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The dynamical mean-field-like theory of the electron spin resonance (ESR) in spin-1/2 chains with nearest
and next-nearest neighbor interactions (or zigzag spin ladders) and alternation is developed. It is explained that
either the magnetic anisotropy of spin-spin couplings or the Dzyaloshinskii-Moriya interaction causes shifts of
the resonance position in spin chains, comparing to only magnetically isotropic interactions. The power of the
ac ESR field, absorbed by the spin chain, is calculated. It is shown that the temperature dependence of the shift
of the resonance position is related to the temperature dependence of the ESR absorption. Depending on the
strength of next-nearest neighbor interactions, the shift of the ESR position can become either exponentially
small or can be increased near quantum critical points. The absorbed by the alternating spin chain power of the
ac magnetic field is calculated, manifesting two resonances. The influence of mentioned spin-spin interactions

on the linewidth of the ESR is analyzed.
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I. INTRODUCTION

The electron spin resonance (ESR) serves as a very good
method to investigate the spin dynamics of many systems. In
ESR experiments a dc magnetic field is applied to the inves-
tigated system, and one measures the absorption of an ac
magnetic field, usually polarized perpendicular to the dc field
direction. The theory of the ESR is well developed for the
situation in which spins of electrons are weakly coupled to
each other: the electron paramagnetic resonance (EPR).! On
the other hand, the situation becomes also relatively simple,
if spin-spin interactions are strong enough to form a mag-
netic long-range order. In that case the magnetic order pa-
rameter is the same for all magnetic sites. The low-
temperature behavior of ordered magnets can be described in
the quasiclassical approximation, i.e., ordered spins are re-
placed with classical vectors of the order parameter with
small inhomogeneous deviations from their steady-state or-
dered configurations, called magnons (or spin waves). Theo-
ries explore this fact, calculating the magnon response to the
dc field in the ferro- or antiferromagnetic ESR, called ferro-
or antiferromagnetic resonance (FMR or AFMR).> The ESR
response in magnetic insulators is usually related to the ho-
mogeneous situation; hence, as a rule, only magnons with
zero quasimomentum form the FMR or AFMR.

The situation becomes much more complicated in low-
dimensional spin systems. Here, on one hand, spins are
strongly interacting with each other. On the other hand,
quantum and thermal fluctuations are enhanced in low-
dimensional systems. Those fluctuations usually destroy the
long-range magnetic ordering in two- and one-dimensional
(ID) systems (except of the ground state, where the ordering
is possible).3 Thus, when describing low-dimensional spin
systems, one has to take into account strong enough short-
range correlations, while the absence of the long-range order
does not permit theorists to use advantages of the quasiclas-
sical approach. The theory of low-dimensional spin systems
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becomes even more complicated, if one takes into account
possible quantum phase transitions there. Those quantum
critical points strongly affect the behavior of thermodynamic
and other characteristics of spin chains, including ESR.
However, during the last decade the number of ESR experi-
ments on low-dimensional magnetic systems increased
considerably.*

The goal of the present work is to present a relatively
simple theory of the ESR in quantum spin-1/2 chains with
quantum critical points caused by intrachain nearest neighbor
(NN) and next-nearest neighbor (NNN) interactions and al-
ternation in spin chains.

II. ESR IN SPIN SYSTEMS WITH MAGNETICALLY
ISOTROPIC INTERACTIONS

Let us consider a spin system, in which interactions be-
tween spins do not form a magnetically ordered state at non-
zero temperatures, in a dc magnetic field, and a circular po-
larized perpendicular to the dc one ac magnetic field. The
Hamiltonian of the system can be written as

H=H+H,—H, Si— hY, [cos(w?)S), — sin(w?)S) ],

n

(1)

where S, are the operators of the projections of a spin-1/2,
situated at the site n, H is the value of the dc magnetic field
(we use the units, in which the Bohr magneton and the g
factor are equal to 1), & and w are the magnitude and the
frequency of the ac magnetic field, H;, is the part of the
Hamiltonian, which describes isotropic exchange interac-
tions, and H,, describes magnetically anisotropic interac-
tions. The power of the ac field, absorbed by the system per
spin, can be written as
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_‘9<H>z hw
T Nt

E [sin(wr)(S*) + cos(wr)($2)],  (2)

where the subscript # implies time averaging, N is the total
number of spins, and angular brackets denote averaging with
the density matrix of the system (or with the ground-state
wave function for 7=0). Using the unitary transformation we
can remove the explicit time dependence from the Hamil-
tonian (transferring it into the time dependence of the of the
density matrix, or the ground-state wave function). Similar
situation appears if the magnetic field H is directed exactly
along the axis of the uniaxial magnetic anisotropy: one can
remove the explicit time dependence from the Hamiltonian
with the help of the unitary transformation. Observe that if
the polarization of the ac field is not circular, one can drop
the other (nonresonance) proportional to & terms, present in
the Hamiltonian, after the unitary transformation, because h
<H, ho in standard ESR experiments. After such a trans-
formation the effective Hamiltonian gets the form

H=H+Hep— (H-fiw) 2 S —h2, Sk, (3)
and the absorbed power can be written as

=—2(S). (4)

n

Consider first the situation, in which all magnetically aniso-
tropic terms are absent in the system, H,,=0. Then, it is easy
to see that all projections of the total spin of the system,
S§¥¥2=(1/N)Z,S;"* commute with H;.. Now it is a simple
task to calculate the absorbed power Q. The “quantum Bolt-
zmann” equations,> which describe the dynamics of the sys-
tem, are

iﬁ[ ASH +
ot

(S ss>] =25 (s,

iﬁ{@ + 9(S5%) —55)} = = (H-ho)(S") F I(S),

ot
(5)

where S* =5+ iS", y is the relaxation rate (the damping can
be connected with, e.g., the spin-lattice relaxation), and Sé’t
are the average values of the spin projections to which relax-
ation tends. These quantum Boltzmann equations are ob-
tained in the standard way: we write Heisenberg equations of

motion with the Hamiltonian H for the operators S“* and
average them with the density matrix of the system (or with
the ground-state wave function); then the relaxation is in-
cluded phenomenologically in a simplest form.5

In the stationary limit > v~!, where one can neglect the
terms in Eq. (5) with time derivatives, we obtain

_ holihS; - (H - fiw)Sy + i ySy]
(H-hw)*+h*+ (hy)?

(6)

Usually h<<hw, H in the ESR experiments; hence, one can
neglect the term K2 in the denominator, i.e., to use the linear-
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response theory. Then, in the resonance, with 7y being small,
in the stationary limit the main contribution comes, naturally,
from the first term in square brackets. Therefore usually only
this term is taken into account (i.e., one can neglect terms
with S and Sp). One can see from Eq. (6) that the absorbed
power of the ac field in the limit of #y— 0 is proportional to
a O function 8(H-#fw), i.e., the linewidth of the ESR re-
sponse is zero in this limit and the position of the resonance
line is determined by the bare value of the dc magnetic field.
In the case of, e.g., the linear polarization of the ac field, i.e.,
h cos(wr)Z,S), a resonance-antiresonance situation is pos-
sible with Aw= = H, usual for the ESR case. However, we
shall consider only the resonance with Aw=H in detail in
what follows.

The strength of the absorption is determined by the value
of S§. If, as usual for ESR, h<H, fw, it is natural to sup-
pose that S;,=Sp(S*p(H,T)), where p(H,T) is the density ma-
trix with Hamiltonian (1) taken at 2=0. In many cases (at
least for spin systems with antiferromagnetic interactions,
i.e., in the absence of the spontaneous magnetization, and for
weak enough dc field values for H<H,, where H, is the
value of the dc field at the quantum phase transition to the
spin-polarized phase in the ground state, at which S5=1/2)
Sg can be approximated by S§= x(H,T)H, where x(H,T) is
the static magnetic susceptlblhty of the system for 4=0 (in
the magnetically isotropic case the susceptibility is, naturally,
the same for any direction of the dc field).

In the framework of the linear response’ theorists usually
present the expression for the absorbed power as Q
=h’wx! (w,q=0)/2, where X/ (w,q) is the imaginary part
of the dynamical magnetic susceptibility taken at the wave
vector q=0 (because usually the wavelength of the ac field is
larger than the size of a sample in the ESR experiments) and
a 1 z is the direction of the polarization of the ac field. The
dynamical magnetic susceptibility is calculated using spin-
spin correlation functions of the problem.

III. ESR IN SPIN CHAINS WITH AN UNIAXIAL
MAGNETIC ANISOTROPY

In what follows we will study the general case, where
Ha#0, i.e., one has magnetically anisotropic terms in the
Hamiltonian. Notice that if the magnetic anisotropy is along
the x direction, then A%w?x” (0, w)=H2X;fy(0, w) [or, if there
is an angle ¢ between the axis x and a, one has

72w’X! (0, 0)=(H? cos® ¢p+h*w? sin® d)))(" (0,w)]. How-
ever, from now on we study the case, in Wthh the distin-
guished by the magnetic anisotropy direction coincides with
the direction of the dc magnetic field, i.e., the magnetic an-
isotropy is along the z direction. For the system with such a
magnetic anisotropy, presented in the simplest form, the
Hamiltonian can be presented as

2A19Sn n+5’ (7)

where A s are the magnetic anisotropy constants (for spin-1/2
systems we, naturally, have only interion magnetic aniso-
tropy; the single-ion one is absent). The anisotropy can be
caused, e.g., by magnetic dipole-dipole interactions. & deter-
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mines the range of interion interactions. The situation differs
drastically from the above. Writing Heisenberg equations of
motion for the operators of spin projections, we immediately
see that other operators such as *A 4S%_sS-+S5°, ) appear
in the equations of motion. The simplest possibility to take
into account those terms is to use the dynamical mean-field-
like approximation (we limit ourselves with the only one
value of As=A for some fixed &, e.g., for NN interactions
S=*1)

ih[ a(:;) + 'y(Si):| = * (H-tho+ ZASHNST) F (S,

t

iﬁ{ azﬁ +Y(59) = S ] = §(<S+> R

where Z is the coordination number (Z=2 for the spin chain
with NN interactions, where 6= % 1). In the linear-response
limit, h<H, fiw, one can write the answer for the power of
the ac field absorbed by the system in this case as

_ hwhyS;
 (H+ZAS, - hw)* + (hy)?

0 9)

Notice that (§%) is determined from the self-consistency-like
equation
h?(S%)

(59 =5= (H+ ZA(SS) — hw)? + (hy)* (10)

It is clear that the difference between (S%) and Sj is propor-
tional to the square of the (small) magnitude of the ac field.
Therefore, in the linear-response theory we can use the ap-
proximation ($%) = S§ [cf. Eq. (9)]. It turns out that the dy-
namical mean-field-like approximation does not take into ac-
count, naturally, possible bound states, which contribute to
the characteristics of quantum spin chains.? The result for Q
implies that in this approximation the position of the ESR is
shifted, with respect to the one of the isotropic case, by the
value of the effective anisotropy field Aiw=H+ZAS;. Some-
times this shift of the resonance position is written as the
effective g factor, i.e., in our case g.;=go[1+(ZAS;/ upH)],
where g is the g factor of noninteracting spins and up is the
Bohr magneton. It turns out that the temperature dependence
of the shift of the resonance position approximately coin-
cides with the temperature dependence of the absorbed ac
power. On the other hand, the linewidth of the signal is not
affected by the magnetic anisotropy in this approximation
explicitly. Notice that we have not used yet the one dimen-
sionality of the considered problem, and the above result is
valid (in the framework of the used approximations, natu-
rally) for a uniaxial spin system of any dimension. For many
cases (at least for antiferromagnetic exchange interactions at
weak dc fields H<H,) the last formula can be rewritten as
fiw=H[1+ZAx..(H,T)]. One can see that the shift of the
resonance position in this case is determined by the constant
of the magnetic anisotropy and the static magnetic suscepti-
bility of the system in the direction of the dc field. We stress
again that our theory implies similar temperature dependence
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of the shift of the ESR position and the absorbed ac field
power [cf. Eq. (9)].

In the case of the spin-1/2 Heisenberg antiferromagnetic
chain with the easy-plane magnetic anisotropy of NN inter-
actions, A > 1, the magnetic susceptibility is known exactly
for small values of H (Refs. 3 and 8) and, therefore, this shift
of the resonance position of the ESR can be approximated at
low temperatures and small values of the dc field as

2
—{K(J,A,H) +f (J,A)[—’TT ]
wu(J,AH) v(J,A,H)

4K(J.A,H)—4
+f2(J,A)L(JW—ATHJ +H (11)

where J is the constant of the antiferromagnetic NN intrac-
hain exchange interaction, v(J,A,H) is the velocity of low-
energy _excitations [at H=0 it can be written as v
=JmVA(2J-A)/2 cos”(J-A)], K(J,A,H) is the dressed
charge’ (for H=0 it can be written as K=/[m—cos™'(J
—-A)]), and f,,(J,A) are functions of the anisotropy
parameter.® For the easy-axis anisotropy, on the other hand,
low-lying excitations of an antiferromagnetic chain have a
spin gap and, therefore, the magnetic susceptibility is expo-
nentially small for values of the dc field smaller than the
critical one H, (determined by the gap value). For the case of
very small anisotropy |A|<J, as usual for transition-metal
compounds, we can write the formula for the shift of the
resonance position as

ﬁw:H{1+

|A| 1 2L (nL£)*-InL+3/4
ho=H[1+—(1+—- 5+ 3
m 2L 4(L) 8(L)
372
+ \7712 +>} (12)

where v=mJ/2 and L=In[\7 exp(y+1/4)J/\2T] with the
Euler constant y. This result, which can be used at any sign
of A, is very similar in the main approximation in |A| (how-
ever, it differs in the next logarithmic corrections) to the one
of the bosonization® and conformal field theory'® approxima-
tions (where the shift is proportional to |A|/v) and to the
Nagata-Tazuki!! based theory,'? which uses the Bethe ansatz
results [where the shift is proportional to (|A|/J)[S5dJ]. No-
tice different temperature dependencies of the shift of the
resonance position of the present theory compared with the
previous ones.>!'%!2 For larger values of H the magnetization
of the antiferromagnetic Heisenberg chain is almost linear in
H, and for H> H, where H,=J+A, the magnetization is al-
most H independent at low enough temperatures.

IV. FEATURES OF THE ESR IN SPIN CHAINS WITH
NEAREST AND NEXT-NEAREST NEIGHBOR
INTERACTIONS

Now, let us study the ESR response of a spin-1/2 chain
with NN and NNN interactions (or, in other words, in a
zigzag spin ladder). According to the above, isotropic NN
and NNN interactions do not change equations of motion,
but they change the dependence of the average value of mag-
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FIG. 1. (Color online) Temperature dependencies of normalized
effective g factors for weakly anisotropic spin-1/2 chains for H
<H,. Upper curve (down-oriented blue triangles): the case with
only antiferromagnetic NN interactions, J=1. Lower curve (up-
oriented green triangles): the case with ferromagnetic NN interac-
tions J=-1 and antiferromagnetic NNN interactions Jy=0.29.
Lines are guides for the eyes.

netization, S, on the temperature, dc magnetic field, and
interaction constants. Hence, in the equations of motion one
needs to take into account the magnetically anisotropic NNN
couplings as Hynnan=—ANZ,5.55,,, 1.e., we take into ac-
count the first and the second terms with different constants
of the anisotropy in Eq. (7). In the mean-field-like approxi-
mation such a consideration yields the previous answer for
the ESR absorbed power [Eq. (9)] with the replacement A
—A+Ay. It formally seems that the result for ESR is not
very much affected by the NNN interactions. It is not true:
the ESR response can be drastically changed due to NNN
interactions. For example, it is known that for J,>0.24...J
(Jy is the constant of the isotropic exchange NNN interac-
tion) for both antiferromagnetic NN and NNN couplings,
low-lying excitations of such a spin-1/2 chain have a gap.'3
Hence, according to our theory, S§ and, therefore, the ESR
shift and the absorbed power have to be exponentially small
for the values of the dc field H smaller than H,, at which the
gap is closed. On the other hand, for several spin-1/2 chains
with NN and NNN interactions the solution is known
exactly." In some of those models there exists a quantum
phase transition to the incommensurate phase with gapless
excitations, and such a situation seems to be generic for
chains with competing NNN and NN spin-spin couplings.
The quantum phase transition exists for NNN antiferromag-
netic interactions with both ferro- and antiferromagnetic NN
ones and often for both easy-axis and easy-plane magnetic
anisotropies.'*!> It was shown!#!° that in this case the veloc-
ity of low-lying excitations v becomes smaller, v—uv[l
—|a/a,|], where « is determined by the ratio of J, and J and
a, is the value at the quantum critical point. It follows from
our theory that for « close to the critical value the shift of the
ESR position has to be much stronger than for the situation
for @ being far from the «, value. In Fig. 1 we present the
temperature dependencies for normalized effective g factors
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of the spin-1/2 chain with antiferromagnetic NN interactions
and the chain with ferromagnetic NN interactions and anti-
ferromagnetic NNN interactions near a quantum critical
point. Calculations were performed using exact diagonaliza-
tion for a weakly anisotropic spin-1/2 chain with 14 spins.
One can see the drastic difference in the behaviors of effec-
tive g factors. ESR experiments on frustrated spin-1/2 quasi-
one-dimensional systems'”'® In,VOs and Li,ZrCuO, reveal
the qualitative features of their behavior similar to our theo-
retical results. Namely, due to the possible presence of quan-
tum critical points, caused by NNN spin-frustrating interac-
tions (see, e.g., Ref. 15), the special temperature behavior of
effective g factors (shifts of the ESR positions) were ob-
served in those compounds. Observed temperature behavior
of the ESR shifts was too strong to be explained using the
standard theory of the ESR in spin chains with only NN
interactions (cf. Fig. 1). Notice, that ESR experiments'”!8
were made on oriented polycrystals, where one has to aver-
age the response over directions of the magnetic anisotropy
of each domain of the polycrystal. In Li,ZrCuO, additional
doubling of effective g factors takes place, probably via
Jahn-Teller-type effect due to shifts of surrounding ligands
(cf. Ref. 19).

V. ESR IN SPIN CHAINS WITH THE DIMERIZATION

Now let us consider the ESR response of the spin-1/2
chain (or zigzag spin ladder), in which the alternation of the
NN coupling constants takes place, i.e., each spin is coupled
to the NN ones with different exchange constants, J; and J,
(isotropic exchange), with the anisotropy parameters A, and
A,, respectively. The Hamiltonian can be written as

Hi=J, 2 Si 82, + 5> S2,81 51 +JIy > > SinSinets

i=1,2 n

— Z Z Z Z Z Z
Han - _AIE Sl,n 2.n _AZE S2,n 1,n+1 _AN E E Si,n in+l>
n n =12 n

(13)

where n enumerates elementary cells in the dimerized chain.
Each cell contains two magnetic centers (spins), labeled by
the index i=1,2. In this case the quantum Boltzmann equa-
tions, which describe the ESR dynamics, in the dynamical
mean-field-like approximation can be written as

S N . .
ih{% + y<s;2>} = * (H-fo)(Si,) + hSi,)
* (J; +Jz)<SZ1,2><S§,1>
T 24085 05T

T (I T+ A+ A)(S5 (ST,
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ih M + 7((5?,2> - S(z),l,Z)
Ii ;J 2((STHS) — (SNSTY).

(14)

h
=- §(<STz> —(S12) *

where <Szl”§) are average values of the projections of the spin
in each elementary cell, with the subscript 1 or 2 noting even
and odd spins. In these quantum Boltzmann equations we
took into account that the ESR usually considers the homo-
geneous response to the ac field. As above, we introduced the
relaxation y and values Sg | ,. The latter are the average val-
ues of operators of spin projections for even and odd spins,
to which the relaxation tends. They are determined by the
averaging with the density matrix determined by the Hamil-
tonian of the system for ~2=0.

We solve Eq. (14) in the linear-response regime, where
h<H, hw, as above, and the result for the absorbed ESR
power is

hwhy
=———— ——[F?+ (hy)?]R
Q 2[A2+(ﬁ’}/)232]{[ ( 7)] +
A +A,+2A
+[2(H—ﬁw)—R+%v}f}, (15)
where
Ri =S6’1 + Sé’z,
1 2
f= E(Al +A; —2ANRZ,
2J,+2J,+A,+A,-2A
FeH-taw— 22 2 1 2 N

2 v
B=2(H—ﬁa)) - (Jl +.]2 +A1 +A2)R+,

20+ 20+ A, +A,—2Ay
2

- (hy)*. (16)

It is interesting to point out that the dimerized antiferromag-
netic spin-1/2 chain in the ground state is in the spin-
polarized state for H> H, where H, can be written in our
approximation as H,=(2J,+2J,+A+A,-2Ay)/2, ie., F
=H-HR,—ho.Itis also worthwhile to mention that R . /2H
for a weak dc magnetic field can be related to the z compo-
nents of the homogeneous and staggered susceptibilities of
the alternating chain, respectively. It can be seen that the
denominator of Eq. (15) can be rewritten as [(H-x;—%w)?
+(hy)?[(H-x,-fiw)?+(hy)*]. It means that Eq. (15) de-
scribes two resonances. Two resonances reflect the fact that
the dimerization of the spin chain introduces two effective
magnetic centers in the problem and the ESR studies the
responses from the movement of both of them (two magnetic
moments oscillate as a total and one relative to other). Simi-
lar situation was observed, e.g., in CuGeOs (see Refs. 4 and

A:F[F'l'(]l +J2—2AN)R+]—f
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ho

H

FIG. 2. (Color online) The resonance frequency-field ESR phase
diagram for the resonance response of the spin-1/2 chain with al-
ternating antiferromagnetic NN interactions and small NNN inter-
actions; x;=2 and x,=1.

20). The resonance conditions can be written as hw1,2:|H
—X1 5|, where the shifts of the resonances x, , are

1
X12= 5{(J1 +J+ A +ADR, + [(J, +J, - 2A3)°R?

+ (A +A;=2A3) (2, +2J, - 2Ay + A, + A)R?]?.
(17)

Obviously, the shifts for resonance fields exist only for non-
zero magnetic anisotropy, according to the above. For R_
=0, we have H-x,—fhw=F, and H-x,—-fio=H-fhw—(A,
+A,+2A))/2, ie., Eq. (15) coincides for A;=A, with the
previous result for the homogeneous chain, as it must be.
Also, one can see that in the absence of the anisotropy A;
=A,=AN=0, Eq. (15) coincides with Eq. (6), as it must be
too.

If x,,>0, the resonance frequency first decreases with
the growth of the value of the dc field until H=x, ; and then
increases with H. On the other hand, for x,,<0, the reso-
nance frequency increases with the growth of the dc field
value. This is why, depending on the values of the NN and
NNN anisotropic interactions, the behavior of the resonance
shifts is different. For example, if (J;+J,+A;+A,)(Sj
+S8’2) >0, i.e., for antiferromagnetic NN interactions, and if
(A1+A2)S5 155, > AN (S5 )*+(55,)?], i.e., for small NNN in-
teractions, x; , >0 with x; >x, (see Fig. 2). Notice that the
difference between x; and x, is taken large in Figs. 2-5 for
illustration purpose. It is too large compared to known real
experimental situations. For (J;+J,+A;+A,)(S§ +55,) <0,
i.e., for the ferromagnetic NN interactions, and (A,
+A,)S5 155, > AN (S )7 +(S5,)?] (also small NNN cou-
plings), one has x; , <0 with |x;|<|x,| (see Fig. 3).

On the other hand, if (J;+J,+A;+A;)(SG,+S5,)>0
and (A +A2)S 1S5, <AN(SG.)2+(S5,)%], or for (J,+J,
+A1+A) (S5 +55,) <0, and  (A;+A4,)S5,55,<AM(S5)?
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54

ho

H

FIG. 3. (Color online) The same as in Fig. 2, but for the spin-1/2
chain with alternating ferromagnetic NN interactions and small
NNN interactions; x;=—1 and x,=-2.

+(Séy2)2], i.e., for large NNN interactions, one has x; >0 and
x, <0 with x; > |x,| for the antiferromagnetic NN couplings
and x,<|x,| for the ferromagnetic NN couplings, respec-
tively (see Figs. 4 and 5). In the case of Jy=Ay=0 we can
write the approximate values for R. for a quasi-one-
dimensional spin system with alternation of exchange con-
stants along chains, neglecting the renormalization of
dressed charges and velocities of low-energy excitations® as

R - 2 J Hy xdx sinh(H/T)
Tomly N -x)(3E-H?)  cosh(H/T) + cosh(x/T)’
4 5
34
2
3
e
14
0 T 1 T
0 1 2 3

H

FIG. 4. (Color online) The same as in Fig. 2, but for the spin-1/2
chain with alternating antiferromagnetic NN interactions and strong
NNN interactions; x;=2 and x,=—1.
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ho

H

FIG. 5. (Color online) The same as in Fig. 2, but for the spin-1/2
chain with alternating ferromagnetic NN interactions and strong
NNN interactions; x;=1 and x,=-2.

R _%fH-‘ xdx
- mly, \/(Hf—xz)(xz—Hf)

sinh(x/T)
cosh(H/T) + cosh(x/T)’

(18)

where H, is the value of the field, at which the gap for the
lowest-energy excitation of the dimerized spin chain is
closed. The result was obtained for the case of a strong in-
terchain antiferromagnetic coupling. Results of calculations
are presented in Figs. 6—8 for several values of the magnetic
field. Substituting Eq. (18) into Eq. (17) one obtains the mag-
netic field and temperature dependencies of the shifts of the
ESR positions for the quasi-one-dimensional spin-1/2 anti-
ferromagnetic system. One can see that at small values of the

1=

.

0.6 |

0.4

| T
| 2 4 6 ; 10

FIG. 6. (Color online) The temperature dependence of the
doubled magnetization and staggered magnetization, R, and R_
(lower red solid, and upper blue dashed-dotted lines, respectively),
which determine the absorption and the shifts of the resonance po-
sitions in the quasi-one-dimensional antiferromagnetic spin-1/2 sys-
tem with alternating intrachain NN interactions and strong inter-
chain coupling for H.=2 and H;=6; H=1.
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0.5

FIG. 7. (Color online) The same as in Fig. 6, but for H=4. The
upper blue dashed-dotted line describes R_(T) and the lower red
solid one is for R,(T).

dc field the main contribution to the temperature dependence
of the shift of the ESR position and absorbed power in the
quasi-one-dimensional system with alternation comes from
R_(T), while in the case of large dc field values the situation
is opposite. It implies different behavior with relative phase
shifts. For example, for small values of the dc field, H<H_,
according to Eq. (17) the shifts of the positions of two reso-
nances have to be almost equal in absolute values, x|
~|x,|, but different in signs, x;,=~ % (R_/2)[(A;+A,)(2],
+2J,+A,+A,)]"? at low temperatures, similar to what hap-
pens in AFMR in standard three-dimensional magnets.> No-
tice the principal difference between ESR in the dimerized
spin chains and AFMR. In three-dimensional ordered antifer-
romagnets, for temperatures lower than the Néel tempera-
ture, the order parameter (the vector of antiferromagnetism)
persists, while in the one-dimensional case any nonzero tem-
perature destroys the long-range magnetic order, and only
short-range correlations determine the ESR response there.
The resonance conditions for the case H<H, can be ap-
proximated via the function of the staggered susceptibility as
how=H [1 * Xzz (q= 7T,H, T)[(Al +A2)(2J1 +2J2+A1 +A2)]1/2.

1
0.8
0.6
0.4-

0.2 7

FIG. 8. (Color online) The same as in Fig. 6, but for H=7. The
upper red solid line describes R,(7T) and the lower blue dashed-
dotted one is for R_(T).
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However, at higher temperatures, both R, and R_ (or, in other
words, both staggered and homogeneous susceptibilities)
yield approximately similar contributions (cf. Fig. 6) and the
difference in the positions of the zero-field resonances be-
comes more pronounced. The difference between |x;| and |x,|
becomes more significant, if H. is relatively small. In the
general case of nonzero NNN interactions in the spin chain
with alternation it is impossible yet to get the expressions for
R . in the closed form. However, we expect similar to Figs.
6-8 dependencies of R-(T) and, therefore, all above conclu-
sions to be qualitatively similar for weak NNN interactions
too. For example, for isotropic antiferromagnetic intrachain
alternating NN and weak antiferromagnetic intrachain NNN
interactions, Eq. (18) is valid, with H,.=(1/2)|J,-J,| and
H,=(1/2)[J,+J,—(16Jy/ )] (cf. Ref. 21). Temperature and
magnetic field behaviors, similar to the ones presented in
Figs. 6-8, take place for R, and R_ in a single spin-1/2 chain
with alternation of NN exchange couplings and alternation of
effective g factors.?

Summarizing, for the alternating spin-1/2 chain the shifts
of the ESR positions are determined by the magnetic aniso-
tropy, exchange constants, and the components of the homo-
geneous and staggered magnetization (homogeneous and
staggered susceptibilities for small dc fields), parallel to the
direction of the dc field, unlike the situation with the homo-
geneous chain, where only the magnetic anisotropy and the
homogeneous magnetization (susceptibility for small dc
fields) determine the ESR shift. It is worthwhile to point out
that our analysis for the dimerized spin-1/2 chain with small
modifications (renotations) can be applied to the situation
with the two-leg spin-1/2 ladders, which should reveal simi-
lar ESR behavior.

VI. ESR IN SPIN CHAINS WITH DZYALOSHINSKII-
MORIYA INTERACTIONS

We can include in our analysis the Dzyaloshinskii-Moriya
(DM) interaction, with Dzyaloshinskii vectors directed along
the direction of the dc magnetic field. It is known that DM
interactions in spin chains can be of two kinds: homogeneous
and alternating (staggered). For the homogeneous case one
has to add to the Hamiltonian of the uniaxial spin chain the
term

Howmn =D (380, — SIS, ), (19)

where D is the constant of the DM coupling. The DM inter-
action produces effective easy-plane anisotropy,?” i.e., in this
case one has to replace A —A+(\VD?*+J%>=J|) in the kinetic
equations and the ESR absorption. On the other hand, in the
alternating case the additional part of the Hamiltonian of the
spin chain has the form

HDMa = DIE (S){,nS%,n - ¥,n )2(,11)
- DZE (S)Zc,ns)ly,n+1 - S%,n ){,;1+1)’ (20)

and one has to introduce the replacements A;,—A;,
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+\D7,+J; =/ 2], respectively,”® in the formulas for the
absorbed ESR power. Obviously, the alternation of the DM
interaction produces the dimerization of the spin chain and,
hence, two resonances in the ESR absorbed power, even in
the case of homogeneous NN exchange couplings J;=J,.
Clearly, shifts of the resonance positions can be caused by
only DM interactions, even in the absence of the uniaxial
magnetic anisotropy.

VII. DIFFERENT GEOMETRY OF THE ESR
IN SPIN CHAINS

If the direction of the dc field does not coincide with the
direction of the anisotropy (including the anisotropy in the
direction of the Dzyaloshinskii vector), in the framework of
the linear response, neglecting nonresonance terms, the cal-
culated shift of the resonance position has to be multiplied
by, e.g., the standard direction-dependent factor 1—3 cos® 6
(cf. Ref. 24), where 6 is the angle between the directions of
the dc field and the anisotropy axis. Nonresonance terms are
small, because h<<H, %iw and give smaller contributions to
the ESR response of the chain (notice that they can produce
additional resonance lines, though).

VIII. FEATURES OF THE ESR LINEWIDTH
IN SPIN CHAINS

Now, let us briefly consider how spin-spin interactions
affect the linewidth of the ESR in spin chains. Usually the
relaxation in spin systems contain a contribution from spin-
lattice (or spin-nuclear) interactions and from spin-spin inter-
actions. To estimate the value of the spin-spin relaxation con-
ventional theory of spin damping®2° implies 7%v,(q)
~[Tx(q)]™", where q is the quasimomentum (in our case we
need only q=0 for the homogeneous case and/or q=m for
the staggered magnetization appeared in the chain with alter-
nation). This implies Ay, ~2mv/T+-++ in a homogeneous
spin-1/2 chain with antiferromagnetic interactions and expo-
nentially large contributions at low temperatures for spin sys-
tems with gapped low-energy excitations, such as in the an-
tiferromagnetic chain with NN and NNN interactions for
Jy>0.24...J. However, experimental ESR studies of
quasi-1D spin systems often show different behavior of the
linewidth.

In the framework of the linear-response theory the shift of
the resonance position of the ESR can be considered as the
real part of the perturbation-caused correction to the real part
of the dynamical magnetic susceptibility.”! Kramers-Kronig
relations

Xﬂ(q, w) — }T’Pf do' X’(q, wrl) _ X(q,OO) (21)

w —w

establish the connection between the real part and the imagi-
nary part of the susceptibility. The latter, in turn, can be
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considered as the contribution from spin-spin interactions to
the linewidth of the ESR. Hence, the shift of the resonance
position and the linewidth are inter-related via the Kramers-
Kronig relations in the framework of the linear-response
theory. It implies the enhancement of the ESR linewidth
caused by the magnetically anisotropic spin-spin interactions
to be fiy,,~AT?/v?. Previous theories”!? imply a little dif-
ferent behavior, 7 y,,~A>T/v?. Notice that similar relations
with the replacement of A with necessary constants can be
used for the case of the homogeneous DM interactions and
the magnetic anisotropy of the NNN spin-spin interactions
(see above). We point out that the frustrating NNN interac-
tions produce the change v—uv[l-|a/a/|] (see above),
hence yielding near the quantum critical point larger ESR
linewidth, compared to the case of the absent NNN compet-
ing couplings. On the other hand, weak alternating interac-
tions produce %y, ~v(A,-A,)?/T* (see Ref. 10), i.e., the
growth of the ESR linewidth with the decrease in the
temperature.”’

IX. CONCLUDING REMARKS

In summary, a simple dynamical mean-field-like theory of
the electron spin resonance in spin-1/2 chains has been de-
veloped. It has been explained that either the magnetic an-
isotropy of spin-spin couplings or the Dzyaloshinskii-Moriya
interaction can be the reason for the shift of the resonance
position in spin chains, comparing to the case with only mag-
netically isotropic interactions (or, in the absence of interac-
tions). The power of the ac ESR field, absorbed by the spin
chain, has been calculated. It has been shown that the tem-
perature dependence of the shift of the resonance position is
related to the temperature dependence of the ESR absorption.
The role of competing (spin-frustrating) next-nearest neigh-
bor interactions in the spin chain (or zigzag ladder) has been
studied. It has been shown that depending on the strength of
NNN interactions, the shift of the ESR position can become
either exponentially small (due to the NNN-coupling-
induced spin gap) or can be increased (near NNN-governed
quantum critical point). The absorbed by the alternating spin
chain power of the ac magnetic field has been calculated. It
reveals two resonance lines caused by the oscillations of two
effective magnetic centers in the dimerized spin chain. The
influence of all mentioned spin-spin interactions on the line-
width of the ESR is briefly analyzed.
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