges to the
conduction/valence band edge and becomes independent of
dopant concentration.23 At this high doping, the dopant band
is merged to the conduction/valence band due to the metal-
insulator �M-I� transition.24 The M-I transition originates at
doping concentrations below 1019 cm−3 for B, P, and As in
Si �Ref. 25� as the dopant band touches the relevant band
edge, and for example, in the case of P in Si, the dopant band
has completely merged into the conduction band by 2
�1019 cm−3,26 above which concentration the doped mate-
rial becomes metallic. Therefore �Eact���� is negligible for the
common shallow dopants in Si.

For dopants whose solubility lies between the above ex-
tremes, it becomes necessary to consider Fermi-level effects
explicitly, requiring full numerical calculation of the effec-
tive density of states and the intrinsic carrier density as a
function of strain at high temperature. Likewise, for dopants
with deep levels at the annealing temperature, the solubility
is complicated by partial ionization which can also vary with
stress and temperature. Since neither of these cases is of

direct interest for doping in semiconductor technology, we
shall skip detailed discussion of them for the sake of simplic-
ity.

When we apply the theory to commonly used shallow
dopants with high solubility in Si, the solubility enhancement
factor is primarily determined by the stress energy due only
to an isolated dopant,

Css����
Css�0�

= exp�−
�EA

f ����
kT

� � exp�V0���A · C · ��

kT
� �6�

Equation �6� can be used for any type of stress and predicts
that the solubility of small size dopants is enhanced under
compressive stress and suppressed under tensile stress and
vice versa for large size dopants.

For various impurities in Si, ���A was calculated using the
DFT code VASP �Refs. 15 and 16� in the generalized gradient
approximation �GGA� with the PW91 functional.27 Calcula-
tions were done using a 64 atom supercell and 23 Monkhorst
k�-point sampling28 at relatively high energy cutoff, 340 eV.
We found the finite-size effects to be minimal �less than 3%
change in ���A� by repeating the same calculations using a
216 atom supercell for B and P. The calculated values are
compared with available experimental measurements and are
presented in Table I. Theoretical values for B and P agree
well with experimental values17,29 and the modest difference
for As is ascribed to As-V clusters.8,31 The temperature de-
pendence of V0 and C due to thermal expansion is ignored
since they tend to compensate each other and the stress en-
ergy is nearly temperature independent.13

Figure 2 shows the effects of biaxial stress on the equi-
librium solubility of all common dopants in Si. A large en-
hancement in B solubility is possible under compressive
strain. For example, under −1.5% strain, B solubility at
700 °C is 1 order of magnitude higher than in conventional
Si, 50% greater than the enhancement predicted by Adey et
al.,6 and caused entirely by atomic size, not atomic charge.
The solubility of As is nearly stress independent due to the
small induced strain, which agrees well with the experimen-
tal results of Sugii et al.10 and Bennett et al.11 Although both
experiments were done under metastable conditions associ-
ated with epitaxial regrowth, we believe that the amorphous
layer with high dopant concentrations acts as a stress-

TABLE I. The normalized induced strain for dopants, charge carriers, dopant-defect clusters, and isova-
lent elements in Si. Note that the value of dopants includes both ion and electron/hole components, and
cluster-induced strains are given per dopant. The values in parentheses are experimental values.

P As Sb Bi B Ga In

�� −0.084 0.013 0.16 0.23 −0.30 0.066 0.21

�−0.095a� �−0.02b� �−0.315c�

e h As4V B12I7 C Ge Sn Pb

�� 0.22 −0.26 −0.018 −0.020 −0.42 0.05 0.21 0.26

aReference 29.
bReference 30.
cReference 17.
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independent reservoir. Bennett et al.3 also reported a meta-
stable Sb solubility enhancement factor of �2 at 0.7% biax-
ial tensile strain, in good agreement with our results. For the
Bi line in Fig. 2, the term �Eact���� is nonzero and approxi-
mates to −�Eg���� /2 as explained in paragraph �i� above. Eg
was calculated by taking the thermodynamic average of the
split subbands presented in Ref. 32. To determine the aver-
aged valence band edge Ev, a value for the ratio between the
carrier-concentration effective masses of heavy and light
holes was estimated from Ref. 33. Although this ratio is a

function of temperature and strain, a constant value, 3, was
used for the calculations since this is a reasonable approxi-
mation at high temperature33 and any variation results in
only minor changes to the final solubility. The reduced band
gap tends to make Bi less soluble; however, the stress-energy
factor is stronger than the band-gap factor as shown in the
inset of Fig. 2.

In summary, a general theory for predicting the solubility
enhancement for impurities in crystalline materials under ap-
plied strain has been developed. For semiconductors doped
with high-solubility shallow dopant impurities, the strain
compensation energy is the dominant factor and the strength
of the stress energy is determined by the dopant-induced lat-
tice strain, the sum of induced strain due to an ion plus a
charge carrier. When the dopant impurity has low solubility,
the stress-induced band-gap narrowing tends to suppress
solubility. Using induced strains from DFT calculations, we
have predicted changes in solubility for dopant impurities in
Si, in good agreement with experimental data for dopants of
widely different sizes. Key messages from this work are the
importance of atom size for impurity solubility in crystalline
materials, in general, and the impact this will have on the
choice of high-solubility dopants in the case of strained
semiconductor systems.
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FIG. 2. �Color online� Stress effects on the solubility of shallow
dopants under biaxial stress. Inset shows the components contribut-
ing to Bi solubility: the strain compensation energy ��Es=
−V0��� ·C ·��� and the activation energy ��Eact�−�Eg�. The axis
scale of the inset is the same as in the main figure.
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