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Recent theoretical and experimental studies of superfluid 3He in aerogels with a global anisotropy created,
e.g., by an external stress have definitely shown that the A-like phase with an equal-spin pairing in such aerogel
samples is in the Anderson-Brinkman-Morel �ABM� �or axial� pairing state. In this paper, the A-like phase of
superfluid 3He in globally isotropic aerogel is studied in detail by assuming a weakly disordered system in
which singular topological defects are absent. Through calculation of the free energy, a disordered ABM state
is found to be the best candidate of the pairing state of the globally isotropic A-like phase. Further, it is found
through a one-loop renormalization-group calculation that the coreless continuous vortices �or vortex-
Skyrmions� are irrelevant to the long-distance behavior of disorder-induced textures, and that the superfluidity
is maintained in spite of lack of the conventional superfluid long-range order. Therefore, the globally isotropic
A-like phase at weak disorder is, like in the case with a globally stretched anisotropy, a glass phase with the
ABM pairing and shows superfluidity.
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I. INTRODUCTION

Superfluid 3He in aerogel, which is a random medium
with a high porosity, has been studied as a prototype of im-
purity scattering effects on an anisotropic Cooper-paired
system.1 The aerogel has a structural correlation length �a,
corresponding to a typical distance between neighboring
strands, on the order of 30–50 nm, which is comparable with
the pairing coherence length �0��vF / �2�kBTc� in the pres-
sure range relevant to the superfluid 3He. For this reason, the
scattering events of the quasiparticles due to the aerogel
structure are different from those of electrons in amorphou-
slike dirty metals corresponding to the situation with �a
��0 and seem to be characterized by a local anisotropy of
the scattering amplitude.1–3

In recent years, the presence of a high-pressure phase with
an equal-spin pairing �ESP�, called the A-like phase, has be-
come an active research subject because it had been believed
previously that the B-like phase with the Balian-Wherthamer
�BW� pairing is the only stable superfluid phase in aerogel.4

However, several NMR experiments have suggested the
presence of the A-like phase near Tc�P� and a strange low-
ering of the polycritical pressure �PCP� accompanying this
phase.5,6 Even theoretically, there have been some sugges-
tions favoring the presence of the Anderson-Brinkman-Morel
�ABM� pairing state at least at short scales7 by assuming a
local anisotropy of aerogel structures, although the lowering
of PCP has not been discussed there. On the other hand, it
has been argued that the ABM pairing state in aerogel has no
superfluid response at long distances, as a consequence of
random orientations of l vector pinned by the local aniso-
tropy of the aerogel and the resulting proliferation of nons-
ingular coreless vortices, or vortex-Skyrmions,8,9 where the
unit vector l is the orbital anisotropy axis and expresses the
direction along which the energy gap vanishes. However,
experiments seem to show nonvanishing and anisotropic su-
perfluid responses, such as in the bulk liquid.10 Another pair-
ing state, called the robust pairing state, was proposed as a
candidate of the A-like phase11 showing superfluidity. How-

ever, it was difficult to identify this state, which is not ther-
modynamically stable in the bulk liquid, as the A-like phase.

This controversy on the pairing state of the A-like phase
has been resolved in more recent studies9,12–14 for the cases
where the aerogel has a global anisotropy brought by an
external stress. NMR measurements in both of uniaxially
compressed13 and stretched14 aerogels have been nicely ex-
plained by assuming that the A-like phase in these aerogels is
in the ABM pairing state with a proper alignment of the
orientation of l vector. On the other hand, it seems that there
is no consensus at present on the pairing state of the A-like
phase in the globally isotropic case.3,9,11 Even if the A-like
phase in this case is also in the ABM pairing state, the fun-
damental question on the presence or absence of superfluid-
ity in this case9 needs to be resolved.

In the present work, thermodynamic stability of the ABM
pairing state in globally isotropic random media is examined
in detail through comparison of the free energies between
different pairing states, including the planar and robust
states, by assuming some of real aerogels to be globally iso-
tropic. Further, the presence of the quasi-long-range super-
fluid order in such a disordered ABM state is established at
weak disorder where singular topological defects are absent.
Here, the superfluid order will be reasonably defined through
the correlation function8

G�R� = Re Tr��p�r + R��p
��r�� , �1�

between the spin-triplet gap parameters,15 �p�r� and �p�r
+R�. Here, the zero-temperature limit is assumed so that the
thermal fluctuation of the gap parameter may be neglected.
Further, the overbar denotes the random average, and Tr ex-
presses both of the trace in spin space and the average over
the relative momentum p on the Fermi surface. This gap
parameter, which is a tensor in spin space, depends not only
on the ordinary amplitude and phase but also on the orienta-
tions of spin and orbital degrees of freedom of Cooper pairs.
At larger scales than the dipole coherence length,15 the spin
orientation is locked in the orbital one corresponding to the
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l’s orientation, and a short-range correlation of the l’s orien-
tation corresponds to a short-range superfluid order measured
by correlation function �1�. The presence of a quasi-long-
range superfluid order suggests that the corresponding super-
fluid correlation length is infinite. At a glance, one might
wonder that such a long-range correlation is destroyed by
vortex-Skyrmions which are generated by continuous tex-
tures of the l vector. However, we find based on a
renormalization-group �RG� analysis that the vortex-
Skyrmions appearing at short scales in globally isotropic sys-
tems may be irrelevant perturbations at long distances, im-
plying that a nonvanishing superfluid response is well
defined. Therefore, the A-like phase at weak disorder is ex-
pected to show superfluidity, just as seen experimentally.10 A
brief sketch of the free-energy calculation in the present
work has been reported elsewhere3 previously.

In Sec. II, the Ginzburg-Landau �GL� model including
effects of randomness is derived in a form useful for a free-
energy calculation, and the free energy is evaluated in detail
in Sec. III based on the Gaussian variational method �GVM�
often used in random systems. In Sec. IV, the presence of a
quasi-long-range superfluid order is explained by performing
one-loop diagram calculations accompanying a functional
RG method, and results are summarized and discussed in
Sec. V. Some of technical or numerical details will be ex-
plained in Appendixes A and C.

II. DERIVATION OF GINZBURG-LANDAU ACTION
IN DISORDERED CASE

As a starting microscopic Hamiltonian for deriving a
Ginzburg-Landau action or functional, we choose the BCS
Hamiltonian with an attractive interaction in the purely
p-wave channel, which is written in the familiar notation as

Ĥp − �N̂ = �
p,�

�pâp,�
† âp,� + Ĥint, �2�

where

Ĥint = − 3�g��
q

Ô�,j
† �q�Ô�,j�q� ,

Ô�,j�q� = �
p

pj

2pF
â−p+q/2,��i���2��	âp+q/2,	. �3�

Performing the standard decoupling16 in Ĥint by introducing
the pair field A�,j, where � �j� denotes the three components
of the spin �orbital� degree of freedom, the superfluid part of

the partition function is given by �Ts exp�−	0
1/TdsĤint�s��


=	D�D�� exp�−S� in the �=kB=1 unit, where

S = �
q

1

3�g�T
A�,j

� �q�A�,j�q� − ln�Ts exp 

 , �4�


 =
1

2�
q
�

p
���p̂

†�q��	,��
0

T−1

dsâp+q/2,��s�â−p+q/2,	�s�
+ H.c., �5�

	p denotes the momentum integral 	d3p / �2��3, ��p̂�q���,	

=A�,i�q�p̂i�i���2��,	 is the pair field, ���r�=�pâp,�eip·r is
the quasiparticle field, and � 
 expresses the ensemble aver-
age over the quasiparticle distribution. The GL action is ob-
tained, in S, by keeping just the quadratic and quartic terms
in A�,j. The pair field is assumed to be independent of the
imaginary time s because quantum fluctuations of A�,i do not
have to be included in considering superfluid phases of 3He
in equilibrium, in which fluctuation effects are safely negli-
gible. For 3He in aerogel, the total quasiparticle Hamiltonian
needs to include a term associated with an impurity scatter-
ing. As usual, it will be expressed hereafter as a nonmagnetic
random potential term17 Himp=��	d3ru�r���

†�r����r�. The
scattering potential u�r� has zero mean, and the quasiparticle
lifetime � is defined by the relation �−1=2�N�0���up−p��

2
p̂,
where N�0� is the density of states per spin in the normal
state, and � 
p̂ denotes the angle average over the orientation
of the relative momentum p on the Fermi surface. If the
aerogel we assume has no global anisotropy, � defined above
is independent of the quasiparticle momentum p�. Using a
quasiparticle Green’s function18 G�p ,p�� defined prior to
the impurity average, the quadratic part S2 of S is expressed
as

S2 = T−1�
q,q�
��i,j�q,q�

3�g�
− T�


�

p
�

p�
p̂ip̂j

� G�p +
q

2
,p� +

q�

2
�G−�− p +

q

2
,− p� +

q�

2
��

� A�,i
� �q�A�,j�q�� . �6�

In the present situation where the critical fluctuation is neg-
ligible, a q dependence of A�,j follows from the quenched
disorder. In the GL regime where the amplitude of A�,j is
small, it is sufficient to keep, in S2, disorder-induced terms
related to the q dependences of A�,j, and the corresponding
contributions from the GL-quartic term may be neglected.
Then, the quartic term in our GL action takes the same form
as the familiar one for the disorder-free bulk liquid 3He �see,
e.g., Ref. 15�,

S4 = T−1 �
q1,q2,q3

�	1�A�,iA�,i�2 + 	2�A�,i
� A�,i�2

+ 	3A�,i
� A�,i

� A�,jA�,j + 	4A�,i
� A�,iA�,j

� A�,j

+ 	5A�,i
� A�,iA�,j

� A�,j� . �7�

In the weak-coupling limit without any vertex correction, S4
is obtained from the expression

S4,WC � �
qj,
�

p
�G�p�G−�− p��2Tr��p̂

†�p̂�p̂
†�p̂� , �8�

expressing the Gor’kov box of Fig. 1�a�, where G�p�= �ĩ
−�p�−1, with ̃=+sgn�� / �2��, is the impurity-averaged
quasiparticle propagator. The resulting S4,WC is given by re-
placing 	 j in Eq. �7� with 	 j

�WC�, where 	2
�WC�=	3

�WC�

=	4
�WC�=−	5

�WC�=−2	1
�WC�=2	�WC��T�,
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	�WC��T� =
N�0�

240�2T2 �
n=0

8

�2n + 1 + �2�T��−1�3

�
	0�T�
7��3� �n=0

8

�2n + 1 + �2�T��−1�3 , �9�

and ��3��1.2.
In performing the impurity average in Eq. �8�, the leading

term in �EF��−1 was kept by neglecting diagrams with
crossed impurity lines.18 We need to comment on our neglect
in Eq. �8� of two types of vertex corrections induced by the
impurities. First, the impurity ladders dressing the four cor-
ners of Fig. 1�a� were neglected. These vertex corrections on
the order of 1 / �2�T�� are present even in the p-wave pairing
case because we take account of wave-vector dependences of
the squared impurity potentials �uk�2. However, they merely
renormalize the magnitude of 	0 and never affect a relative
difference between free energies of two different pairing
states. On the other hand, irrespective of the pairing interac-
tion, there are also additional diagrams, described in Fig.
1�b�, accompanied by a single impurity line. These diagrams
do not contribute to 	1

�WC� and 	3
�WC�, while they change

other coefficients as follows:7,19 	2
�WC�→	2

�WC�−	0�imp,
	4

�WC�→	4
�WC�−	0�imp, and 	5

�WC�→	5
�WC�+	0�imp, where

�imp is of the order �2�T��−1�1.
As is well known, the coefficients 	 j �j=1–5� appear in a

manner dependent on the pairing state in the condensation
energy of bulk 3He. Hereafter, such 	 j combinations in the
ABM, BW, planar, and robust states are denoted by 	ABM,
	BW, 	P, and 	R, respectively,20 which will be indicated as
	N in the lump hereafter. In the disordered case, they are
expressed as

	ABM = 	245 − 	0�imp,

	BW = 	1 + 	2 +
	345

3
− 	0�imp,

	P = 	1 + 	2 +
	345

2
− 	0�imp,

	R = 	2 +
1

9
�	13 + 5	45� − 	0�imp, �10�

where 	ij =	i+	 j and 	ijk=	i+	 j +	k. Note that �imp ap-
pears in the same form in all 	N’s. Further, a pairing state
with a small 	N has a lower free energy at the mean-field
level. Therefore, relative stability between the different pair-
ing states cannot be reversed by including the contribution of
Fig. 1�b�.

Furthermore, 	 j must include the so-called strong-
coupling �SC� corrections19,21,22 which, in clean limit, stabi-
lize the ABM state as the bulk A phase of superfluid 3He. In
the disordered case, the SC corrections to 	 j consist of two
contributions. One is the expression in clean limit with the
Matsubara frequency  replaced by ̃. The other consists of
terms including impurity-induced vertex corrections. Hereaf-

ter, they will be denoted by �	 j
�SC� and �	̃ j

�SC�, respectively.19

That is, we have 	 j =	 j
�WC�+�	 j

�SC�+�	̃ j
�SC�. Details of �	 j

�SC�

and �	̃ j
�SC� were examined in Ref. 19 thoroughly. Their pres-

sure dependences in each pairing state are needed in obtain-
ing a theoretical phase diagram, and their numerical values
will be illustrated for reference in Appendix A.

Now, let us turn to detailing the second term of S2 by
expanding f ij���	p	p�p̂ip̂j�G�p+ ,p+��G−�−p− ,−p−�� in
powers of the impurity potential u, where p�=p�q /2. Up
to O�u2�, we express f ij as f ij

�0�+ f ij
�1�+ f ij

�2�, where

f ij
�0��� =

�i,j

3
�q,q��

p
G�p+�G−�− p−� , �11�

f ij
�1��� = − �

p
p̂ip̂jG�p+��G−�− p−�G−�− p+ + q��

+ G−�− p−�G�p− + q���uq−q�, �12�

and

f ij
�2��� = kF

−2�
p
�

k
��p +

k

2
�

i
�p −

k

2
�

j

G�p +
k

2
�G�p −

k

2
�G−�− p −

k

2
�G−�− p +

k

2
�uk+qu−k−q�

+ �p +
k

2
�

i
�p +

k

2
�

j
�G�p +

k

2
��G−�− p −

k

2
��2

G−�− p +
k

2
�

+ �G�p +
k

2
��2

G�p −
k

2
�G−�− p −

k

2
�uk+qu−k−q�� . �13�

��� ���

FIG. 1. Diagrams expressing Gor’kov boxes leading to Eqs. �9�
and �10�. The solid line with arrow and the dashed line denote the
quasiparticle Green’s function and the impurity line carrying �−1,
respectively.
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The contributions in S2 corresponding to Eqs. �6� and �11�
give the ordinary quadratic term in the so-called Abrikosov-
Gor’kov approximation and in the weak-coupling limit.7,23

Its expression is well known and given by

S2
�0� = T−1�

q
���i,j +

1

2
�2K1qiqj + K2q2�i,j��

� A�,i
� �q�A�,j�q� , �14�

where

� =
N�0�

3
�ln� T

Tc0
� + ��1

2
+

1

�4�T��� − ��1

2
�� ,

K1 = K2 =
2

5
N�0��0

2, �15�

Tc0 is the superfluid transition temperature of the bulk liquid,
��z� is the digamma function, and

�0 =
vF

2�T
� 1

12 �
n�0

�n +
1

2
+

1

�4�T���
−3

�16�

is the coherence length.
In f ij, the first-order term �f ij

�1��� is easily found to van-
ish after performing the p integral. Thus, we have only to
focus on f ij

�2�. After substituting f ij
�2� into Eq. �6�, a larger �k� is

found to become dominant in the resulting replicated action
Sdis �see below�, while for �q� , �q���2��0

−1, any q and q�

dependences included in the p integral are negligible com-
pared to the large �k�. Then, the p integral in f ij

�2� is derived in
the conventional manner18 used for obtaining the static su-
perfluid response, and we obtain

f ij
�2��� � −

�2

8
�

k
k̂ik̂ j

N�0�
EF̃2

kF

�k�
uk+qu−k−q�. �17�

Although, by substituting this into S2, a disorder-induced
term appears in the GL action, it is more convenient to di-
rectly work in the corresponding quartic term Sdis arising
after the impurity average of the free energy, where the index
“dis” implies “disorder.” To do this, let us introduce the rep-
lica description of the averaged free energy24

F̄ = − T lim
x→+0

Zn − 1

n
, �18�

where Zn=Tr exp�−S�. The quartic term Sdis, described in
Fig. 2, appears in the replicated GL action S and is given
by25

Sdis = − T−2 �
a,b=1

n �
k

k̂ik̂ jk̂rk̂s� N�0�kF

16EFT�k�
��1��1

2
+

1

4�T�
��2

�
a,b

�
q1,q2,q3

�uk+q1
uk+q2

�2

��A�,i
�a��q1����A�,r

�b��q3���A�,j
�a��q2�A�,s

�b��q1 + q3 − q2�

� − T−1 �2

960

T

EF

N�0�
T2

�

��T�2���1��1

2
+

1

4�T�
��2

�
a,b

�
q1,q2,q3

��i,j�r,s + �i,r� j,s + �i,s�r,j�

��A�,i
�a��q1����A�,r

�b��q3���A�,j
�a��q2�A�,s

�b��q1 + q3 − q2� , �19�

where ��1��z�=d��z� /dz, and

� � ��N�0��2�
0

dk

2�2kF
�uk�4. �20�

It is easy to verify that Sdis can also be obtained by assuming
the following quadratic action to be present in the original
action S:

S2,dis =� d3r�U�r��i,j + V�r���i,j − 3âi�r�âj�r���

� A�,i
� �r�A�,j�r� . �21�

Here, âi yields a Gaussian ensemble satisfying âi=0 and

3âi�r�âj�r�=�i,j, while the potentials U and V have zero
mean and satisfy U�r�V�r��=0, and

U�r�U�r�� = V�r�V�r�� = T−1�	d��3��r − r�� , �22�

with

�	d = 	0
�

EFT�2

5�4

42��3����1��1

2
+

1

4�T�
��2

. �23�

In this way, one can regard the original GL action S below
Tc as

S = S2
�0� + S4 + S2,dis. �24�

FIG. 2. Diagrams giving Sdis.
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Hereafter, the pair field A�,i will be expressed by separat-
ing the amplitude ��� from the symmetry variables15 com-
posed of the spin and orbital degrees of freedom together
with the overall phase � in the manner

A�,i = ���a�,i. �25�

Following the standard notation, a�,i in the ABM state is
given by

a�,i = ei�d��m + in�i

�2
�26�

with the triad �m ,n , l� of unit vectors. On the other hand, it
takes the forms ei�R�,i /�3 and ei�R�,k�i,k

T /�2 for the BW
and planar states, respectively, where R�,i is a rotation ma-
trix, and �i,j

T =�i,j − lil j.
15 According to the definition of the l

vector mentioned in Sec. I, the same notation on the aniso-
tropy axis will be used for both of the ABM and planar
states. Then, Sdis is rewritten for the ABM pairing state in the
form Sdis�1�+Sdis�2�, where

Sdis�1� = −
1

2T

6

5
�	d�

a,b
� d3r���a��r���b��r��2, �27�

and

Sdis�2� = −
1

2T

3

10
�	d�

a,b
� d3r���a��r���b��r��2

� ��l�a� · l�b��2 − 1� . �28�

The corresponding action for the planar state takes the same
form as above, while Sdis is given, in the BW and robust
states, simply by 5Sdis�1� /6. Since Eq. �28� is nonvanishing
only if the l vector is spatially varying so that �l�a� · l�b��2−1 is
nonzero, ���a��r���b��r��2 in Eq. �28� may be replaced by its
mean-field value ��MF�4 below the critical region in the close
vicinity of Tc, or as far as a slowly varying a�,i is assumed.

Of course, ��MF�2 needs to be determined by examining F̄.
Before ending this section, it will be appropriate to dis-

cuss the treatment on the impurity scattering used in this
paper. Our procedure on the impurity scatterings used in S2

�0�

and S4 is more or less an extension of the Abrikosov-
Gor’kov approach23 based on the Born approximation. Ex-
cept in the situation with extremely weak disorder, the so-
called unitary limit including multiple-scattering processes is
often used by assuming the isotropic s-wave scattering event
to be dominant �see, e.g., Ref. 7�. On the other hand, an
inhomogeneity of the order-parameter amplitude ��� to be
created spontaneously26 by impurity scatterings was not in-
corporated in the present analysis. In an isotropic approxima-
tion, this effect becoming more important at higher pressures
was studied in an elaborate numerical work.27 Throughout
the present paper, however, we argue that the local or global
anisotropy of scattering events in aerogel, which has not
been incorporated in calculations in previous microscopic
works,7,27 is indispensable for describing the features in the
phase diagram associated with the A-like phase of liquid 3He
in aerogel. Further, to examine effects of the local anisotropy,
one needs to derive an expression of a disorder-induced term,
corresponding to S2,dis, in the GL action. In order to achieve

these purposes consistently, we have chosen to work in the
simplest Born approximation and its extension. To perform a
more quantitative comparison between experimental and the-
oretical phase diagrams and obtain results on physical quan-
tities such as the temperature dependence of ��� comparable
with experimental data, the multiple-scattering events and
spatial variations of ��� need to be incorporated within a
model of anisotropic and random scattering.

III. FREE ENERGY AND GRADIENT TERMS

To evaluate free energy for various pairing states in the
present disordered case, we will use the GVM. In this
method, a trial Gaussian ansatz Sg for the replicated action S
is first invoked. Then, the total free energy F is evaluated as

F̄ = F̄g +
T

n
�S − Sg
g, �29�

where F̄g is the free energy for Sg divided by the number of
replicas n, � 
g is the ensemble average on Sg, and the n
→0 limit is taken at the end. The GVM has been satisfacto-
rily applied in evaluating free energy of the random
Ising-spin28 and elastic systems.29

To apply GVM to the present problem, we will first ex-
amine how to determine an appropriate trial action in our
case with a couple of fields, the amplitude fluctuation ����
= ���− ��MF� and a�,j consisting of the symmetry variables.
Since we are not interested in a negligibly narrow critical
region in the close vicinity of Tc, we will assume, as usual,
the two variables ���� and a�,j to be separable in the trial
Gaussian action. This assumption on the trial action greatly
simplifies our analysis for Eq. �29�. In fact, the Gaussian
approximation does not have to be assumed in the original
action S which appears only as its average in Eq. �29�. To
clarify this point, let us rewrite the original gradient term

S2,grad = T−1� d3r
1

2
�K1�iA�,i

� �r�� jA�,j�r�

+ K1� jA�,i
� �r��iA�,j�r� + K2� jA�,i

� � jA�,i� �30�

included in S2
�0�. It is not difficult to see that the K1 term in

Eq. �30� is rewritten as

� d3r
K1

2T
����2��ia�,i

� � ja�,j + � ja�,i
� �ia�,j�

+ Re�a�,i
� a�,j��2�i���� j��� − �i� j���2�� �31�

except surface terms. In the ABM or planar state, the pres-
ence of a�,i in the second term inside the square brackets in
Eq. �31� makes this term a non-Gaussian form because the
factor Re�a�,i

� a�,j� becomes ��i,j − lil j� /2 there, although it is
merely �i,j /3 in the BW or robust state from the outset. In the
disordered ABM or planar state, however, the l vector has no
orientational long-range order �LRO�.8 Hence, the random
average of the factor Re�a�,i

� a�,j� is merely �i,j /3 irrespective
of the correlation range of the l orientation. In this way, the
original gradient term of S, if applied to Eq. �29�, can be
replaced by
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S2,grad �
1

T
� d3r�K̃������2 +

���MF
2

2
�K2�ia�,j�ia�,j

�

+ K1��ia�,i� ja�,j
� + � ja�,i�ia�,j

� ��� �32�

for all pairing states considered in this paper, where K̃
= �3K2+2K1� /6. Here, according to the assumption of a
slowly varying a�,j mentioned below Eq. �28�, the factor ���2
was replaced by its uniform value ��MF�2 to be determined
later.

Then, in the total and averaged free energy F̄= F̄amp

+ F̄sym, the ����-part F̄amp and the a�,j-part F̄sym can be treated
independently below:

F̄amp = − T lim
n→+0

Zn
amp − 1

n
,

F̄sym = − T lim
n→+0

Zn
sym − 1

n
, �33�

Zn
amp = Tr���� exp�− Samp� ,

Zn
sym = TrÃ�,i

exp�− Ssym� , �34�

where Ã�,i= ��MF�a�,i. Since variations in a�,i are always ac-
companied by �MF in S2,grad, the free-energy correction due
to the purely thermal fluctuation of symmetry variables is
independent30 of ��MF� and, thus, of the details of pairing
states. Since such a free-energy correction insensitive to
��MF� should take a common value to all p-wave pairing
states, this purely thermal correction will not be considered
in �S
g hereafter in examining a relative stability between
different pairing states.

According to treatments performed so far, the replicated
action Samp for the ABM state is given by

Samp = T−1�
a=1

n � d3r�����a��2 + K̃�����a���2 + 	ABM���a��4

−
3

5
�	d�

b=1

n

���a��2���b��2� . �35�

The corresponding expression for the BW �robust� state is
given by replacing 	ABM and the factor 3/5 by 	BW �	R� and
1/2, respectively, while the corresponding one in the planar
state follows from replacing 	ABM by 	P.

On the other hand, the replicated action, Ssym�Sgrad
+Sdis�2�, for the ABM and planar states is

Sgrad �
��MF�2

2T
� d3r�

a=1

n

�2K1�ia�,i� ja�,j
� + K2�ia�,j�ia�,j

� � ,

Sdis�2� � −
3

20T
�	d��MF�4�

b=1

n

��l�a� · l�b��2 − 1� �36�

if the field a�,i in the planar state is represented by Eq. �C1�
in Appendix C.

Here, for later convenience, the gradient energy in the
purely ABM pairing state will be expressed in the hydrody-
namic representation,15,31

Sgrad = SFr +
1

2T
� d3r�

a=1

n

��0Mij
�a��v�a��i�v�a�� j − 2bCv�a� · L�a�

+ 2Cv�a� · curl l�a�� , �37�

where

vi = m j�in j, L = l�l · curl l�, Mij = �i,j − Alil j , �38�

with positive constants A and b, and SFr is the replicated
Frank energy term

SFr =
1

2T
� d3r�

a=1

n

�Ks�div l�a��2 + Kt�L�a��2 + Kb�l�a� · �l�a��2�

�39�

in the terminology of the nematic liquid crystal, if the l vec-
tor is identified with the nematic director.

On the other hand, for the BW and robust states, the �	d
term of Eq. �36� is absent. Since, as mentioned earlier, the
thermal fluctuation term of the symmetry variables is unnec-
essary for the present purpose, even �Sgrad
g in Eq. �29� may
be neglected. Therefore, for the BW and robust states, we

have no contribution of F̄sym, and the total free energy F̄ can

be identified with F̄amp.
Now, let us turn to evaluating free energy of the disor-

dered ABM state. The corresponding results for other pairing
states will be commented on at the end of this section. First,

to examine F̄amp, it is convenient to rewrite Eq. �35� in the
form expressed in terms of a scalar order parameter ��r�,

SIsing =� d3r�
a,b
��a,b� �0

2
���a��2 +

1

2
����a��2 +

g

4
���a��4�

−
u

4
���a���b��2� , �40�

which was studied within GVM in Ref. 28 as a continuum
model of a random Ising-spin system. Here, the scale trans-

formation, ���2�K̃�3/2 /T�N�0��1/2→�2 /2 and �N�0� / K̃�1/2r
→r, was performed. Details of derivation of the free energy
for model �40� are explained in Appendix B. By rewriting

Eq. �B12�, the resulting F̄amp is found to take the form

F̄amp

V
= −

�N�0��2

4	ABM
�p

2 −
T�N�0��3/2

2�K̃3/2

pc

2�
��p�

−
T�N�0��3/2

4�2K̃3/2
�3g − 2u�� pc

2�
�2

, �41�

where V is the volume,

�p =
�

N�0�
+ �3g − 2u�

pc

2�2 , �42�

and
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g =
T	ABM

�N�0��1/2K̃3/2
,

u =
3�	d

5	ABM
g . �43�

The dimensionless momentum cutoff pc / �2�� will be as-
sumed below to be unity. We note that the third term of Eq.
�41� merely gives a negligibly small correction to the first
and second ones in the relative difference between free en-
ergies of two different pairing states, since g and u are at
most O�T2 /EF

2�. Depending on the disorder strength, this cor-
rection may be negligible compared with the contribution

from F̄sym which will be examined below. �Note that F̄sym is
absent in the BW and robust states.�

In contrast to F̄amp, it is not tractable to directly evaluate

F̄sym in the ABM state. To evaluate F̄sym in a different man-
ner, let us first start from examining free energy of the sim-
pler model29

SXY =
1

2�
a
� d3r�c̃����a��2 + T−2W̃�

b

�1 − cos�2���a�

− ��b����� . �44�

Assuming a Gaussian trial action

Str =
1

2�
q

�
a,b

G̃ab
−1�q���a��q���b��− q� , �45�

the corresponding averaged free energy F̄XY is given by

F̄XY

TV
=

1

2n
�c̃�

q
q2Tr G̃�q� + �

q
Tr ln�G̃−1�q��

−
W̃

T2��
a�b

exp�− 2Bab�0�� + n�� �46�

except a constant term, where Bab�0�=	q�G̃aa�q�+ G̃bb�q�
−2G̃ab�q��, and the n→0 limit is taken at the end. By fol-
lowing the procedures in Ref. 29, the disorder-dependent
term of the first term of Eq. �46� is given by

1

2
�

q
�

0

1 du

u2

���u

c̃q2 + ���u

, �47�

while the integrand in its second term is expressed by

Tr ln�G̃−1�q�� = n�ln�c̃q2� − �
0

1 du

u2 ln� ���u

c̃q2 + 1�� .

�48�

Details of the function ���u can be seen in Ref. 29. Using the

properties of ���u carrying the disorder strength W̃, the q
integral of the second term of Eq. �46� can be shown to be
convergent. Then, it is found that, up to the lowest order in
the disorder strength, the sum of the first and second terms in
Eq. �46� is disorder independent. Therefore, the change in

free-energy density induced by the quenched disorder is, up

to O�W̃�, given by the last terms of Eq. �46�, i.e.,

F̄XY�W̃� − F̄XY�0�
V

=
W̃

2T�exp�− 4�
q

1

c̃q2� − 1� � −
pc

�2

W̃

c̃T
,

�49�

which is independent of T because c̃ is an elastic constant
divided by T. Note that Eq. �49� is determined by the behav-
ior at short scales of O�pc

−1�, implying that the free energy is
unaffected by the details of long-distance behaviors,32 i.e.,
the presence or absence of quasi-LRO. In fact, reflecting the
fact29 that the elastic behavior at short scales is determined
within the replica-symmetric approximation, result �49� co-
incides with the corresponding one of the random-force
model33,34

SRF =� d3r� c̃

2
����2 + f�r���r�� , �50�

where f̄ =0, and

f�r�f�r�� = 4T−2W̃��3��r − r�� . �51�

This action is equivalent to the Gaussian replicated action
obtained from Eq. �44� with the replacement 1−cos�2���a�

−��b���→2���a�−��b��2.

Based on this fact for model �44�, we have evaluated F̄sym
by, in the last term of Ssym, keeping only the lowest
�harmonic�–order terms in Euler angles representing the l
vector. Then, if using the representation

l = ẑ cos �l + �x̂ cos �l + ŷ sin �l�sin �l, �52�

one finds that the resulting last term of Ssym takes the form

Sdis�2� �
3

20T
�	d��MF�4�

a,b
� d3r��l

�a� − �l
�b��2, �53�

which depends only on �l
�a� and �l

�b�. Further, the gradient
energy, Eq. �37�, in the ABM state will be replaced, for sim-
plicity, by its isotropized version

Sgrad
�iso� =

1

2T
� d3r�

a=1

n

���iso��v�a��2 + 2C�iso�v�a� · curl l�a�� + SFr,

�54�

corresponding to the limit of a Bose gas of molecules with
the ABM pairing symmetry,35 where ��iso� and C�iso� are av-
eraged coefficients which follow by replacing, e.g.,
l ·vl · �curl l� in the original action by �lil j
vi�curl l� j and ap-
plying the absence of the l-orientational LRO. The second
term, proportional to v · curl l, will be neglected hereafter be-
cause it simply becomes a sum of purely surface terms after
expressing it via the Euler angles. This easily follows from
the fact that in representation �52�, v · curl l is proportional to
�� cos�2�l����l�z−2�� cos2 �l�� sin �l�x+2�� cos2 �l
�� cos �l�y. Further, the remaining terms expressed in
terms of the Euler angles, �l and �l, will also be linearized
by using the absence of LRO. For instance, sin�2�l����l�2

will be replaced by �sin�2�l�
���l�2, which vanishes due to
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the absence of LRO. The resulting expression is Gaussian in
��l and ��l, and there are no cross terms such as ��l��l
there. In fact, the Gaussian term in ��l, which is the relevant
one for the present purpose �see Eq. �53��, results only from
SFr. In this way, the relevant gradient energy term in Ssym
becomes

5

18
Kb�

a=1

n � d3r���l
�a��2 �55�

in the weak-coupling approximation, where Kb=3Ks=3Kt
=3��MF�2�K1+K2� /4. The coefficients Kb, Ks, and Kt includ-
ing the strong-coupling corrections are given, up to the low-
est order in �Tc−T� /Tc, by their weak-coupling expressions
divided by the mass enhancement factor,36 if �	 j

�SC� and

�	̃ j
�SC� are properly incorporated in 	 j appearing in ��MF�.

Thus, Eq. �55� is expected to be applicable even at higher
pressures as far as pressure dependences of �0 and N�0� are
incorporated through their experimental data. The remaining
�l-dependent terms are purely thermal fluctuation contribu-
tions unrelated to the quenched disorder and, hence, may be
neglected hereafter to derive the �	d-dependent correction to
the free energy. Then, Eq. �55� accompanied by Eq. �53� is of
the same form as the random-force model, Eq. �50�, if

3T�	d��MF�4 /20 is identified with W̃. Hence, the resulting

disorder contribution to F̄sym is given by

F̄sym��	d� − F̄sym�0�
V

=
− 9TN�0���p��	d

25�	ABM�K1 + K2��0

pc

2�
. �56�

We are now at the stage of discussing stability of the
pairing states and the resulting phase diagram of superfluid
3He in globally isotropic aerogels. To perform the remaining
task, we need just the free-energy expressions, Eqs. �41� and
�56�, and information on the SC effects in each state �see
Appendix A and Ref. 19�. First, judging from the data of SC
parameters, there is no possibility that the ABM state is re-
placed by the robust phase.11 The contributions from the �	d
term to the free energy definitely show that this term favors
the anisotropic ABM and planar states. Although the disorder
effect on the SC parameters may suggest a small gain in the
condensation energy in the robust state, it is quite difficult to,
in the weak-disorder regime, find such a situation that the
robust state is realized due to an enhanced disorder. Rather, it
is more reasonable to examine the planar state as a candidate,
other than the ABM one, of the A-like phase. However, since

inevitably 	P�	ABM, F̄amp in the planar state is higher than
that of the ABM state. In addition to this, the planar state is

not favored even through F̄sym. As shown in Appendix C, the
gradient energy in Ssym of the planar state is 2.4 times bigger
than that of the ABM case. Since the expression for the pla-
nar state corresponding to Eq. �56� is also inversely propor-
tional to the magnitude of the gradient energy, the free-
energy gain in the planar state due to the random symmetry
variables is much smaller than that of the ABM state. By

taking account of these results on F̄ altogether, we conclude
that even the planar pairing state cannot become stable as the
A-like phase in the GL region in 3He in aerogels.

In Fig. 3, a typical example of pressure vs temperature
phase diagram we obtain is shown. There, Eqs. �41� and �56�
were used based on data of pressure dependences of EF and
Tc0. The disorder-induced reduction in PCP indicated as a
solid circle is a consequence of the large � value used here.
The parameter � was defined in Eq. �20� as a measure of the
strength of the local anisotropy in the scattering events. The
fact that the A-like phase is limited to such a narrow tem-
perature range is a combined effect of Tc reduction and the
SC effect19 shrinking with increasing disorder.

IV. QUASI-LONG-RANGE ORIENTATIONAL
ORDER IN A-LIKE PHASE

In Sec. III, a typical phase diagram following from evalu-
ation of free energy was shown in Fig. 3. However, it is
important to note that at the present stage, the transition
curves in the figure merely imply changes in the pairing
states. As noted in Sec. I, if the A-like phase of 3He in aero-
gel is in a disordered ABM pairing state, the genuine long-
range order of l orientation is absent in the A-like phase.8 It
is crucial to clarify whether such a three-dimensional �3D�
phase with no genuine long-range superfluid order may show
superfluidity �see Sec. I�. In this section, we address this
possibility at weak disorder where the singular topological
defects are not excited via the disorder. This issue is highly
nontrivial because in the globally isotropic case, the nonsin-
gular vortices38 or vortex-Skyrmions9 may appear as a result
of a disorder-induced l texture and, thus, may destroy super-
fluidity. It is shown below that a one-loop renormalization of
the gradient energy terms accompanying the functional RG
treatment39–41 yields only a stable fixed point at which the
vortex-Skyrmions are irrelevant. This implies that the A-like
phase at weak disorder may have quasi-long-range superfluid
order and superfluidity.

To examine long-distance behaviors of the symmetry vari-

ables of the disordered ABM pairing state, we examine F̄sym
again. For the sake of the ensuing analysis, however, the

18
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u
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FIG. 3. Example of calculated P-T phase diagrams obtained
based on the present free-energy analysis. The solid curves denote
the transition curves in the disordered case specified by the param-
eter values �2��Tc0�−1=0.058 for P=20 �bar� and �=21, while the
dashed ones are the corresponding bulk transition curves. The
hatched region indicates the A-like phase region. The Tc0�P� and
EF�P� data are taken from Table 4.1 of Ref. 15 and Table VI of Ref.
37, respectively, while the analysis on the SC correction entirely
follows the phenomenological method in Ref. 19.
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kinetic part of Sgrad expressed in the form of Eq. �37� will be
rewritten in the form

Sgrad − SFr =
1

2T
�

r
�
a=1

n ��0Mij
�a�ṽi

�a�ṽ j
�a� −

b2C2

�0�1 − A�
�L�a��2� ,

�57�

where 	r denotes 	d3r, and ṽ=v−bCL / ��0�1−A��. Next,
eliminating the longitudinal component of v, ṽ in Eq. �57� is
replaced by its transverse component 	d3r����� ���
� ṽ��� / �4��r−r���, and Eq. �57� can be replaced by

Sgrad − SFr =
�0

32�2T
�

r
�

r�
�

r1

�
a=1

n

�� � �� � ṽ�a��r���i

�Mij
�a��r1�w�r − r1�w�r� − r1�

���� � ��� � ṽ�a��r���� j

− �
r
�
a=1

n
b2C2

2T�0�1 − A�
�L�a��2�r� , �58�

where w�r�= �r�−1, and v� denotes v�r��. Further, using
�2w�r�=−4���3��r� and rewriting the terms in Eq. �58� con-
sisting only of ��L�a�, we obtain the following action of the
nonlocal gradient energy appropriate for the ensuing RG
analysis:

Sgrad = S̃Fr +
1

T̃
�

r
�

r�
w�r − r���

a=1

n ����a��r� · ��a��r�� −
�1

2
���a��r� · ��� � L�a��r��� + ��a��r�� · �� � L�a��r���

−
�1

2
���a��r� · ��� � ��� � l��a��� + ��a��r�� · �� � �� � l�a���� −

�2

2
div L�a��r�div� L�a��r���

− �
r1

�
a=1

n
li
�a��r1�l j

�a��r1�

2T̃
�

r�
�

r
†����a��r� � ��i���a��r�� � ��� j − �1„��� � L�a��r�� � ��i���a��r�� � ��� j

+ ���� � L�a��r��� � ���i���a��r� � �� j… + �2 div L�a��r��i div� L�a��r��� j�‡w�r − r1�w�r� − r1� , �59�

where

�i�r� = �� � v�r��i = ijkl · �� jl � �kl� �60�

is the Mermin-Ho relation38 in the ABM state, ijk is the
antisymmetric tensor, and the redefinition of the Frank en-
ergy term as

SFr +
A

2T
� b2C2

�0�1 − A�2 − �0��
r
�
a=1

n

�L�a��2

� S̃Fr

=
1

2T̃
�

r
�
a=1

n

���l�
�a���l�

�a� + �2�div l�a��2 + �3��l�a� · ��l�a��2�

�61�

has been done. Further, the relations ��l���l�= �div l�2+L2

+ ��l ·��l�2 and l2=1 were used. Note that the coefficient Kt
of the twist deformation term was absorbed into T to define

T̃. The �̄1 term, which is absent in the bare action, has been
included because it is generated via renormalization. The
bare values of the seven coefficients except �̄1 in Eq. �59� are
positive, although their detailed expressions are not neces-
sary in our analysis given below. In fact, it will be assumed
that, through the dipole energy term, the d-vector d� �see Eq.
�26�� is locked into l at large scales of interest so that the

gradient term on d� may be absorbed into the Frank energy.
Nevertheless, we have the stability conditions

�2 + 1 � 0, �3 + 1 � 0. �62�

The goal in this section is to find an action at a stable
disorder-induced fixed point by examining the scaling of the
coefficients.

Following Ref. 39 in which a functional RG analysis was

performed for S̃Fr, let us focus on T̃→0 limit, in which ther-

mal fluctuation effects arising from higher-order terms in T̃
are neglected, and determine the form of Sgrad at the stable
fixed point. To perform this, the disorder energy term will be
generalized to

Sdis = −
1

T̃2
�

r
�

a,b=1

n

R�l�a��r� · l�b��r�� . �63�

In the functional RG analysis based on =4−d expansion, a
stable disorder-induced fixed point is determined by R�z� of
O�� in magnitude and the fixed-point values of the coeffi-
cients in Sgrad. To perform the one-loop renormalization of
Sgrad, the l vector with the momentum q of O�1� in magni-
tude will be expressed in terms of the “transverse” variables
� j in the momentum shell �e−l� �q��1� as42 l�r�
= l�r��1−� j=1,2���j��r��2+� j=1,2��j��r�e�j��r�, where e�j� · l̃
=e�1� ·e�2�=0, and the disorder function R�z� will be ex-
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panded in powers of ��j�. Further, when examining a renor-
malized Sgrad up to one loop order, the replica-index depen-
dences of l and e�j� may be neglected.39 Then, we only have
to examine the correction −��Sgrad�Sdis
 to Sgrad in T̃→0
limit, where �Sgrad is the second-order correction in ��j� to
Sgrad, and

�Sdis = −
1

T̃2
�

r̃
R�1��1��

a=1

n

�
j=1,2

����j���a��r̃��2, �64�

where R�1��1�=dR�z� /dz �z=1, and a term which vanishes in

n→0 limit was neglected.39

To illustrate the one-loop renormalization procedure, let
us first focus on the isotropic limit with A=b=0 in which the
original gradient energy is given by Eq. �54�. Alterna-
tively, one may start from S̃Fr+ �� / T̃�	r	r�w�r
−r���a��a��r� ·��a��r�� in place of Eq. �59�. For simplicity,
the replica index a and its summation will be omitted here-
after. By noting that the v · curl l term has no bulk contribu-
tion and, thus, is negligible, we find

�Sgrad
�iso� =

�

T̃
�

r
�

r�
w�r − r���−

3

2�
j

����j��2 + ����j����2�� · �� − 4�
j,k

��j���k�e�
�j���l�e�

�k��l � ��l��������

+ 4�
j,k

�����j�l · �e�j� � ��l� − ����j�l · �e�j� � ��l����� ���k���l� · ��e�k��� � ��l��� +
1

2T̃
�

r
�
j,k

†e�
�i���l�e�

�k���l� − ��l���l�� j,k

+ �2��l · ��l��l · ��l�e�
�j�e�

�k� − �div l�2� j,k� + �3��e�j� · ��l��e�k� · ��l� + e�
�j��l · ��l�e�

�k��l · ��l� − 2��l · ��l�2� j,k�‡��j���k�,

�65�

where the remaining terms harmonic in �,

�S̃Fr =
1

2T̃
�

r
�
j·k

„� j·k�����j��2 + �3��l · ����j��2�

+ �2��e�j� · ����j��e�k� · ����k��… , �66�

can be identified with the “noninteracting” action for the ��j�

fields.
In evaluating −��Sgrad�Sdis
, we encounter the following

expressions in the momentum shell:

I�r� = �
i,j,k
�

r̃
����i��r̃��2��j��r���k��r�
Ajk�r� ,

I�,��r� = �
i,j,k
�

r̃
�

r�
w�r − r����������

�i��r̃��2��j��r���k��r��


� Bjk�r;r� − r� . �67�

After the trivial integration in the momentum shell, we easily

obtain I= T̃2�iAii�r�J��2 ,�3��1−e−l�, where 1−e−l is the
thickness of the momentum shell. Here, the �2 and �3 depen-
dences of J arise from the dependence of the noninteracting
action, Eq. �66�, on these coefficients. In all terms in the
one-loop renormalization, however, the result of integration
in the momentum shell is expressed by the quantity J��2 ,�3�,
and its dependence on �2 and �3 is found not to affect the
resulting fixed points and the linear stability around them.
Thus, to simplify the ensuing expressions, the dependence
of J on �2 and �3 will be omitted hereafter.
Then, using �2w�r�=−4���3��r�, we find I�,��r�
=4�T̃2J0��,��iBii�r ;0��1−e−l� /3, where J0=J�0,0�.

Therefore, using the relations � je�
�j�e�

�j�=��,�− l�l� and
��e�j��−�e�

�j���l��l,39 we have

− ��Sgrad�Sdis
 = − �1 − e−l�
R�1��1�J0

T̃
�2��

r
�

r�
w�r − r��

��̄�r� · �̄�r�� − 16��1 −
1

d
��

r
��l���l�

+
1

2
�

r
��1 − �3���l���l� + 2�2�div l�2

+ �4�3 − �2���l · ��l�2�� . �68�

Taking account of the rescaling factor el�d−2� of T̃,43 we ob-
tain the following recursion equations:

d

dl
T̃−1 = T̃−1�2 −  − J0R�1��1��1 − �3 − �̂�� ,

d�2

dl
= − J0R�1��1��2�1 + �3 + �̂� ,

d�3

dl
= − J0R�1��1��3�3 − �2 + �3��3 + �̂�� ,

d�̂

dl
= − J0R�1��1��̂�1 + �3 + �̂� , �69�

where �̂=32���1−1 /d�. The first equation simply ensures
that within the present analysis, we stay in the parameter
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space at zero temperature with no thermal fluctuation. Under
the stability condition 1+�3�0, the two fixed points

�i� �2
� = �3

� = �̂� = 0,

�ii� �2
� = �3

�/2, �̂� = − 1 − �3
� � 0 �70�

are found. Case �i� expresses the nematic fixed point39 with
no vortex-Skyrmions which is easily shown through a linear
stability analysis to be a stable fixed point. On the other
hand, case �ii� expressing a fixed line has a negative value of
�̂. However, this negative value does not imply a prolifera-
tion of the vortex-Skyrmions induced by disorder because
this finite �̂� is independent of the recursion equation of the
disorder function R�z�. This physically unaccepted �̂ value
certainly indicates that this fixed line is an unphysical one. In
this way, within the model of the isotropic gradient energy,
the quasi-long-range order of the orbital orientation, con-
trolled by the nematic fixed point,39 is found to be stable
against the vortex-Skyrmions.

To verify whether the above result is affected by the “or-
bital anisotropy” leading to the finite A and b, the same
analysis as in the isotropic case will be applied to full action
�59�. Through lengthy but straightforward calculations, we
find that the one-loop recursion equations of the coefficients
in Eq. �59� are given by

dT̃−1

dl
= T̃−1�2 −  − J0R�1��1��1 − �3 − �̂ + �̂1 + �̂2 + 2�̂2�� ,

d�2

dl
= − J0R�1��1���2�1 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� − �̂1� ,

d�3

dl
= − J0R�1��1��3�3 − �2 + �3��3 + �̂ − �̂1 − �̂2 − 2�̂2� − 2�̂1

− �̂2 + 3�̂ − 8�̂1 − �̂2� ,

d�̂

dl
= − J0R�1��1���̂�1 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� + �̂� ,

d�̂1

dl
= − J0R�1��1���̂1�3 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� − 12�̂� ,

d�̂2

dl
= − J0R�1��1���̂2�5 + �3 + �̂ − �̂1 − �̂2 − 2�̂2�

+ �̂1 + 10�̂2� ,

d�̂̄1

dl
= − J0R�1��1���̂̄1�1 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� − �̂1 − 6�̂� ,

d�̂

dl
= − J0R�1��1��̂�4 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� ,

d�̂1

dl
= − J0R�1��1��̂1�4 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� ,

d�̂2

dl
= − J0R�1��1��̂2�8 + �3 + �̂ − �̂1 − �̂2 − 2�̂2� , �71�

where �̂1=32��1, �̂2=8��2 /d, �̂̄1=32��̄1, �̂=128�2��1
−1 /d�, �̂1=8�2�1�1−1 /d�, and �̂2=16�2�2 / �d�d+2��. This
set of equations has the following fixed points or lines:

�i� �2 = �3 = �̂ = �̂1 = �̂2 = �̂̄1 = �̂ = �̂1 = �̂2 = 0,

�ii� �3 + �̂ − �̂1 − �̂2 − 2�̂2 = − 8, �̂ = �̂1 = 0,

�iii� �3 + �̂ − �̂1 − �̂2 − 2�̂2 = − 5, �̂ = �̂1 = �̂2 = 0,

�iv� �3 + �̂ − �̂1 − �̂2 − 2�̂2 = − 4, �̂2 = 0. �72�

Among them, the resulting fixed-point values of �3 in cases
�ii� and �iii� are found not to satisfy the elastic stability con-
dition �Eq. �62��. In fact, we obtain �3=−104 /93 in case �ii�
and −5 /3 in case �iii�. Thus, these cases are unphysical. Fur-
ther, in case �iv�, we find that �̂ and �̂ are always negative
using the elastic stability condition �3+1�0. Thus, just as in
the similar situation in the isotropic approximation, this case
is also judged to be unphysical. In contrast, the linear stabil-
ity of nematic fixed point �i� is easily verified. Then, if work-
ing around this nematic fixed point, the analysis on the dis-
order function R�z� is the same as in Ref. 39 and will not be
repeated here. Therefore, we reach again the conclusion that

the only possible stable fixed point in T̃→0 limit is ex-
pressed as the nematic one with no vortex-Skyrmions. This
conclusion that the orbital anisotropy is irrelevant is quite
reasonable, judging from the fact that, even in the liquid-
crystal case,39 the fixed-point expression of the Frank energy
�i.e., with �2=�3=0� is the continuum version of the ferro-
magnetic Heisenberg spin model with no orbital anisotropy.
Further, the above result that at least at weak disorder, all
topological defects can be irrelevant at long distances im-
plies that the superfluid rigidity defined from the current-
current correlation function remains finite because pure
Goldstone modes play no roles in destroying superfluidity.

V. SUMMARY AND DISCUSSION

In this paper, we have shown through calculation of free
energy that in the GL region outside the critical region, the
disordered ABM state is lower in free energy than other can-
didates of an equal-spin pairing state detected as the A-like
phase in superfluid 3He in aerogel. The local anisotropy
characteristic of the aerogel structure plays essential roles in
reaching this conclusion because an anisotropy favors more
anisotropic pairing states. If the scattering events are fully
isotropic, a much stronger disorder is needed for another
ESP state to be realized, although then Tc itself would be
extremely lowered or vanish. The absence or presence of the
genuine long-range superfluid order is not essential to a pos-
sible change of pairing states. In a situation with a long-
range order destroyed over some temperature range due to
the thermal fluctuation, the entropic term lowers the free en-
ergy of some locally ordered state. The vortex liquid regime
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in the superconducting vortex phase diagram41,44 is its typi-
cal example. Similarly, even in the present case where a
static randomness destroys a long-range order, a free-energy
gain from the random-field term overcomes a cost of the
elastic �gradient� energy.3,9,34

In the present work, we have given one possible scenario
of the globally isotropic disordered ABM state with a finite
superfluid density:10 the A-like phase is an elastic glass41 and
is in the ABM pairing state with superfluidity as well as in
3He in aerogels with a uniaxially stretched anisotropy over
large scales.9,12 An alternative scenario will be the case in
which disorder-induced topological defects including the
vortex-Skyrmions are pinned by the disorder itself at time
scales seen in real experiments. In this case, a nonvanishing
superfluid response may be observed. At present, however, it
is unclear whether these scenarios assuming globally isotro-
pic samples are relevant to real systems or not. In our opin-
ion, for further development of the present subject, it is nec-
essary for experimentalists to clarify whether globally
isotropic aerogel samples are truly available among those
used in experiments.
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APPENDIX A

In Ref. 19, the SC corrections, �	 j
�SC� and �	̃ j

�SC�, to the
GL-quartic parameters 	 j were examined in detail. Based on
the results obtained there, we list here the estimated pressure
dependence of 	N �N=BW, ABM, P, and R� in Table I.

The data in Table I show that with increasing disorder, the
SC correction in the ABM case is weakened more remark-
ably compared with those of other pairing states, leading to a
rapid narrowing of the temperature range of the A-like phase
�see Fig. 3�. Nevertheless, this effect is not quantitatively
substantial at all and does not lead to replacement of the
ABM state with other one including the planar or robust
state.

APPENDIX B

In this appendix, derivation of the free energy of the con-
tinuum version of the random Ising spin model

SIsing =� d3r�
a,b
��a,b� �0

2
���a��2 +

1

2
����a��2 +

g

4
���a��4�

−
u

4
���a���b��2� �B1�

will be reviewed based on Ref. 28. The analysis proceeds as
follows. First, we divide � into its mean field, which is
��
MF in T�Tc and zero in T�Tc, and a fluctuation ���a�.
Next, the fluctuation part in SIsing is assumed to be well ap-
proximated by the trial action

Sg =
V

2
�

p
�
a,b

Gab
−1�p���a�− p���b�p� . �B2�

Then, when calculated according to Eq. �29�, the free energy
is well approximated by

F

V
=

1

2n
�

p
tr ln�G−1�p�� +

T

nV
��SIsing − Sg�
g �B3�

with taking n→0 limit at the end, where V is the volume,
and tr denotes here the trace over the replica indices. Finally,
F is calculated in terms of the solution of the saddle-point
equations

�F

�Gaa�p�
= 0, �B4�

�F

�Gab�p�
�a � b� = 0, �B5�

�F

���
MF
= 0. �B6�

The replica-symmetry breaking, which may not be negligible
in the critical region,45 will not be considered for Gab. Then,
we have

Gab = Gc�p��a,b + ��Gc�p��2, �B7�

where

Gc�p� =
1

� + p2 . �B8�

The “mass” � of fluctuation �� will be determined through
Eq. �B4�. The parameter � is related to the glass order pa-
rameter, which is, by definition,24 nonvanishing below Tc,
and is determined by Eq. �B5�, while the average value
��
MF follows from Eq. �B6�. Further, we focus only on the
region outside the critical region in which

� 3g

2�
�2

� ��� � 1 �B9�

and assume u�g�1. The latter relation is safely satisfied in
superfluid 3He at weak static disorder. Then, � simply be-

TABLE I. 	N /	0�T� value at T=Tc0 of each pairing state for
1 / �2�Tc0��=0 �upper half� and 0.065 �lower half�.

P
�bar� BW ABM P �planar� R �robust�

24 1.243 1.245 1.445 1.630

28 1.220 1.192 1.414 1.596

34.4 1.210 1.155 1.399 1.578

24 1.267 1.278 1.473 1.654

28 1.244 1.227 1.443 1.621

34.4 1.233 1.190 1.428 1.603
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comes 2u���
MF�2, and the free-energy density f is expressed
in the form

f = −
1

2
�ln Gc�p�� +

1

2
��0 − ���Gc�p�� +

1

4
�3g − 2u��Gc�2

−
�

4
���
MF�2 +

g

4
���
MF�4, �B10�

where �F(Gc�p�)�=	pF(Gc�p�). Below, � will be denoted as
�p �� f� in T�Tc �T�Tc�. The free-energy density fp in T
�Tc simply becomes

fp = −
�p

3/2

12�
+

pc

4�2�p −
1

4
�3g − 2u��Gc�2 + fc �B11�

except for a constant fc depending only on a momentum
cutoff pc, where �p=�0+ �3g−2u�pc / �2�2�. The first term of
fp is the ordinary Gaussian fluctuation term leading to the
singular behavior ��T−Tc�−1/2 of the specific heat. Under
condition �B9�, this �p

3/2 term may be neglected together with
the corresponding one in f f given below. The free-energy
density f f below Tc is f��=� f� and takes the form

f f � −
� f

3/2

12�
+

pc

4�2� f −
3

4
� f�Gc� −

1

4
�3g − 2u��Gc�2

−
� f

4
���
MF�2 +

g

4
���
MF�4 + fc

= −
� f

2

16g
−

pc

8�2� f −
1

4
�3g − 2u��Gc�2 + fc, �B12�

where

� f = 2�− �0 − �3g − 2u��Gc�� , �B13�

and

���
MF�2 =
� f

2g
. �B14�

Although the present analysis takes account of fluctuation
effects, the critical region is neglected. Nevertheless, expres-
sions �B11� and �B12� ensure a continuous transition at Tc
defined by �p=0=−� f /2.

APPENDIX C

In this appendix, we explain why the planar state is not
realized in the GL region. To do this, let us first examine the
gradient energy in the planar state. The symmetry variable
a�,i of the planar pair field is expressed as

a�,i =
1
�2

R�,k�k,i
T ei�, �C1�

where �i,j
T =�i,j − lil j, and R�,i is the real rotation matrix ex-

pressing the BW state. Below, this l vector expressing the
local anisotropy axis in the planar state will be represented in
terms of the same Euler angles as those in the ABM state
�see Eq. �52��. After substituting Eq. �C1� into gradient en-
ergy �36�, any term unaccompanied by ��i,k

T can be neglected
in the present harmonic approximation because the disorder
term in Ssym depends only on the Euler angle �l expressing l.
Although a close examination is necessary for a cross term
such as R�,k��R�,m��l,j

T ��k,i
T , this term is found to depend

only on the Euler angle �l in the present harmonic approxi-
mation. Then, the gradient energy related to the disorder term
is simply

+
��MF�2

4
� d3r�K2�i�k,j

T �i�k,j
T + 2K1�i�k,i

T � j�k,j
T �

= ��MF�2
K1 + K2

2
� d3r��div l�2 + ��l · ��l�2

+
K2

K1 + K2
�l · curl l�2� . �C2�

By applying the present harmonic approximation to Eq. �C2�
again, the resulting harmonic elastic energy is found to be
2.4 times bigger than the corresponding one, Eq. �55�, for the
ABM case. It means that the free-energy gain due to the
quenched disorder in the planar state is smaller than Eq. �56�
in magnitude. Further, since 	P�	A, the planar state cannot
become stable through Famp �see Sec. III�. Therefore, no pos-
sibility of realizing the planar pairing state due to the impu-
rity disorder is expected anywhere in the phase diagram at
least in GL theory.
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