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We describe the construction of a three-phase equation of state for elemental beryllium. The phases consid-
ered are: the ambient hcp phase, the high-temperature bcc phase, and the liquid. The free energies of the solid
phases are constructed from cold, ion-thermal, and electron-thermal components derived from ab initio elec-
tronic structure-based calculations. We find that the bcc phase is unstable near ambient conditions and that even
at high pressures at which the bcc phase is stable, the bcc-hcp energy barrier can be as small as a few hundred
kelvins. The liquid free energy is based on a model of Chisolm and Wallace and is constrained by using the
melt curve �determined by ab initio two-phase simulations� as a reference. The high-temperature plasma limit
is addressed with an average-atom-in-jellium model. Comparisons to experimental results, both for the ambient
hcp phase and for the phase diagram as a whole, are discussed.
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I. INTRODUCTION

Even after a few decades of research,1 the phase diagrams
of elemental metals in the multimegabar range still constitute
a field of active fundamental investigation.2 Much of this is
due to the myriad experimental difficulties associated with
achieving and maintaining such pressures, together with the
paucity of diagnostic techniques capable of determining
phase information at ultrahigh P and T. On the theoretical
side, the major challenge is the development of first-
principles methods which are able to reproduce �or indeed,
predict� free energy differences between competing phases in
instances where these differences decrease significantly as
pressure is increased.3 This is a special challenge in closed-
packed metals, where energy differences between, for in-
stance, bcc and hcp phases can be extremely small even at
moderate pressures where continuous transformations be-
tween such structures are possible.4

Beryllium is one such element that falls squarely into the
category of a poorly understood closed-packed metal. As we
shall discuss, its competing solid phases are extremely close
in energy throughout a wide range of compressions, and
there exist transformation paths between these phases which
have been predicted to give rise to mechanical instabilities
near ambient conditions.5,6 In addition, beryllium has re-
cently received considerable attention as a possible ablator
material for fuel capsules to be used in inertial confinement
fusion experiments.7 The engineering design of these cap-
sules is based on large-scale hydrodynamic simulations,8

which model the behavior of the materials at the extreme
temperatures and pressures of the experiment. In order to
close the set of hydrodynamic equations, it is necessary to
introduce the equation of state �EOS� of the material, which
in turn depends on its phase �solid, liquid�. It is therefore of
crucial importance to know the phase diagram of the system,
denoting which phase is thermodynamically stable in a given
set of pressure and temperature conditions.9 Information
about EOS and the phase diagram should, where possible, be
obtained directly from experiment. However, many condi-

tions of interest are outside the range where highly accurate
thermodynamic data are available. It is then often necessary
to rely on theoretical predictions of EOS, which again are
related to theoretical predictions of the phase diagram in
these extreme conditions.

Even at temperatures below melting and at pressures be-
low 100 GPa, the phase diagram of beryllium is still quite
poorly known. At ambient pressure and temperature, hcp Be
is known to possess a nonideal c /a ratio. When heated at
ambient pressure, experiments10 have detected a solid-solid
phase transition to what is believed to be a bcc structure in a
narrow range of temperature prior to melting. These experi-
ments suggest that the hcp-bcc phase boundary has a nega-
tive slope, while subsequent work suggests that it may be
positive.11 The conflicting observations have motivated nu-
merous research efforts to search for a possible pressure-
driven transition at room temperature. While theoretical cal-
culations have provided a large range of pressures at which
this transition may happen, no experiments �up to 300 GPa�
have yet found any evidence of it.12,13 In addition, more re-
cent diamond-anvil-cell x-ray measurements have failed to
find any evidence for a bcc phase for temperatures between
300 and 2000 K, and pressures between 15 and 50 GPa.13

Recent theoretical studies aimed at determining the hcp-
bcc phase line5,6,14,15 throughout a wide range of tempera-
tures have employed ab initio electronic structure calcula-
tions to constrain phase-dependent free energy models which
include cold compression, quasiharmonic ion-thermal, and
�deemed negligible here� electron-thermal contributions. By
using a standard form for the quasiharmonic ion-thermal
contribution17 constrained by ab initio phonon density-of-
states �PDOS� results together with cold and electron-
thermal pieces, Rudin et al.5 obtained an hcp-bcc transition
temperature well above that inferred from experiment. Rob-
ert et al.14 obtained a similar result from their nearly equiva-
lent ab initio calculations and showed that roughly a 30%
reduction in the bcc Debye temperature would be needed to
bring the extrapolation of the ambient-pressure hcp-bcc tran-
sition temperature below the melt line. Kadas et al.15 argued
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that the presence of the bcc phase seen in the early
experiments10,11 could be explained by an electronic topo-
logical transition, in which the elastic constants of the bcc
phase are softened greatly due to Fermi-surface nesting ef-
fects. In these works, the authors pointed out the possibility
that the bcc phase could exhibit large anharmonic effects
which could affect the transition line substantially, a point
motivated by the instability of bcc Be near ambient condi-
tions due to a soft phonon mode.5,6,14,15

In this study, we construct a three-phase EOS for Be,
paying particular attention to the accurate prediction of the
hcp-bcc phase line. In support of this, we perform T=0 ab
initio total-energy calculations along the so-called Burgers
path, connecting bcc to hcp, in which we find the energy
barrier between hcp and bcc to be very small �well below
kBTmelt�. The free energy of the liquid phase is taken to be of
the form suggested by Chisolm and Wallace16 and is con-
strained by requiring that the solid-liquid phase line is that as
obtained by ab initio two-phase simulations,26 together with
Wallace’s assumption of a latent heat which is independent
of compression.3,17 The very high-T limit, in which inner-
shell ionization occurs and the resulting electron-thermal free
energy is pronounced, is addressed by connecting to the re-
sults of Purgatorio,18 a density-functional theory �DFT�-
based average-atom-in-jellium model. Our multiphase EOS
for Be exhibits an hcp-bcc-liquid triple point at �180 GPa
and 4500 K and a principal shock Hugoniot which possesses
a small portion in the bcc-stable region. We predict no ther-
modynamically stable bcc phase below P�180 GPa, in
agreement with previous predictions5,6,14 but in contrast to
earlier experiments.10,11 Comparisons to available experi-
mental results are discussed.

II. CONSTRUCTION OF hcp AND bcc FREE ENERGIES

We make the fundamental assumption that the Helmholtz
free energy �E-TS� for each phase can be decomposed into a
sum of three independent terms,

F�V,T� = F0�V� + Fi�V,T� + Fe�V,T� , �1�

where F0 represents the total energy of the system at T=0
with fixed ionic positions, Fi is the thermal contribution from
ionic motion together with the free energy due to zero-point
motion, and Fe represents the thermal contribution from ex-
cited electrons. All calculations we perform to construct the
above terms are based on self-consistent electronic structure
theory using the generalized gradient approximation �GGA�
within DFT as parametrized by Perdew-Burke-Ernzerhof.19

We compute F0�V�, henceforth called the cold curve, of each
phase using both plane-wave pseudopotential20 and linear
muffin-tin orbital all-electron methods. Ground-state ener-
gies were computed over a range of pressures from
0 to 1400 GPa. A plane-wave energy cutoff of 60 Ry was
used throughout all of our pseudopotential calculations. A
k-point mesh of 24�24�15 in the full Brillouin zone was
used for hcp, while a 24�24�24 mesh was used for bcc.
The Be pseudopotential was chosen to be of the Troullier-
Martins type21 using the Kleinman-Bylander separable
form22 with s , p-nonlocal and d-local channels and a match-

ing radius of 0.7938 Å. At each pressure, internal cell param-
eters were optimized. While bcc can be described by just one
parameter �chosen to be the size of the cubic cell�, hcp re-
quires two parameters: a describing the size of the hexagons
in the close-packed layers and c the distance between them.
For convenience, hcp has been represented with an ortho-
rhombic supercell which corresponds to twice its elemental
cell. Below a volume of 3.6 Å3/atom �P�400 GPa�, we use
the all-electron method to obtain ground-state energies; at
intermediate volumes, we find the results of our pseudopo-
tential calculations to be in good agreement with the all-
electron computations.

A. Internal energies at T=0

Up to roughly 400 GPa, hcp has a lower energy than bcc.
Figure 1 shows our computed hcp and bcc cold curves, pre-
sented as continuous functions of V by fitting using the form
of Vinet et al.,23

F0�V� =
4V0B0

�B1 − 1�2 �1 − �1 + X�exp�− X�� + �0, �2�

where �0 is the minimum energy and

X =
3

2
�B1 − 1���V/V0�1/3 − 1� . �3�

We obtain the fit parameters: V0�hcp�=7.751 Å3/atom,
B0�hcp�=111.5 GPa, and B1�hcp�=3.69; V0�bcc�=7.618 Å3/
atom, B0�bcc�=116.7 GPa, and B1�bcc�=3.64, together with
an energy difference between their respective energy minima
of E0

bcc−E0
hcp=0.108 eV/atom.24 Note that at each volume,

the energy difference between the phases is remarkably
small, as noted by others.5,6,14 The pressure-volume relation
�containing information about equilibrium volumes and bulk
moduli� and the dependence of the hcp c /a ratio on pressure
can be compared with diamond-anvil-cell experiments. The
equilibrium density and structural parameters of the hcp
phase at ambient conditions are in good agreement with val-
ues published in the literature. We compare these values in
the next section, after we have accounted for the effects of
zero-point motion and thermal expansion. For now, we note
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FIG. 1. �Color online� Vinet fits �Ref. 23� to cold curves for hcp
�solid� and bcc �dashed� Be.
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that in agreement with previous theoretical work5,6,25 and
experimental results,12 we find that the c /a ratio of hcp Be
has the small value of 1.57 at ambient pressures and rises
gradually toward the ideal value of 1.633 at higher pressures.

Motivated by ab initio molecular dynamics �MD� studies
of Be melting,26 in which bcc and hcp phases of Be were
seen to transform into each other rather readily at certain
high-T conditions, we chose to study the energetics of pos-
sible transformation paths between them. Clearly defined
transformation paths exist between simple crystal structures,
such as the Bain path connecting bcc and fcc �Ref. 27� and
the Burgers path connecting bcc and hcp.28 In several ele-
ments, the existence of these paths leads to martensitic tran-
sitions, that is, phase transformations that occur as a collec-
tive change in the whole sample rather than by nucleation. It
is possible to analyze intermediate structures along these
paths as a means to understand the relative stability of the
phases and the existence of potential barriers hindering the
transitions. In conducting these studies, it is necessary to
achieve an extremely high degree of convergence with re-
spect to the representation of the single-electron wave func-
tions in terms of plane waves and the k-point sampling of
these wave functions. Poorly converged results can dramati-
cally affect the shape of these potential surfaces and artifi-
cially distort structures from their equilibrium. We chose an
energy cutoff of 120 Ry and a k-point mesh for the four-
atom rhombohedral cell of 24�24�24 for this part of our
work. This ensures that our energies are converged to within
0.1 meV/atom �corresponding to a temperature of 1.16 K�
and our pressures to within 0.005 GPa.

The Burgers path,28 connecting bcc to hcp, consists of two
separate distortions: a shear deformation consisting of a
compression along �100�bcc and an elongation along �110�bcc,
and a relative shuffling of �100� planes, corresponding to the
T1 N-point phonon mode of the bcc lattice.4 This transforma-
tion can be best represented by choosing a tetragonal cell for
bcc containing four atoms, with a=b=�2c ,c being the side
of the conventional cubic cell. In this reference cell, �100�
planes will become, after the shear deformation, the hexago-
nal layers of hcp. The relative shuffling of the hexagonal
layers is represented by a displacement parameter �, defined
to be the �unitless� relative amplitude of the T1 N-point pho-
non �see Ref. 4 for details�. The angle between �111� direc-
tions is denoted by �. For the hcp structure, �=120°, while
for bcc, �=109.47°. Deformation of this type brings the sys-
tem to an hcp structure characterized by c /a=1.57, smaller
than the ideal value of 1.633. Additional distortions can be
made which allow for different c /a ratios, but we chose to
fix this value for this part of the study �since this is essen-
tially equal to the equilibrium value we found at ambient
conditions� and compute the total energy as a function of
�� ,�� at several volumes. Figure 2 shows the ground-state
total-energy difference for Be at T=0 as a function of � and
� for V=7.63 Å3/atom �P�0 GPa�. The energy surface pos-
sesses a minimum at hcp, while in the neighborhood of bcc,
the magnitude of the energy is higher and the surface is quite
flat. In particular, there is no barrier preventing bcc from
transforming directly into hcp. This instability of bcc Be near
ambient pressures was recognized by others previously in the
context of ab initio phonon calculations,5,6 in which imagi-

nary phonon frequencies were computed at low pressures.
We note here that even at higher pressures at which bcc is
mechanically stable, the energetic barrier between bcc and
hcp along the Burgers path can be exceptionally small. This
is illustrated in Fig. 3, which shows one-dimensional �1D�
projections of the Burgers energy surface in which � is var-
ied and � is chosen to give the lowest energy for each �. Two
volumes are shown: V=7.63 �P�0� and 3.75 Å3/atom
�P�300 GPa�. Note that for V=3.75 Å3/atom, bcc
��=109.47° � is indeed metastable, as also demonstrated by
phonon calculations, but the energy barrier is rather small,
which is �400 K, far lower than the melt temperature at this
pressure. In addition, we have found that the shape of the
energy well around bcc is very flat at all compressions �less
so for hcp; see the 1D profile of the well around �=120° in
Fig. 3�, suggesting that anharmonicity may be crucially im-
portant in bcc Be. One notable observation is that the small
nonideal value for the hcp c /a ratio at low pressure may
actually facilitate deformation along the Burgers path be-
cause it is precisely this low value which is required to move
from hcp to bcc with minimal additional distortions.28

In constructing the free energy of solid Be, we assume
that the individual hcp and bcc phases remain distinct even at
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FIG. 2. �Color online� Ground-state energy difference �neglect-
ing zero-point motion� E�� ,��−Ehcp in kelvin for Be along the
two-dimensional plane of parameters �� ,�� describing the Burgers
path for V=7.63 Å3/atom.

FIG. 3. �Color online� Ground-state energy difference �neglect-
ing zero-point motion� of Be along a 1D slice through the two-
dimensional Burgers path for V=7.63 and 3.75 Å3/atom.
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temperatures above which transformations such as that sug-
gested by Fig. 3 could occur. The reasons are twofold. �1�
The Burgers transformation represents an individual mode of
ionic excitation. In a heated solid, only a tiny fraction of the
thermal energy will be distributed to this particular mode.
Other modes are expected to leave the system in a distinct
solid phase as long as the amplitudes are small �i.e., for T
�Tmelt�. �2� Even if the energy barrier in question is over-
come, we will show below that the EOSs of hcp and bcc are
remarkably similar. Though the entropy of the solid may be
slightly affected by an increased propensity for Be to visit
intermediate states between hcp and bcc along the Burgers
path, the internal energy and pressure will likely be rather
insensitive to these infrequent excursions, given the very
small energy differences we see in Fig. 3.

B. Ion-thermal free energy: Quasiharmonic theory

In order to investigate the free energy due to thermal mo-
tion of the ions, we compute the free energy within quasihar-
monic theory29 for each solid phase. From the volume-
dependent PDOS, DV�E�, the harmonic free energy due to
zero-point motion and thermal occupation of the independent
normal modes is29

Fi�V,T� = 3	
0

�

dEDV�E�

� 
1

2
E + kBT log�1 − exp�− E/kBT��� . �4�

At temperatures larger than the characteristic phonon ener-
gies, this reduces to the familiar Mie-Grüneisen ion-thermal
contribution, Fi�V ,T�=3kBT log��0�V� /T�, where �0 is the
logarithmic moment of the PDOS, defined by

kB�0�V� = e1/3 exp�	 log�E�DV�E�dE . �5�

As T→0, Fi�V ,T�→ 9
8kB�1�V�, where �1 is the first fre-

quency moment of the PDOS, defined by

kB�1�V� =
4

3
	 EDV�E�dE . �6�

Both moments are defined in such a way that if the PDOS is
of the Debye form, in which DV�E�	E2 for E�kB��V� and
is zero for E�kB��V�, then the moments are equal to each
other and are equal to the Debye temperature, ��V�. In this
case, the harmonic free energy may be written in terms of the
single volume-dependent parameter ��V�,

Fi�V,T� = kBT�9

8

��V�
T

+ 3 log�1 − exp�− ��V�/T��

− D���V�/T�� , �7�

with

D�y� =
3

y3	
0

y x3

exp�x� − 1
. �8�

We have computed the PDOS on a dense grid of volumes
�between V=3 and 8 Å3/atom� for hcp and bcc phases using
DFT-based linear response methods.30 For bcc at large vol-
umes, V�7.67 Å3/atom, we compute a small number of
imaginary phonon frequencies, indicating that bcc Be is me-
chanically unstable in these conditions.5,6 This renders our
calculations of phase stability meaningless in these cases.
However in the interest of extrapolating into the unstable
region, we ignore the contributions from imaginary frequen-
cies in the PDOS by setting their spectral weight equal to
zero in what follows. We stress that this is merely for con-
venience; in the end, we focus primarily on the region in
which bcc is predicted to be metastable. Figure 4 shows
DV�E� for both hcp and bcc at V=5.47 Å3/atom. Note that
both spectra possess large-intensity peaks at a wave number
just below 1000 cm−1, above which the intensity drops to
zero. We find that large-energy high-intensity peaks coincide
for both phases throughout the range of volumes of interest.
This renders the various volume-dependent moments, dis-
cussed above, to be quite similar for the two phases. Though
less apparent from the figure, it is also the case that for each
phase we find �0 to be within 2% of �1 at all volumes. There-
fore, the Debye model �Eqs. �7� and �8�� is an excellent ap-
proximation to the full quasiharmonic free energy �Eq. �4��.
Indeed, direct comparisons between the free energies of Eq.
�4�, using the full PDOS, and Eqs. �7� and �8�, using a Debye
temperature set equal to �0, bear this out. This is fortunate
because one must differentiate Fi�V ,T� with respect to V to
obtain the ion-thermal contribution to the pressure; it is much
easier to characterize the volume dependence of a single
number, �, than the volume dependence of a whole function
of energy, DV�E�. To this end, we parametrize the V depen-
dence of � by assuming that the ion-thermal Grüneisen pa-
rameter varies linearly with V :
�−d log � /d log V=AV+B.
This produces a three-parameter form for ��V�,

��V� = ��0�� V

Vref
−B

exp�A�Vref − V�� , �9�

which we then fit to our ab initio calculations of �0 at various
V for hcp and bcc Be. Choosing reference volumes of
Vref�hcp�=7.75 Å3/atom and Vref�bcc�=7.62 Å3/atom, we
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FIG. 4. �Color online� Phonon density of states of hcp �solid�
and bcc �dashed� Be at V=5.47 Å3/atom.
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obtain ��0��hcp�=982.8 K, A�hcp�=0.081 Å−3, B�hcp�
=0.515; ��0��bcc�=886.9 K, A�bcc�=0.131 Å−3, and B�bcc�
=0.364. This fit reproduces the computed values of ��0� to
within 2% for both phases. Figure 5 shows the resulting ��V�
for hcp and bcc phases. Again, we stress that for V
�7.67 Å3/atom, the bcc ��V� is an extrapolation which ig-
nores the imaginary frequencies indicating mechanical insta-
bility for that phase.

We note in passing that the electron-thermal term of Eq.
�1� has been shown to be small in solid Be.5,6,14 Upon calcu-
lating the electronic densities of states for hcp and bcc Be as
a function of V and using the low-T Sommerfeld expan-
sion,29 we too arrive at the conclusion that electronic excita-
tions are of negligible importance for determining the hcp-
bcc phase line. In particular, we find that the inclusion of
electronic excitations changes the hcp-bcc transition tem-
perature by not more than 5% even at the highest tempera-
tures. Nevertheless, we do include electronic excitations �as
inferred from our GGA-DFT calculations of the electronic
density of states� in this work: invoking the Sommerfeld ex-
pansion, in which Fe�V ,T�	N�EF�T2 at low T �T�TF�, we
take Fe�V ,T�=�e�V /Ve�KT2.29 Calculations of the V-depend-
ent electronic densities of states then give �e�hcp�=8.33
�10−6 K−2, K�hcp�=0.67, Ve�hcp�=7.751 Å−3/atom,
�e�bcc�=1.57�10−5 K−2, K�bcc�=0.86, and Ve�bcc�
=7.618 Å−3/atom.

This treatment of cold+quasiharmonic ion-thermal
+ �very small� electron-thermal free energy contributions for
solid Be produces excellent agreement with EOS data for the
hcp phase. Recent measurement of the room-T isotherm12

gives B0�hcp�=109.88 GPa and B1�hcp�=3.59, while our
hcp equation of state gives B0�hcp�=104.58 GPa and
B1�hcp�=3.63 at T=300 K. Our equilibrium volume at room
T is 7.939 Å3/atom, roughly 2% smaller than the measured
value. Our computed �linear� thermal-expansion coefficient
for hcp Be is �=10.9�10−6 K−1, compared to the experi-
mental value of 11.3�10−6 K−1.31

Because �bcc�V���hcp�V� while the T=0 internal energy
of hcp is less than that of bcc �for pressures below
�400 GPa�, Be is predicted to undergo a transition from
hcp→bcc as T is increased. Other researchers have predicted
this as well.5,6,14 By using the two-phase Maxwell construc-

tion with our phase-dependent Helmholtz free energies we
compute the hcp-bcc phase line shown as the black curve in
Fig. 6. The dotted line denotes the V=7.67 Å3/atom isochore
in the bcc phase. For V�7.67 Å3/atom, bcc Be is predicted
to be mechanically unstable at T=0 �discounting zero-point
motion�; all points to the left of the dotted line are therefore
extrapolations into the bcc-unstable region.32 Note that the
extrapolated transition temperature between hcp and bcc at
P=0 is 2630 K, significantly higher than the 1523 K result
inferred from experiments and well above the ambient-
pressure melt temperature of 1562 K.10 Our current best es-
timate of the Be melt line appears as the dashed line in Fig.
6; the symbols represent the experimental P=0 melting point
�upward triangle� and ab initio two-phase melting results
�downward triangles� in which the solid phase is chosen to
be bcc.26 These three melt points are connected using a
Simon-Glatzel fit.33 Our hcp-bcc phase line result seems to
be in reasonable agreement with the work of Rudin et al.5

and Robert et al.,14 though neither groups reported their ex-
trapolated ambient-pressure hcp-bcc transition temperature.
It is important to note that the hcp-bcc internal energy dif-
ference at T=0, giving rise to the cold hcp-bcc transition
pressure of �400 GPa,5,6,14 is essentially within the typical
errors associated with local density approximation �LDA�
and/or GGA approximation. In this sense, errors in the cold
energies could give rise to appreciable shifts in the phase
boundary. In spite of this, we assume, for sake of argument,
that the cold curves are sufficiently accurate for our pur-
poses.

Yet another cause for concern is the complete neglect of
anharmonicity, contributions to the energy of ionic excita-
tions which are not merely quadratic functions of atomic
displacements away from equilibrium. Anharmonicity can
give rise to deviations of the specific heat from the Dulong-
Petit value of 3kB/atom at high T. Large anharmonicity may
be expected in situations in which barriers between local
minima in the potential energy surface of the ions are small
and can therefore be overcome at high T, such as shown in
Fig. 3. Indeed, other groups have suggested this as a strong
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possibility for bcc Be, owing to its mechanical instability at
large V.5,6 Our investigations using ab initio MD �described
in detail below for its application to the liquid� have revealed
only very minor deviations in the specific heat for both solid
phases at the conditions relevant for their metastability.34 We
thus neglect anharmonicity in the construction of the solid
free energies.

III. CONSTRUCTION OF LIQUID FREE ENERGY
AND PHASE DIAGRAM

We break the modeling of the liquid EOS into two parts.
The low-T �kBT�2 eV� liquid free energy is constructed by
using our solid free energies as a reference, together with our
�limited� knowledge of the melt curve. The liquid EOS so
constructed is then validated by performing select ab initio
molecular dynamics calculations of the internal energy and
pressure, which are shown to compare well to those of the
model. The high-T �kBT�2 eV� liquid free energy is con-
structed using a global EOS model similar to Quotidean
equation of state �QEOS�.39 This is fit as closely as possible
to the low-T EOS at kBT=2 eV. At higher temperatures,
where the electron-thermal term of Eq. �1� is dominant, this
approach uses an atom-in-jellium model known as
Purgatorio18 to describe ionization due to pressure and tem-
perature.

A. Low-T liquid

For an elemental metallic liquid at temperatures in the
neighborhood of melting, the specific heat is generally quite
close to the Dulong-Petit value of 3kB/atom, just as it is for
solids.3 As such, it is reasonable to assume that the liquid
free energy can be modeled in a manner similar to that for
solids. We use the model of Chisolm and Wallace,16 in which
the free energy per atom is of the form

F�V,T� = F0�V� + 3kBT log� �̄

T
 − kBT log�w� + Fe�V,T� .

�10�

The first term is a “cold curve” for the liquid. The second
term is a Mie-Grüneisen piece accounting for ionic excita-
tions at high T within a representative many-body potential
well with a curvature set by the effective Debye temperature,

�̄. The third term accounts for the presence of multiple such
wells �with the number of wells being wN, where N is the
number of atoms� and can be combined with the second term

by defining another effective Debye T, �̃= �̄ /w1/3. The last
term accounts for electronic excitations. This form for the
liquid free energy has specific heat CV=3kB/atom if Fe=0. It
was shown previously by some of us that this form works
very well in reproducing both melt lines and liquid EOS
calculations for liquid carbon.35

Since the electron-thermal term is of negligible impor-
tance for the solid phases of Be, we also expect it to be
relatively unimportant for the liquid �for this low-T part�.
This will be justified below when comparing to ab initio
calculations. For convenience �see below�, we then fix the

electron-thermal term for the liquid to be exactly the same as
for the bcc phase. Hence, Fe�V ,T�=�e�V /Ve�KT2, where
K�liquid�=0.67, Ve�liquid�=7.751 Å−3/atom, and �e�liquid�
=1.57�10−5 K−2. Just as for the hcp-bcc phase line, we find
the melt lines to be practically unaffected by setting Fe=0
for all three phases. The parameters of the liquid model are
then completely specified by F0�V�, which controls the en-

ergy difference between solid and liquid, and �̃�V�, which
controls the entropy difference.

We first consider �̃�V�. For elemental metals it has been
suggested that the increase in entropy from solid to liquid at
constant V is roughly independent of V and is fairly universal
across a wide range of elements.3 Solid-liquid entropy differ-
ences for elements in the same column of the Periodic Table
as Be �Mg and Ca� are around �0.85–0.9�kB/atom �Ref. 3�;
we assume the identical difference for Be. If this difference
is �S, then at high T for which the Mie-Grüneisen expression
for Fi is valid, we have

�̃�V� = �solid�V�exp
−
�S

3kB
� �11�

as long as Fe�solid�=Fe�liquid� in the neighborhood of the
melt line. If �S is independent of V, then the V dependence

of �̃ is entirely determined by the V dependence of �solid.
Thus we choose the Grüneisen parameter of the liquid to be
of the form AV+B, as we have for the solid phases. The melt
line appearing in Fig. 6 was computed with two-phase simu-
lations using the bcc phase; we then fix �S=0.87kB/atom and

use �bcc�V� for �solid�V�, obtaining a form for �̃�V� identical
to that of Eq. �9� with Vref�liquid�=7.62 Å3/atom,
��0��liquid�=663.6 K, A�liquid�=0.131 Å−3, and B�liquid�
=0.364. This choice then ensures that the change in entropy
going from bcc to liquid is 0.87kB/atom at constant V, inde-
pendent of V. Since �hcp�V� is quite similar to �bcc�V� on the
whole, a very similar �S between hcp and liquid will be
obtained as well.

With this choice of �̃, it is now possible to fix F0�V� for
the liquid by requiring that the melt line be that as appearing
in Fig. 6. In order for Tmelt to be a concave down and mono-
tonically increasing function of P, we must have: �1�
V0�liquid��V0�solid�, �2� B0�liquid��B0�solid�, and �3� the
obvious constraint that the minimum cold energy of the liq-
uid is higher than that of the solid, so �=E0�liquid�
−E0�solid��0. Within our EOS model, the two lower-P melt
points in Fig. 6 are within the hcp-stable region. Thus,
we constrain the liquid cold curve by requiring that the hcp
melt line goes through those two points, while the bcc melt
line goes through the highest-P point.36 Using the two-
phase Maxwell construction to determine hcp-liquid and bcc-
liquid phase lines, we arrive at a cold curve of the form:
F0�V�=F0

u�V�+F0
break�V�. F0

u�V� is of the Vinet form23 with
parameters V0�liquid�=7.95 Å3/ atom, B0�liquid�=112 GPa,
B1�liquid�=3.64, and �=E0�liquid�−E0�bcc�=0.149 eV/
atom. F0

break�V�=Aun / �B+un�, with u=1−Vb /V, and
A=−2.0 eV, B=5.0, n=3, and Vb=4.25 Å3/atom; F0

break�V� is
only added if V�Vb and is set to zero otherwise. Note that
we fixed the value of B1 �liquid� to be the same as that of bcc
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for convenience. This choice of parameters defines F0�V� for

the liquid. Together with �̃�V� and the solid free energies
discussed above, we obtain the phase diagram shown in Fig.
7. The melt lines from hcp and bcc are nearly identical, as
evidenced by the absence of a prominent cusp in the melt
line at the hcp-bcc-liquid triple point. This is due to the fact
that hcp and bcc free energies are so remarkably similar, as
we noted above.

Figure 8 shows energy and pressure isotherms for liquid
Be as computed by the free energy model, together with
select results obtained by performing ab initio MD simula-
tions. For these simulations, we placed 512 Be atoms in a
box with periodic boundary conditions and used the QBOX

code37 with �-only k-point sampling to compute energy and
pressure at the desired densities and temperatures by simu-
lating for up to several picoseconds. Time steps were chosen
to be 1 fs and we used a velocity-scaling thermostat with a
response time of 100 fs. Note that the agreement between E
and P as computed in the MD and E and P as predicted by
the liquid free energy model is quite good.38 This suggests
that the liquid model is relatively accurate and that the basic
assumptions embodied in the model, such as the use of Eqs.
�10� and �11�, are reasonable. We emphasize that the ab initio
MD calculations of E and P for liquid Be were not used to fit
the liquid free energy model.

B. High-T liquid: Plasma

Above kBT=2 eV, we use a global EOS model similar to
QEOS �Ref. 39� for generating the EOS of the liquid. In
QEOS, the free energy is partitioned as in Eq. �1�. F0�V� is of
a form similar to what we have described above, only de-
fined over a much wider range of V. The ion-thermal term is
constructed to have a specific heat which is equal to 3kB at
Tmelt�V� and drops to the ideal gas value of 3 /2kB according
to the scaling law �Tmelt�V� /T�1/3, where Tmelt�V� is the melt
temperature as predicted by the Lindemann law.3 The use of
the Lindermann law requires that the Grüneisen parameter of
the solid be specified as a function of V. Our model for

solid�V� is a piecewise linear function which closely re-

sembles the phase dependent 
 we have determined above
for Be. Care must be taken when constructing the electron-
thermal term at high T, as this term becomes the dominant
contributor as T /Tmelt becomes very large and ionization
plays a role. Fortunately, it is in this regime that the details of
chemical bonding prevalent in the solid and low-T liquid
become less important. Thus, we use an average-atom-in-
jellium model for Fe�V ,T�, in which hot Be is modeled as a
representative ion placed in a homogeneous electron-gas
background. An early incarnation of this model, Inferno,40

solved this problem within a DFT framework using the LDA.
We use essentially the same prescription here, though with
an upgraded numerical package with enhanced capabilities to
track atomic resonances, known as Purgatorio.18 In this way,
we are able to include the effects of inner shell ionization on
the EOS, in which the basic thermodynamic variables such
as E and P change dramatically as an electron, once bound
and localized to an ion, becomes “free” and moves into the
jellium continuum.

This global EOS model applies over a much wider range
of density, temperature, and pressure than the three-phase
EOS. It is therefore necessary to embed the more detailed
three-phase EOS model within the wider-range global model
while maintaining thermodynamic consistency in the overall
tabulated EOS. This was done in three steps. First, the global
EOS was constructed to agree as closely as possible with the
pressure and energy isotherm at a temperature of 2 eV from
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FIG. 7. �Color online� Phase diagram of Be from the EOS
model. Upward triangle is the experimental ambient-pressure melt
point �Ref. 10�; downward triangles are results from two-phase
simulations melting from bcc �Ref. 26�. Thin lines denote the prin-
cipal Hugoniot as computed by the EOS model.
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the smaller-range three-phase EOS. After applying an energy
shift to align the energy zero values in the models, agreement
was achieved at the high-density region, but there was still
some discrepancy at the low density end. The second step
eliminated this discrepancy by smoothly and monotonically
interpolating between the low-T model and the high-T model
over a temperature range of 1.4 eV. Finally, a similar inter-
polation procedure was used to smooth the transition as a
function of density, both at the low density
�0.8–1.66 g /cm3� and at high-density �14.96–25.1 g /cm3�
ends of the three-phase model. The interpolation started at
the boundary of the three-phase model and modified only the
values of the EOS associated with the global model. This
procedure resulted in a global equation of state that obeys the
thermodynamic constraint dE /dT�0 everywhere.

C. Discussion of principal shock Hugoniot

Returning to the lower-T phase diagram, the prediction of
the hcp-bcc phase line, together with its relation to the Be
melt curve, has implications for the interpretation of dynamic
high-pressure experiments performed on Be. If Be is sub-
jected to a planar one-dimensional shock, the locus of acces-
sible final states will lie along the principal Hugoniot curve,8

which we calculate and display as the thin lines in Fig. 7.41

Note the discontinuities in the Hugoniot when traversing the
phase boundaries, a reflection of the fact that each phase
possesses a distinct free energy function. In particular, there
is a very small discontinuity going from hcp→bcc. This is
due to the very small entropy difference between the two
solid phases. There is a larger difference, however, between
the solid and liquid portions of the Hugoniot. This is due to
the larger entropy difference ��0.9kB/atom� we assumed be-
tween solid and liquid.

A key question is whether or not it is possible to shock
into the bcc phase prior to melting, starting from the ambient
hcp initial state. Our work suggests that a definitive answer
to this question is likely to be difficult to obtain from our
predictions alone. The reason is that uncertainties in the hcp-
bcc phase line together with uncertainties in the melt curve
provide a wide range of possible shock melt scenarios. For
example, in our EOS model, the hcp-bcc-liquid triple point
shown in Fig. 7 is right in the neighborhood of the point at
which the principal Hugoniot crosses the melt curve on the
solid side just above 200 GPa. Even though our scenario
predicts a small region of bcc stability along the Hugoniot, a
small change in the position of the triple point could elimi-
nate this region entirely even if the Hugoniot remains un-
changed. Therefore, all we can say at present is that we
would predict at most a small portion of the principal Hugo-
niot to lie in a bcc-stable region.42

Figure 9 shows the high-P and -T portions of the principal
Hugoniot in the � , P� plane as computed with the
Purgatorio-based global EOS. The small kink at a density
just under 6 g /cm3 corresponds to a temperature of roughly
2 eV and is a result of the imperfect join between the
lower-T three-phase and higher-T plasma-based models. The

maximum compression reached along the principal Hugoniot
is just over 8.5 g /cm3, larger than that predicted by the
Thomas-Fermi electron-thermal contribution as in the origi-
nal QEOS work.39 The sharp turnaround in the P versus 
Hugoniot curve is a result of the ionization of the 1s2 core
and corresponds to a temperature of roughly 106 K. In addi-
tion to capturing this ionization physics, the Purgatorio
model uses a fully relativistic treatment for the electrons at
all temperatures. This is responsible for the density increase
again at very high pressures above 106 GPa, resulting ulti-
mately in a limiting value of seven times the initial density.

IV. CONCLUSIONS

We have constructed a multiphase EOS for Be using
phase-dependent free energy models constrained by ab initio
calculations. The hcp-bcc phase line was computed to be in
rough agreement with previous theoretical work5,6,14 in
which the ambient-pressure extrapolation of the phase
boundary is above the melt curve. This is in stark contradic-
tion to the early experimental findings10 but in agreement
with more recent results.13 We have also investigated T=0
internal energies of Be along the Burgers path connecting
hcp to bcc, from which we demonstrated that the energy well
around bcc is very flat, and the barrier separating hcp and bcc
is very small. The liquid EOS was constrained by our knowl-
edge of the solid EOS and the melt curve, together with
atom-in-plasma calculations to address very high tempera-
tures. Our Be EOS model is suitable for use in calculations
of material behavior in extreme conditions.
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