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Two methods for predicting phonon frequencies and relaxation times are presented. The first is based on
quasiharmonic and anharmonic lattice dynamics calculations, and the second is based on a combination of
quasiharmonic lattice dynamics calculations and molecular dynamics simulations. These phonon properties are
then used with the Boltzmann transport equation under the relaxation-time approximation to predict the lattice
thermal conductivity. The validity of the low-temperature assumptions made in the lattice dynamics framework
are assessed by comparing to thermal conductivities predicted by the Green-Kubo and direct molecular dy-
namics methods for a test system of Lennard-Jones argon. The predictions of all four methods are in agreement
at low temperature �20 K�. At temperatures of 40 K �half the Debye temperature of Lennard-Jones argon� and
below, the thermal-conductivity predictions from the two methods that use lattice dynamics calculations are
within about 30% of those made using the more accurate Green-Kubo and direct molecular dynamics methods.
The thermal-conductivity predictions using the lattice dynamics techniques become inaccurate at high tem-
perature �above 40 K� due to the approximations inherent in the lattice dynamics framework. We apply the
results to assess the validity of �i� the isotropic approximation in modeling thermal transport and �ii� the
common assertion that low-frequency phonons dominate thermal transport. Lastly, we suggest approximations
that can be made within the lattice dynamics framework that allow the thermal conductivity of Lennard-Jones
argon to be estimated using two orders of magnitude less computing effort than the Green-Kubo or direct
molecular dynamics methods.
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I. INTRODUCTION

The Fourier law,

q = − k � T , �1�

which describes the conductive heat transfer in a solid or a
quiescent fluid, states that the heat flux vector, q, is propor-
tional to the spatial gradient ��� of temperature, T. The pro-
portionality constant, k, is the thermal conductivity. The
thermal conductivity is, in general, a second-rank symmetric
tensor. Though formally defined by an empirical relation �Eq.
�1��, the thermal conductivity is related to the properties of
subcontinuum energy carriers. The energy carriers in solids
are electrons and phonons �i.e., lattice vibrations�. Electrons
are responsible for the majority of heat conduction in metals,
while phonons dominate in semiconductors and insulators
such as silicon, germanium, and silica-based materials. The
heat capacities, velocities, and scattering rates of these carri-
ers are required to predict thermal conductivity.1

The transport properties of electrons and phonons can be
modified by fabricating materials with nanoscale features.
For example, the thermal conductivities of thin films and
superlattices are lower than what is predicted from
continuum-based theories.2–6 It has also been found that the
thermal conductivity of a solid can be significantly lowered
through the addition of appropriately sized nanoparticles.7–9

The process of designing materials to have specific thermal
transport properties is hindered by the complex interactions
between the energy carriers and their environment. The de-
sign of materials with tailored thermal properties requires
tools that can �i� provide detailed information of subcon-

tinuum energy transport �e.g., mode-dependent phonon-
scattering rates� and �ii� accurately and efficiently predict
thermal conductivity.

In this paper, we present two numerical techniques for
predicting phonon properties and thermal conductivity: the
Boltzmann transport equation lattice dynamics �BTE-LD�
and Boltzmann transport equation molecular dynamics
�BTE-MD� methods. The BTE-LD method uses quasihar-
monic and anharmonic lattice dynamics �LD� calculations to
predict the phonon properties while the BTE-MD method
uses quasiharmonic LD calculations and molecular dynamics
�MD� simulations. These phonon properties are then related
to the lattice thermal conductivity through the Boltzmann
transport equation �BTE�. We asses the validity of the pre-
dictions by providing an in-depth analysis of the low-
temperature approximations made in these two methods and
by comparing to thermal-conductivity predictions made by
the Green-Kubo-MD �GK-MD� and direct-MD methods. The
four prediction methods considered here are only valid for
materials in which the thermal conductivity is phonon domi-
nated, as they account for energy transported by phonons but
not by electrons. In the remainder of this article, the term
“thermal conductivity” will be understood to mean thermal
conductivity due to phonon transport.

We implement the BTE-LD, BTE-MD, GK-MD, and
direct-MD methods to predict the thermal conductivity of
crystalline argon at temperatures ranging from 20 to 80 K at
10 K increments. Argon is an insulating face-centered cubic
crystal up to its experimentally observed melting temperature
of 84 K.10 We model the interactions between argon atoms
with the 12-6 Lennard-Jones �LJ� potential, which gives the
energy between a pair of atoms i and j as
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�ij�rij� = 4�LJ���LJ

rij
�12

− ��LJ

rij
�6� , �2�

where rij is the distance between the two atoms and the en-
ergy and length scales for argon are �LJ=1.67�10−21 J and
�LJ=3.40�10−10 m.11 Argon is chosen because it is an ex-
tensively studied material that can be modeled with a simple
interatomic potential.12–15 The methodologies presented
herein can also be applied to more complex, technologically
relevant insulators and semiconductors, provided that a suit-
able interatomic potential is available.

A description of the BTE is given in Sec. II, followed by
an overview of the quasiharmonic and anharmonic LD cal-
culation techniques in Sec. III. We discuss the BTE-LD and
BTE-MD methods in Sec. IV. We then compare the phonon
properties predicted by the two BTE-based methods and dis-
cuss the validity of the low-temperature approximations
made in the LD calculations. We present the results of our
thermal-conductivity predictions in Sec. V and identify
which phonon modes dominate thermal transport. We also
comment on the strengths and weaknesses of each method,
addressing computation time, accuracy, and scalability. A de-
scription of our implementation of the direct-MD method is
provided in the Appendix, while the details of the GK-MD
prediction method can be found elsewhere.14,16

II. BOLTZMANN TRANSPORT EQUATION

The BTE can be used to track the time evolution of the
positions and velocities of a system of particles �e.g.,
phonons, electrons�. For a system of phonons subjected to a
temperature gradient, the BTE for a specific phonon mode
takes the form17

vg · �T
� f t

�T
= � � f t

�t
�

coll
, �3�

where f t and vg are the phonon distribution function and
group-velocity vector and ��f t /�t�coll is the collision term.
The left-hand side of Eq. �3� describes a system of noninter-
acting phonons. On the right-hand side, the collision term
accounts for all possible mechanisms of phonon interaction
and is generally quite complex. The main challenge in work-
ing with the BTE is in specifying and evaluating an expres-
sion for the collision term.

The relaxation-time approximation is commonly used to
make the BTE tractable.17 In the relaxation-time approxima-
tion, the phonon distribution function and the collision term
are written as

f t = f + f�, �4�

and

� � f t

�t
�

coll
=

− f�

�
, �5�

where f is the Bose-Einstein equilibrium distribution func-
tion, f� is the fluctuation of the distribution function about
equilibrium, and � is the phonon relaxation time �i.e., the
phonon lifetime�. The equilibrium distribution function is

f =
1

ex − 1
, �6�

with x	�� /kBT, where � is the Planck constant divided by
2	, � is the phonon frequency, and kB is the Boltzmann
constant. The fluctuations are assumed to be independent of
temperature, allowing �f /�T to be substituted for �f t /�T in
Eq. �3�. Though only phonon-phonon scattering is consid-
ered in this study, phonons can also scatter with electrons,
system or grain boundaries, and crystal defects such as
impurities.18 The effect of multiple-scattering mechanisms is
commonly handled by defining an effective relaxation time
with the Matthiessen rule.17,18

The net heat flux due to phonon motion is11

q =
1

V


�






��vgf�, �7�

where V is the system volume and, together, the two summa-
tions run over all phonon modes, which are denoted by wave
vector, �, and dispersion branch, 
. Combining Eqs. �1� and
�7� with Eq. �3� under the relaxation-time approximation
yields an expression for the thermal-conductivity tensor,

k = 

�



v

cphvgvg� , �8�

where, for a harmonic oscillator, the volumetric phonon spe-
cific heat, cph, is

cph =
��

V

� f

�T
=

kBx2

V

ex

�ex − 1�2 . �9�

The thermal conductivity in the classical limit can be ob-
tained by using the classical expressions for the phonon dis-
tribution,

f �C� =
1

x
, �10�

and specific heat,

cph
�C� =

kB

V
, �11�

in place of the quantum expressions �Eqs. �6� and �9��.
The argon crystal and its thermal-conductivity tensor are

cubically symmetric. The diagonal elements of the thermal-
conductivity tensor are therefore equal so that the thermal
conductivity is a scalar and can be defined by

k = 

�






cphvg,x
2 � , �12�

where vg,x is the x component of the phonon group velocity
�i.e., along the �100� direction�. Equation �12� is used di-
rectly in the BTE-LD and BTE-MD methods �see Sec. IV� in
which the mode-dependent phonon properties �cph, vg,x, and
�� are obtained through LD calculations or a combination of
LD calculations and MD simulations.
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III. LATTICE DYNAMICS CALCULATIONS

A. Quasiharmonic lattice dynamics

Harmonic and quasiharmonic LD calculations can be used
to determine the natural frequencies of noninteracting vibra-
tions in a crystal lattice. These vibrational frequencies are the
phonon frequencies and lead to the phonon-dispersion rela-
tions and density of states. From these phonon frequencies
we can determine the phonon group velocities �vg=�� /���
and specific heats.

The harmonic LD method makes use of the harmonic ap-
proximation and is valid when the atomic motion is small
compared to the atomic spacing. In this approximation, the
crystal’s potential energy is expanded as a Taylor series
about the equilibrium atomic positions at zero temperature.
The series is then truncated after the second-order term, de-
coupling the phonon modes. Quasiharmonic LD extends har-
monic LD by expanding the potential energy about the aver-
age finite-temperature zero-pressure atomic positions.
Quasiharmonic LD captures the change in phonon frequen-
cies due to thermal expansion but anharmonic effects due to
atomic motion are still excluded.

For a crystal lattice containing N unit cells of n atoms, the
quasiharmonic frequencies can be found from the eigenvalue
equation

�2��



�e��



� = D���e��



� , �13�

where, for each � and 
, the eigenvalues, �2� �

 �, are the

squares of the quasiharmonic phonon frequencies with asso-

ciated eigenvector �mode shape� e� �

 �. The dynamical matrix,

D���, has dimension 3n�3n with elements defined by

D3�b−1�+�,3�b�−1�+�����

=
1

�mbmb�


l�

N

� �2�

�r��0

b
� � r��� l�

b�
��

o

�expi� · �r� l�

b�
� − r�0

b
��� , �14�

where b and � index over the atoms in the unit cell and
Cartesian coordinates, � is the crystal potential energy ��
= 1

2
i
 j�ij�rij� for a pair potential�, r� l
b � is the average posi-

tion vector for the bth atom in the lth unit cell with r�� l
b � its

� component, and m is the atomic mass �6.63�10−26 kg for
argon�. Details of the derivation of Eqs. �13� and �14� are
given elsewhere.19,20

B. Anharmonic lattice dynamics

In anharmonic LD, phonon interactions are reintroduced
as a perturbation to the quasiharmonic solution. Anharmonic
LD calculations can be used to find the mode-dependent fre-
quency shift, , and linewidth, �, from21,22

��



� =

�

16N



��,
�

N,3n



��,
�

N,3n ���� �� ��


 
� 
�
��2� f���


�
� + f���


�
� + 1������



� − ����


�
� − ����


�
��

p

−1

− ����



� + ����


�
�

+ ����


�
��

p

−1� + � f���


�
� − f���


�
�������



� + ����


�
� − ����


�
��

p

−1

− ����



� − ����


�
� + ����


�
��

p

−1��
−

�

8N



��,
�

N,3n




�

3n

��− � � 0


 
� 
�
���− �� �� 0


 
� 
�
��2f���


�
� + 1������


�
��

p

−1

+
�

8N



��,
�

N,3n

��� �� − � − ��


 
� 
 
�
��2f���


�
� + 1� , �15�

���



� =

	�

16N



��,
�

N,3n



��,
�

N,3n ���� �� ��


 
� 
�
��2� f���


�
� + f���


�
� + 1�������



� − ����


�
� − ����


�
��� + � f���


�
� − f���


�
��

�������



� + ����


�
� − ����


�
�� − �����



� − ����


�
� + ����


�
���� . �16�
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Equations �15� and �16� can be computed in the classical
limit by substituting f �C�−1 /2 �see Eq. �10�� in place of f .
The Cauchy principal value, ��p, and Dirac delta function,
���, are defined for a function g�x� by

�
a

b

�g�x��pdx = lim
�→0+

��
a

c−�

g�x�dx + �
c+�

b

g�x�dx� �17�

and

�
−�

�

g�x���x − a�dx = g�a� . �18�

The term ��
�1 �2 . . . �i


1 
2 . . . 
i
� contains the ith-order derivative of

the potential energy evaluated at the average atomic posi-
tions and is defined as

���1 �2 . . . �i


1 
2 . . . 
i
� = 


�1,b1

3,n



�2,b2,l2

3,n,N

¯ 

�1,bi,li

3,n,N

���1+�2+¯+�i�,K� �i�

�r�1
� 0

b1
� � r�2

� l2

b2
�¯ �r�i

� li

bi
��

o

�

ẽ��1 b1


1 �1
�ẽ��2 b2


2 �2
�¯ ẽ��i bi


i �i
�

�mb1
���1


1
�mb2

���2


2
�¯ mbi

���i


i
� exp�i�2 · r�l2

0
��¯ exp�i�i · r�li

0
�� , �19�

where

ẽ�� b


 �
� = e�� b


 �
�exp�i� · r�0

b
�� , �20�

with e� � b

 � � being the eigenvector component associated with

atom b and the � direction. The Kronecker delta,
���1+�2+¯+�i�,K

, is one if the sum of the wave vectors is a
reciprocal-lattice vector, K, and zero otherwise.

The frequency shift and linewidth are the second-order
anharmonic corrections to the quasiharmonic frequencies.
The corrections include contributions from three- and four-
phonon processes, which depend upon the third- and fourth-
order derivatives of the potential energy. The delta functions
impose energy conservation and can be interpreted as decay
channels whereby the phonon of interest splits into two
phonons ����� �


 �−�� ��

�

�−�� ��

�

��� or combines with another
phonon to produce a third ����� �


 ���� ��

�

���� ��

�

���. The
Kronecker delta enforces conservation of quasimomentum
up to a reciprocal-lattice vector. Phonon processes where K
=0 are normal processes while for Umklapp processes K
�0.

If the frequency shift and linewidth are small compared to
the quasiharmonic frequency, the time-dependent normal-
mode coordinate, Q� �


 �, can be written as23

Q��



� = Qo��



�exp− i����



� + ��



� − i���



��t� ,

�21�

where Qo� �

 � is a mode-dependent constant and t is time.

From Eq. �21�, it can be seen that � �

 � is the shift in the

quasiharmonic vibrational frequency while �� �

 � is a decay

rate. The anharmonic frequency, �A� �

 �, is

�A��



� = ���



� + ��



� , �22�

and the relaxation time is the mean lifetime of the squared
normal-mode coordinate23 �see Eq. �29��,

���



� =

1

2���



� . �23�

With these phonon properties, we can predict the thermal
conductivity from Eq. �12�.

IV. BOLTZMANN TRANSPORT EQUATION-BASED
METHODS

A. Overview

The BTE-LD and BTE-MD methods are similar in that
the thermal conductivity is predicted from Eq. �12�. These
methods differ, though, in how the phonon properties are
obtained. In the BTE-LD method, the phonon properties are
found with quasiharmonic and anharmonic LD calculations.
In the BTE-MD method, the phonon properties are deter-
mined through a combination of quasiharmonic LD calcula-
tions and MD simulations.

Several authors have combined the BTE with quasihar-
monic and anharmonic LD calculations to predict thermal
conductivity. Using the same basic theory presented in Secs.
II and III, Ladd et al.23 computed the low-temperature ther-
mal conductivity for an inverse twelfth-power potential and
found good agreement with results from the GK-MD
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method. Omini and Sparavigna24–26 developed an iterative
method to solve an inelastic form of the BTE �the relaxation-
time approximation assumes elastic scattering� and applied it
to predict the thermal conductivity of argon, krypton, silicon,
and germanium. In their method, Omini and Sparavigna used
quasiharmonic LD calculations to provide input for predict-
ing three-phonon-scattering probabilities using terms similar
to those in Eq. �16�. Broido and co-workers27–29 applied the
iterative method of Omini and Sparavigna to study the ther-
mal conductivity of superlattices, bulk silicon, and bulk ger-
manium.

The BTE-MD method was first proposed by Ladd et al.23

and extended by McGaughey and Kaviany.14,30 McGaughey
and Kaviany applied the BTE-MD method to predict the
thermal conductivity of LJ argon under the isotropic approxi-
mation. Others have since used the method to predict the
thermal conductivity of silicon, also under the isotropic
approximation.31,32 The validity of the isotropic assumption
for LJ argon will be discussed in Sec. IV B.

B. BTE-LD method

In the BTE-LD method, the thermal conductivity is pre-
dicted using phonon information as input to the BTE under
the relaxation-time approximation. The phonon information
is found through the quasiharmonic and anharmonic LD cal-
culations described in Sec. III. To best compare with the
results of the MD prediction methods, the BTE-LD thermal-
conductivity predictions and all other calculations presented
here are made in the classical limit unless otherwise noted.
For our calculations, we consider the four-atom conventional
unit cell arrayed on a simple-cubic lattice. The quasihar-
monic phonon frequencies and polarization vectors are com-
puted with quasiharmonic LD on a N1�N2�N3 grid of
wave vectors, making the total number of unit cells, N, equal
to N1N2N3. The quasiharmonic frequencies and polarization
vectors are then used as inputs to an anharmonic LD calcu-
lation, the results of which are used to determine the anhar-
monic frequency and relaxation time of each phonon mode.
The lattice parameters, a, used are those from MD simula-
tions reported by McGaughey16 and the cutoff radius is set to
2.5�LJ for the quasiharmonic calculations and 1.5�LJ �nearest
neighbors� for the anharmonic LD calculations. Using the
smaller cutoff in the anharmonic calculation changes the cal-
culated frequency shifts and linewidths by less than 7% and
the thermal conductivity by less than 2%, while reducing the
computational effort by one third. We further reduce the
computational effort required in the anharmonic LD calcula-
tions by considering crystal symmetry. To obtain the dynam-
ics of all phonons it is sufficient to only consider the irreduc-
ible Brillouin zone, whose volume is 1 /48th of that of the
full first Brillouin zone for simple, face-centered, and body-
centered cubic crystals.17

There are three major challenges associated with imple-
menting the BTE-LD method. We have developed proce-
dures to overcome each of these challenges. The first chal-
lenge is to compute the x component of the group velocity.
This velocity is found at each grid point by a finite difference
of the quasiharmonic frequencies, which can be evaluated at

arbitrary wave vectors in order to compute an accurate nu-
merical derivative. Since the phonons used for the finite dif-
ference are similar to each other �i.e., nearly equal frequen-
cies, polarizations, and wave vectors�, we expect their
frequency shifts to be approximately equal. The group ve-
locities based on the quasiharmonic frequencies can thus be
converted to anharmonic group velocities by scaling by
�A /�.

The second challenge is to evaluate the Cauchy principal
value and Dirac delta function �see Eqs. �17� and �18��.
These functions are defined in terms of integrals, but Eqs.
�15� and �16� involve summations over a discrete set of wave
vectors. One common way to address this challenge is to
approximate the principal value and delta function by22,23

1

���p
�

�

�2 + �2 �24�

and

���� �
1

	

�

�2 + �2 , �25�

where � is a small positive number that removes the discon-
tinuity from the principal value and broadens the delta func-
tion. The proper choice of � is vital. If � is too large, the
details of the phonon-phonon interactions will be washed
out. If � is too small, there will not be enough interacting
phonons to yield meaningful results. We use Eqs. �24� and
�25� in our anharmonic LD calculations and let

� = ���



� + ����


�
� + ����


�
� �26�

for all three-phonon processes. We arrive at Eq. �26� by us-
ing the corrected phonon frequencies ��A� i�� in place of
the quasiharmonic frequencies ��� in Eqs. �15�, �16�, and
�19�. This substitution couples the frequency shift and line-
width equations for all the phonon modes. We solve these
equations by providing an initial guess for the frequency
shift and linewidth and iterating until self-consistency is
achieved. All predictions obtained from the BTE-LD calcu-
lations are the result of five iterations. The difference be-
tween the thermal conductivities of the last two iterations is
always less than 0.5%.

The third challenge associated with the BTE-LD method
is to account for the effect of the resolution of the wave
vector grid �i.e., N, the number of unit cells considered�. The
frequency shift and linewidth are found to be nearly indepen-
dent of the number of wave vectors but the thermal conduc-
tivity increases with increasing N. This dependence is due to
summing over a finite number of wave vectors in Eq. �12�.
The three zone-center ��-point/�=0� acoustic phonons are
related to bulk translation, and thus do not contribute to the
thermal conductivity. Excluding these phonons subtracts a
reciprocal space volume of 3�8	3 /a3N from the first Bril-
louin zone. Using a denser grid of wave vectors reduces the
amount of the first Brillouin zone excluded from the summa-
tion. We find that an extrapolation technique works well for
removing the predicted thermal conductivity’s dependence
upon the wave vector grid. We take lattices where N1=N2
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=N3=N0 and plot 1 /k versus 1 /N0, as shown in Fig. 1. A
linear fit to the data yields the inverse of the thermal conduc-
tivity as the vertical intercept. Performing the extrapolation
with any four of the points shown in Fig. 1 changes the
thermal conductivity by at most �1.5%. The thermal-
conductivity values reported in Sec. V are extrapolated from
the linear fit to N0=6, 8, 10, and 12.

C. BTE-MD method

In the BTE-MD method, MD simulations are used to de-
termine the anharmonic phonon frequencies and relaxation
times. In a MD simulation, models for the interactions be-
tween atoms �i.e., interatomic potentials� are used with New-
ton’s laws of motion to predict the positions and velocities of
the atoms over time. These trajectories can then be used to
extract relevant statistics about material behavior, such as
specific heat and thermal conductivity. The MD simulation
method is a classical method, meaning that the results are
only valid when quantum effects can be neglected. Thermal-
conductivity predictions from MD simulations can provide
reasonable agreement with experiment down to about one
tenth of the Debye temperature,33 TDebye, which is found
from MD simulation �experiment� to be 81 K �85 K� for
argon.11,16

The first step in the BTE-MD method is to determine the
noninteracting phonon frequencies and polarization vectors
from a quasiharmonic LD calculation �see Sec. III A�. Mo-
lecular dynamics simulations are then used to calculate the
time-dependent normal-mode coordinates, Q� �


 �, from the
expression

Q��



� = 


j
� mj

nN
�1/2

exp�− i� · r j,o�e�− �



� · �r j − r j,o� ,

�27�

where nN is the total number of atoms and r j,o is the equi-
librium position of the jth atom.

The time-dependent energy of each quasiharmonic oscil-
lator is then found from

E�,
�t� =

�2��



�Q���



�Q��



�

2
+

Q̇���



�Q̇��



�

2
, �28�

where the first and second terms on the right-hand side are
the potential and kinetic energies. Using Eq. �21� we find that
the autocorrelation of the phonon energy �Eq. �28�� is de-
scribed by

exp�− t/���



�� =

�E�,
�t�E�,
�0��
�E�,
�0�E�,
�0��

, �29�

where the angle brackets denote an ensemble average, which
for an ergodic system is equivalent to a time average. We fit
an exponential decay to the normalized energy autocorrela-
tion to extract the relaxation time. The autocorrelation of the
phonon potential energy gives a decaying function that oscil-
lates with a period that is 	 divided by the anharmonic pho-
non frequency. We compute the phonon group velocities in
the same way we do for the BTE-LD method, scaling quasi-
harmonic velocities by �A /� to get anharmonic velocities.
The phonon specific heats are computed with the classical
expression �Eq. �11��. While Eq. �11� is an approximation for
an anharmonic system, it has been found to be accurate to
within 6% at temperatures of 50 K and below.14

For our MD simulations, we use the velocity Verlet inte-
gration algorithm with a time step of 4.3 fs. The lattice pa-
rameters used are those from MD simulations reported by
McGaughey16 and a radius of 2.5�LJ is used for the inter-
atomic potential cutoff. We allow the system to equilibrate
for a period of 1�105 time steps after which we compute the
normal-mode coordinate and its derivative every fifth time
step for an additional 2�106 time steps. The anharmonic
frequency and lifetime are computed for every phonon in the
irreducible Brillouin zone and averaged over five indepen-
dent simulations. Like in the BTE-LD method, the thermal
conductivity predicted from the BTE-MD method is found to
depend on the number of wave vectors. In the same manner
as the BTE-LD method, we remove this dependence by ex-
trapolating to an infinite number of wave vectors using N0
�N0�N0 lattices with N0=4, 6, 8, and 10.

D. Comparison and validation of the Boltzmann transport
equation-based methods

As discussed in Sec. III, for the quasiharmonic and anhar-
monic LD calculations to be valid, �i� the atomic displace-
ments must be small compared to the atomic spacing and �ii�
the frequency shift and linewidth must be small compared to
the quasiharmonic frequencies. The first condition affects
both the BTE-LD and BTE-MD methods since they both rely
on quasiharmonic LD calculations. The second condition
also applies to both methods as the BTE-LD method uses
anharmonic LD calculations directly and the BTE-MD
method requires the phonon modes to be well described by
Eq. �21�. We expect the BTE-MD method to be more accu-
rate than the BTE-LD method at all temperatures because the
MD simulations include the full anharmonicity of the inter-
atomic potential while the anharmonic LD calculation only
considers up to four-phonon processes. The BTE-based
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FIG. 1. 1 /k versus 1 /N0 and linear fit for extrapolation from
BTE-LD calculations at a temperature of 50 K. The line is fit to the
four rightmost �filled� circles only.
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methods should converge at low temperature where the ap-
proximations made in the LD techniques are accurate.

Tabulated in Table I are the classical BTE-LD- and BTE-
MD-predicted root-mean-square �RMS� displacements,34
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scaled by the nearest-neighbor distance, a /�2. Also tabulated
in Table I are the scaled RMS displacements,

�u2�r��1/2 / �a /�2�, found directly from the time average of
the atomic positions in a MD simulation.16 At a temperature
of 20 K the atomic displacements from the BTE-based meth-
ods are in excellent agreement with the formally exact value
obtained from MD simulation. At a temperature of 40 K the
BTE-LD-predicted RMS displacement is 14% smaller than
the value obtained directly from MD and becomes increas-
ingly inaccurate at higher temperatures. The RMS displace-
ments calculated from the BTE-MD method are more accu-
rate than the BTE-LD-predicted values but also lose
accuracy at higher temperatures.

The frequency shifts and inverse lifetimes at temperatures
of 20 and 50 K are plotted versus wave vector in the �100�
direction in Figs. 2�a�–2�d�. For the BTE-MD method, pre-
dictions are made using �i� the full LJ potential and �ii� a
Taylor-series expansion of the LJ potential truncated after the
fourth-order term. The frequency shifts �Figs. 2�a� and 2�b��
and inverse lifetimes �Figs. 2�c� and 2�d�� computed with the
BTE-LD method and the BTE-MD method �using the full
and truncated LJ potential� are in good agreement at a tem-
perature of 20 K where the low-temperature approximations
are valid �see Table I�. The results from the BTE-MD method
using the full LJ potential at both temperatures are in good
agreement with the frequency shifts and relaxation times
found by McGaughey and Kaviany.14,30

At a temperature of 50 K the fifth- and higher-order terms
in the potential-energy expansion become important. The ef-
fect of these terms is evident in the clear differences between
the results from the BTE-MD calculations using the full LJ
potential and the truncated potential �circles and triangles�.
We take the frequency shifts and lifetimes calculated using

TABLE I. Root mean-square displacements scaled by the
nearest-neighbor distance from the BTE-LD and BTE-MD meth-
ods. The data in the rightmost column are RMS displacements
found directly from a time average of the atomic positions in MD
simulations �Ref. 16�.

T
�K�

�uLD
2 �1/2

a/�2

�uMD
2 �1/2

a/�2
�u2�r��1/2

a/�2

20 0.047 0.048 0.048

30 0.059 0.060 0.065

40 0.070 0.072 0.081

50 0.080 0.083 0.10

60 0.091 0.096 0.12

70 0.10 0.11 0.15

80 0.11 0.13 0.18
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FIG. 2. �Color online� Frequency shift �� and inverse of the lifetime �1 /�� at temperatures of 20 and 50 K versus reduced wave vector
for the longitudinal and transverse dispersion branches in the �100� direction. The MD data is found using �i� the full LJ potential and �ii�
the LJ potential truncated after the fourth-order term in the Taylor-series expansion. While the results from the LD calculations are discrete,
we plot the data as lines for clarity.
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the BTE-MD method with the full LJ potential to be the most
accurate. The truncated potential is less anharmonic than the
full potential, resulting in longer phonon lifetimes. The re-
sults from the BTE-LD method �in which the potential en-
ergy is truncated after the fourth-order term� are generally in
good agreement with the results from the BTE-MD method
using the truncated potential. The discrepancies between
these two methods can be attributed to the fact that the an-
harmonic LD equations �Eqs. �15� and �16�� include only
first- and second-order perturbations. We note that if we use
a constant value for � �as done by others22,23� instead of our
iterative procedure �see Eqs. �24�–�26��, the frequency shifts
and linewidths calculated with anharmonic LD are in poor
qualitative agreement with those computed with MD, par-
ticularly at the higher temperatures.

In Table II we tabulate the RMS frequency shift and line-
width normalized by the quasiharmonic frequencies over the
entire Brillouin zone, �� /��2�1/2 and ��� /��2�1/2. At a tem-
perature of 20 K, the normalized anharmonic frequency
shifts, as calculated with the BTE-LD and BTE-MD meth-
ods, are in reasonable agreement with each other. The line-
widths calculated with the two methods are also in agree-
ment. At this temperature, these anharmonic corrections are
small compared to the quasiharmonic frequencies, but grow
with increasing temperature. Above a temperature of 50 K,
the anharmonic corrections become significant compared to
the quasiharmonic frequencies and the BTE-based methods
may no longer be accurate. At all temperatures considered,
the linewidths predicted in the BTE-MD method are larger
than those predicted in the BTE-LD method. This result is
expected since fifth- and higher-order anharmonic terms are
neglected in the BTE-LD method but not in the BTE-MD
method.

V. PREDICTION RESULTS

A. Thermal-conductivity predictions

The predicted thermal conductivities from the four meth-
ods are plotted against temperature in Fig. 3 and listed in
Table III. Unlike the BTE-LD and BTE-MD prediction
methods, there are no major assumptions inherent to the
GK-MD and direct-MD methods other than the choice of the
interatomic potential, which is consistent here. We thus take

the GK-MD and direct-MD thermal-conductivity predictions
to be the most accurate and use them to assess the range of
applicability of the BTE-LD and BTE-MD methods. The
predicted thermal-conductivity values from the GK-MD and
direct-MD methods are in good agreement, generally within
10% �except at temperatures of 20 and 60 K where the pre-
dictions are within 15%�. Others have also found that
GK-MD and direct-MD thermal-conductivity predictions are
consistent.35,36 The thermal conductivities predicted with the
BTE-LD and BTE-MD methods are within 15% of both the
GK-MD and direct-MD values at a temperature of 20 K. As
the temperature increases, the BTE-MD method begins to
underpredict the thermal conductivity by an increasing
amount. This loss of accuracy is due to error introduced by
mapping the atomic positions and velocities onto the quasi-
harmonic normal-mode coordinates, which become less rep-
resentative of the real system as the temperature increases.
As the temperature increases above 20 K, the BTE-LD
method begins to overpredict the thermal conductivity by an
increasing amount. This overprediction can be attributed to
the exclusion of higher-order phonon processes resulting in
reduced anharmonicity of the argon crystal �see Fig. 2�. The
BTE-LD thermal-conductivity value at a temperature of 40
K is about 30% higher than the GK-MD and direct-MD pre-
dictions.

The thermal-conductivity predictions using the BTE-LD
method with the quantum-mechanical expressions for the
phonon distribution, specific heats, frequency shifts, and
linewidth are also given in Table III. While not shown here,
the full quantum-mechanical treatment correctly captures the
expected thermal-conductivity trends at very low tempera-
tures, including the experimentally observed maximum in
the thermal conductivity and the decrease to zero at zero
temperature. These low-temperature predictions cannot be
made using MD because it is a classical method. As ex-
pected, above the maximum in the thermal conductivity, the
quantum predictions closely agree with the classical
BTE-LD predictions. Our quantum BTE-LD thermal-
conductivity results agree to within 15% of the BTE-based
quantum predictions made by Omini and Sparavigna25 for
argon at temperatures of 20 K �1.66 W/m-K� and 80 K
�0.236 W/m-K�.

TABLE II. Root mean-square anharmonic frequency shifts and
linewidths ��=1 /2�� normalized by the quasiharmonic frequencies
from the BTE-LD and BTE-MD methods.

T �K� �
LD

2

�2 �1/2 �
MD

2

�2 �1/2 �
�LD

2

�2 �1/2 �
�MD

2

�2 �1/2

20 0.029 0.023 0.013 0.014

30 0.048 0.039 0.020 0.025

40 0.069 0.056 0.028 0.037

50 0.094 0.074 0.035 0.054

60 0.13 0.096 0.043 0.078

70 0.16 0.12 0.051 0.11

80 0.22 0.15 0.059 0.16
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FIG. 3. �Color online� Temperature dependence of the thermal
conductivity predicted from the four methods. Using an isotropic
approximation �isotropic� rather than all the phonons in the full
Brillouin zone �full BZ� in the BTE-MD method causes the thermal
conductivity to be underpredicted by a factor of about 1.5.
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Based on the thermal-conductivity results in this section
and the analysis in Sec. IV D, we suggest that, for LJ argon,
reasonable quantitative predictions of the thermal conductiv-
ity can be made up to half the Debye temperature �40 K�
with the BTE-LD method and up to 70% of the Debye tem-
perature with the BTE-MD method. Based on these thermal-
conductivity results and our BTE-LD thermal-conductivity
predictions of Stillinger-Weber silicon,37 we propose that, as
a general rule, the BTE-LD predictions are accurate up to
one-half of the Debye temperature.

B. Mode-dependent thermal conductivity

Using the BTE-MD method and an isotropic approxima-
tion �similar to the method described by McGaughey and
Kaviany14 and Henry and Chen31�, we predict thermal con-
ductivities for LJ argon that are about a factor of 1.5 lower
than our predictions using the full Brillouin zone �see Fig. 3�.
This discrepancy is a result of the inaccuracy of the isotropic
approximation for LJ argon. An examination of the phonon
properties for the entire Brillouin zone from our BTE-LD
and BTE-MD calculations reveals that the relaxation times
can be treated isotropically �i.e., as a function of only fre-
quency and temperature�. We find, however, that the distri-
bution of phonons and the group velocities in the �100� di-
rection are not representative of the entire Brillouin zone.

Using the phonon information obtained from the BTE-LD
method, we plot, in Fig. 4, the contribution to the thermal
conductivity as a function of �A / ��A�max, the phonon fre-
quency divided by the maximum phonon frequency. For this
classical system, temperature changes the maximum fre-
quency but has no effect on the curves in Fig. 4. The largest
contribution to the thermal conductivity comes from the
phonons around half of the maximum frequency. This large
contribution is due to the large number of phonons near that
frequency �see the density-of-states curve in Fig. 4�. Divid-
ing the thermal-conductivity contribution by the density of
states gives the average contribution per mode �cphvg,x

2 �� as a
function of frequency ratio. We see that, on average, each
low-frequency mode contributes much more than individual
phonons at the higher frequencies �the downturn near zero
frequency is due to the finite number of unit cells consid-

ered�. This fact helps to explain why we need to correct for
the missing states around the zone center and is what leads to
a common assumption that low-frequency phonons dominate
thermal transport. This assumption is clearly not valid for LJ
argon.

C. Computational cost

The computational cost of each of the prediction methods
is a major concern. For the test argon system, the GK-MD
and direct-MD prediction methods require similar computa-
tional resources ��10–20 processor hours for each tempera-
ture�. The computation time required for the BTE-LD
method is an order of magnitude less ��1 processor hour for
each temperature� while the BTE-MD method is extremely
demanding ��25 processor days for each temperature�. Effi-
cient MD codes scale linearly with the number of atoms in
the computational domain; thus, so do the GK-MD and
direct-MD methods. The BTE-MD method scales as the
square of the number of atoms ��Nn�2�. The computational
cost of the BTE-LD method is proportional to N2n4. This
poor scaling makes the BTE-LD method computationally ex-
pensive for materials with a large number of atoms in the
unit cell.

For the BTE-LD method, it is possible to make several
approximations that will reduce the computational cost re-

TABLE III. Thermal-conductivity values in W/m-K from the four prediction methods. The BTE-LD
values computed using the quantum expressions for the occupation number and specific heat are included for
reference.

T �K� GK-MDa Direct-MD BTE-MD BTE-LD
Quantum
BTE-LD

20 1.2 1.4 1.3 1.4 1.5

30 0.72 0.76 0.69 0.89 0.93

40 0.47 0.50 0.49 0.63 0.66

50 0.32 0.34 0.30 0.49 0.51

60 0.26 0.29 0.20 0.38 0.40

70 0.20 0.21 0.13 0.31 0.32

80 0.16 0.17 0.086 0.26 0.27

aReference 16.
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FIG. 4. �Color online� Dependence of the thermal conductivity
and phonon density of states �DOS� on �A / ��A�max at a temperature
of 50 K.
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quired without sacrificing much accuracy. We used one such
approximation when we neglected interactions beyond near-
est neighbors in the anharmonic LD calculations. Other pos-
sible approximations include neglecting high-frequency
phonons, which make little contribution to the thermal con-
ductivity, �i.e., do not calculate  or � for frequencies greater
than some cutoff�, or by using a single coarse wave-vector
grid to compute the thermal conductivity �i.e., do not per-
form the extrapolation�. Using a 6�6�6 grid of wave vec-
tors gives thermal-conductivity values that are at most 15%
lower than the extrapolated values but with 2% of the com-
putational cost ��1.5 minutes�.

VI. CONCLUSIONS

The BTE-LD and BTE-MD methods for predicting the
phonon properties and thermal conductivity of a crystal have
been presented, including unique solutions to several chal-
lenges inherent to these methods. The thermal-conductivity
predictions made with the BTE-based methods were then
compared to predictions made using the GK-MD and
direct-MD methods. All of the prediction methods give
thermal-conductivity values for LJ argon that agree at low
temperature �20 K�. As the temperature is increased, the
BTE-LD and BTE-MD predictions diverge from the GK-MD
and direct-MD predictions �see Fig. 3� due to reduced valid-
ity of the low-temperature approximations made in the LD
calculations. By analyzing the phonon velocities, frequen-
cies, and lifetimes, we find that the isotropic approximation
is invalid for argon. We also find that on a per mode basis the
low-frequency phonons contribute the most to the thermal
conductivity. However, as shown in Fig. 4, by considering
the phonon density of states, phonons with a frequency of
half the maximum frequency are found to dominate thermal
transport. Such information will be valuable in designing
nanostructures with tailored thermal properties. For example,
to increase the figure of merit of a thermoelectric material,
the size and number of nanoparticles in a crystal could be
altered to selectively scatter the dominant phonon modes,
reducing the thermal conductivity while maintaining the
electrical transport properties.7–9

By considering the root-mean-square displacements, fre-
quency shifts, and linewidths, we suggest that the LD calcu-
lations for LJ argon are reasonably accurate up to a tempera-
ture of 50 K �see Sec. IV D�. At this temperature, we find the
BTE-MD predicted thermal-conductivity value to be about
10% lower than the GK-MD and direct-MD values. For the
BTE-LD method, neglecting fifth- and higher-order
potential-energy terms causes the thermal-conductivity pre-
dictions to become inaccurate above a temperature of 40 K.
At this temperature, the BTE-LD thermal-conductivity pre-
diction is about 30% higher than the GK-MD and direct-MD
predictions. For other insulators and semiconductors, we
suggest that half the Debye temperature is the maximum
temperature at which the BTE-LD method provides accurate
thermal-conductivity predictions, while the BTE-MD
method is accurate up to 70% of the Debye temperature.
Above these temperatures the approximations made in the
BTE-based methods become inaccurate, and the GK-MD

and direct-MD prediction methods are more appropriate to
use.

We note that for our thermal-conductivity predictions the
BTE-LD method requires an order of magnitude less com-
puting effort than the GK-MD and direct-MD methods. Ad-
ditionally, several approximations can be made within the
LD framework that allow the thermal conductivity to be es-
timated using the BTE-LD method in a matter of minutes.
For designing materials with tailored thermal transport prop-
erties, the ability to rapidly estimate the thermal conductivity
will be a useful way to screen for promising designs that
deserve more in-depth study.

Finally, we note that the BTE-LD method is amenable to
making highly accurate predictions of the thermal conductiv-
ity that can be directly compared to experiment. For our
predictions, we used the LJ interatomic potential to compute
the force constants �second-, third-, and fourth-order energy
derivatives� required for the LD calculations. These force
constants can be obtained from other sources. For example,
Broido et al.29 used density-functional perturbation-theory
calculations to provide input for harmonic LD calculations
and calculations of phonon-phonon-scattering probabilities
�related to Eq. �16��. These probabilities were then used in
the BTE to obtain thermal-conductivity predictions for sili-
con and germanium that are in excellent agreement with ex-
periment. Such an approach could also be used in the
BTE-LD method discussed here.
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APPENDIX: DIRECT-MD METHOD

The direct-MD method is a nonequilibrium steady-state
approach based on the Fourier law, Eq. �1�.35,36,38 The ther-
mal conductivity is found by imposing a heat flux across the
sample and measuring the resulting temperature gradient. A
schematic of the direct method simulation cell is shown in
Fig. 5. The system consists of a sample bordered by hot and
cold reservoirs and fixed boundaries in the direction parallel
to the applied heat flux. Periodic boundary conditions are

H
ot

R
es

er
vo

ir

C
old

R
eservoir

Sample
Region

Fixed
Boundary

LS

q

LRLR

Fixed
Boundary

Ac

FIG. 5. Schematic of the simulation cell used in the direct
method.
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imposed in the directions perpendicular to the heat flux.
For our argon system, the fixed boundary regions each

contain four layers of fixed atoms in order to prevent the
sublimation of the reservoir atoms. The thermal conductivity
is found to be independent of the reservoir length, LR, when
LR is greater than or equal to four atomic layers. The pre-
dicted thermal conductivity is independent of the system di-
mensions in the directions perpendicular to the applied heat
flux when they are greater than or equal to four conventional
unit cells.

In the direct-MD method simulations, the system tem-
perature is initially set to a uniform value by scaling the
atomic velocities for 25 000 time steps. The heat flux is then
generated using the method described by Ikeshoji and
Hafskjold.39 From the point when the heat flux is first ap-
plied, a period of one million time steps is allowed for the
sample to reach steady state. The temperature of each atomic
layer is then averaged over an additional two million time
steps. The temperature gradient is calculated using a least-
squares regression analysis fit to the temperature profile. The
ten atomic layers closest to each reservoir are neglected
when specifying the temperature gradient because the tem-

perature profile in these regions is nonlinear due to phonon
scattering at the reservoir/sample interfaces. This nonlinear
effect is most pronounced at the lower temperatures.

The thermal conductivity predicted by the direct method
can be dependent on the sample length, Ls, if Ls is not much
greater than the bulk phonon mean-free path. For example,
when Ls is on the order of or less than the bulk phonon
mean-free path, the amount of phonon scattering at the
boundaries between the reservoirs and the sample is compa-
rable to that occurring within the sample itself. Furthermore,
phonons can potentially travel from the hot reservoir to the
cold reservoir without scattering �i.e., ballistic transport�.
Both of these effects lead to a dependence between the ther-
mal conductivity and Ls.

We find that the sample length effect is negligible for T
�50 K when Ls is greater than or equal to 160 atomic lay-
ers. For T�40 K, however, the thermal conductivity is still
dependent on Ls even for Ls=200 atomic layers. For these
low temperatures, we extrapolate the results from simula-
tions with sample lengths of 114, 132, 160, and 200 atomic
layers to obtain the thermal conductivity of an infinite system
using the method described by Schelling et al.35
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