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A study of the drag on the prongs of a number of quartz forks vibrating in the superfluid phase of 4He is
reported, and particular attention is paid to the transitions from laminar to turbulent flow over a wide range of
temperature. Behavior in the normal phase is consistent with that for a classical fluid, as has already been
reported �Phys. Rev. E 75, 025302 �2007��. Behavior in the superfluid phase is compared to that of other
structures vibrating in superfluid 4He, and similarities and differences are noted. We focus on the observed
behavior of the drag coefficient as a function of velocity, and the problems posed by this behavior are explored.
There is evidence for a sharp critical velocity at which significant turbulence starts to be generated in the
superfluid component. At high velocities the drag coefficient tends to that observed in a classical fluid, sug-
gesting that the two fluids, strongly coupled by mutual friction, are then behaving like a single classical viscous
fluid. Behavior in the intermediate region seems to vary from one case to another. Evidence is presented that
in the case of some structures the transition to single-fluid behavior takes place rather abruptly at a velocity that
is only slightly greater than the sharp superfluid critical velocity, but that in other structures the transition is
more gradual. Observed values of both the superfluid critical velocity and the effective viscosity of the fully
coupled fluids are presented and discussed. It is suggested that the critical superfluid velocity is always closely
similar to that at which the coupled fluids would be expected to undergo a classical transition between a flow
that is strictly laminar and one that displays the first instability, and a possible reason is discussed.
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I. INTRODUCTION

Recently many studies of the behavior of vibrating
wires,1,2 spheres,3 and grids4–6 in the superfluid phases of
both 4He and 3He were reported. Attention has been focused
especially on the change in damping associated with the tran-
sition to turbulent flow. Critical velocities have been re-
ported, together with the dependence of the damping on ve-
locity in the supercritical regime; sometimes this transition is
accompanied by hysteresis or switching. Important questions
in classical turbulence relate to the forms of turbulence gen-
erated by flow past various types of obstacle and to the pro-
cesses by which these forms are produced. The experiments
on vibrating structures in superfluids allow us to address
analogous questions relating to quantum turbulence. Turbu-
lence in a superfluid, or quantum turbulence,7 differs from
that in a classical fluid for three reasons: except at the lowest
temperatures, the superfluid exhibits two-fluid behavior, a
normal-fluid component coexisting with a superfluid
component—the two fluids being able to support indepen-
dent velocity fields; the superfluid component can flow with-
out dissipation; and flow of the superfluid is subject to severe
quantum restrictions. These restrictions mean that the only
form of rotational motion allowed in the superfluid compo-
nent is a quantized vortex line, in which there is an irrota-
tional circulation equal to 2�� /m round a thin vortex core,
where m is the mass of a 4He atom or two 3He atoms. Tur-
bulent flow of the superfluid component must therefore take
the form of some irregular tangle of vortex line. On length
scales greater than the spacing between the vortex lines, flow
of the superfluid component can mimic that of a classical
fluid. However, on smaller length scales, including typically

those at which dissipation occurs, the flow must be very
different. At a finite temperature any vortex line moving rela-
tive to the normal fluid suffers a drag �mutual friction�,
which can cause motion in the two fluids to become strongly
coupled. The study of quantum turbulence combines the
challenges we meet in the study of classical turbulence with
those associated with quantum phenomena.

The first aim of this paper is to describe observations
made with a number of vibrating forks8 in superfluid 4He at
temperatures above 1 K, where there is a significant fraction
of normal fluid. The observations are compared to those re-
ported very recently for vibrating forks in 4He at lower tem-
peratures and with those relating to other forms of oscillating
structure in 4He. Experimental results are presented in the
form of plots of the drag coefficient against velocity. We
demonstrate that all these experimental results exhibit certain
common features: a sharp critical velocity, with or without
hysteresis or switching, associated with the onset of turbu-
lence in the superfluid component; a tendency for the drag
coefficient to approach a constant value, of order unity, at
high velocities, similar to the behavior observed with classi-
cal fluids; and an intermediate region in which the drag co-
efficient varies with velocity in a way that differs to some
extent from one type of oscillating structure to another. We
go on to set out the nature of the problems raised by these
observations, emphasizing both the similarities to, and the
differences from, those relevant to classical fluids. We argue
that the observed behavior at high velocities indicates “qua-
siclassical behavior,” in which, even at high temperatures,
there is a single turbulent velocity field �arising from coupled
motion of the two fluids� that mimics that occurring in a
classical fluid. We consider the intermediate region, arguing
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that for some structures there is a rather sudden transition to
quasiclassical behavior, with a more gradual transition for
others. We observe that the superfluid critical velocity seems
to coincide with the velocity at which flow of the quasiclas-
sical coupled fluids would make a transition between a
strictly laminar form and one in which the first instability of
that flow is evident, and we suggest a tentative reason. We
shall wish to emphasize that the way in which the drag co-
efficient is observed to vary with velocity, over the whole
range of velocities, contains much information about the pro-
cesses accompanying the vibration of the structure over and
above that contained simply in the observed superfluid criti-
cal velocity. Our discussion relates only to superfluid 4He;
superfluid 3He, even in the B phase, appears to behave
differently.9,10

There are two different theoretical �or computational� ap-
proaches to the generation of quantum turbulence by vibrat-
ing structures. In the case of very small structures, when only
small numbers of vortex lines may be involved, the evolution
of the turbulence might well be examined by computer
simulation.11 However, for larger structures, when large
numbers of vortex lines are likely to be involved, especially
in fully developed turbulence, computer simulations of the
type so far available are inadequate since they cannot cope
with large vortex densities.10 In this latter case, we must rely
on general physical arguments, essentially statistical in na-
ture, such as those associated with the concept of an eddy
viscosity. Discussion of our experimental results in this paper
will be based on such general arguments, so that they may
not be relevant to the behavior of the smallest structures. We
note that the characteristic dimensions of the forks with
which this paper is primarily concerned are significantly
larger than those of most other vibrating structures that have
been studied in superfluid helium.

II. EXPERIMENTAL RESULTS WITH VIBRATING FORKS
IN SUPERFLUID 4He

The forks are made of quartz and are available commer-
cially as frequency standards,12 typically for 215 Hz
��33 kHz� at room temperature; those we have used in most
of our work have the shapes shown in Fig. 1 and their di-

mensions are given in Table I. The forks are excited at their
resonant frequencies, and we measure the amplitude of the
resonant response as a function of the drive force F.13 The
way in which the amplitude of the response and the drive
force are derived from the electrical measurements is de-
scribed in Ref. 8. It is illuminating to plot the results in terms
of a drag coefficient, CD, which is defined by the equation

F =
1

2
CD�AU2, �1�

where � is the appropriate fluid density, A=LW is the area of
a prong projected on a plane normal to the motion, and U is
the amplitude of the velocity response at the ends of the
prongs of the fork. �Strictly speaking we should take into
account the fact that the velocity with which any particular
part of a prong moves varies along the length of the prong.
However, in the overall damping there is a heavy weighting
in favor of the region of a prong near its tip.� Figures 2–4
show typical results for three forks �A1, L2, and U1� in the
form of plots of CD against U for different temperatures.

III. DISCUSSION OF EXPERIMENTAL RESULTS

A. Normal phase

Consider first the drag exerted on the prongs of the fork
A1 at a temperature of 2.16 K. The fraction of superfluid is
then very small, and we can assume that the observed form
of dependence of CD on U is that for a classical fluid with
kinematic viscosity, �, equal to the viscosity of the normal
fluid divided by the total fluid density. �We attempted to take
data above the lambda transition, but we found that at the
highest velocities they were affected by cavitation.14� At the
angular frequency, �, appropriate to the fork, the classical
viscous penetration depth, �= �2� /��1/2, is small compared
to all dimensions of a prong. We can then expect the drag
coefficient at low velocities �laminar flow� to have the form15

CD = 2�
S

A
����1/2 1

U
, �2�

where S�2L�T+W� is the total surface area of a prong and
� is a constant of order unity that depends on the shape of
the fork. We ignore streaming effects.15 In the limit of high

FIG. 1. �Color online� A commercially available quartz tuning
fork �Ref. 12�. �a� A schematic drawing of the fork; �b� micrograph
of the entire fork; �c� micrograph of the ends of its prongs; �d� detail
of its surface roughness; �e� fork in its original can and with the can
removed.

TABLE I. Dimensions of forks.

Freq. L T W D

Fork �kHz� �mm� �mm� �mm� �mm�

A1 32 3.71 0.42 0.35 0.21

B1 32 3.65 0.68 0.46 0.18

C3 32 2.51 0.25 0.10 0.13

U1 4 19.70 2.20 0.80

U2 8 9.50 0.45 0.90 0.50

L2 32 2.17 0.21 0.10 0.12

L1 32 2.17 0.21 0.10 0.12

K1 32 3.9 0.39 0.28
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velocities we expect to have fully developed turbulent flow,
for which the drag coefficient is expected to be a constant, 	,
of order unity. These expectations are consistent with our
experimental results at 2.16 K, and they are consistent also
with results already published.16 A drag coefficient given by
the simple interpolation formula,

CD = 2�
S

A
����1/2 1

U
+ 	 , �3�

describes the experimental results rather well over the whole
range of velocities. In earlier publications we have defined
the critical velocity for the classical transition from laminar
to turbulent flow as the velocity at which the two terms on
the right-hand side of Eq. �3� are equal, so that

Uc = 2
�

	

S

A
����1/2. �4�

In fact this definition is misleading because, almost certainly,
it does not correspond to any significant change in flow pat-
tern. It is probable that in reality the gradual change in the
form of the drag coefficient, from that corresponding to
strictly laminar flow to that corresponding to a fully turbulent
regime with eddy motion on scales up to width of a prong,
reflects a sequence of different flow patterns; the first one
displaying the primary instability of the laminar flow. For the
case of a vibrating fork the details of this sequence are not
known. The details are known for the case of a cylinder with
circular cross section, undergoing transverse oscillations in
water, with visualization of the flow,17–20 and in this case the
initial instability is a Taylor �Taylor-Görtler� instability in the
viscous penetration depth arising from the curvature of the
surface of the cylinder.18,21,22 Attempts to carry out similar
experiments with a rod of rectangular cross section in water
�i.e., with a suitably scaled version of the prong of a fork� are
in progress in our own laboratory in Prague and by Donnelly
and Hershberger23 at the University of Oregon, but they are
proving hard to interpret �in setting up these classical experi-
ments we have assumed that the two prongs of a fork do not
lead to flows that interfere with each other�; it might be ex-
pected that the first instability would arise at the corners of

FIG. 2. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing tuning fork A1 �Ref. 12�. The lines are fits to a theoretical
expression that is described in the text. In the inset we show the
experimental curves for temperatures of 1.31 and 2.16 K, together
with the broken �green� line, which shows how the drag coefficient
would behave for a classical fluid with the kinematic viscosity �c

evaluated for fork A1 at a temperature of 1.31 K ��c is defined in
the text�.

FIG. 3. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing tuning fork L2. Behavior of the fork L1 is very similar. The
lines are fits to a theoretical expression that is described in the text.

FIG. 4. �Color online� Plots of the observed drag coefficient at
two temperatures and at the saturated vapor pressure for vibrating
tuning fork U1. The lines are fits to a theoretical expression that is
described in the text.
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the rod, but, if this is indeed the case, the instability seems to
spread rapidly over the whole surface of the rod. In the
present context we shall find later that the physically signifi-
cant classical critical velocity seems to be that at which the
first instability occurs, which we identify with the first de-
parture of the drag coefficient from that corresponding to
strictly laminar flow and which we denote by Uc1. For the
purposes of rough quantitative analysis we take Uc1 as the
velocity at which the first term on the right-hand side of Eq.
�3� is four times 	; i.e., we take

Uc1 =
�

2	

S

A
����1/2. �5�

B. Superfluid phase: Forks A1, B1, and C3

Looking at Figs. 2–4, we see that the curves for tempera-
tures well below the lambda transition are quite different in
shape from those for the normal phase. Especially at the
lowest temperatures, there is a minimum in the drag coeffi-
cient; in the case of fork A1 this minimum is rather sharp,
although it is less sharp in the case of forks L1/L2 and U1. A
sharp minimum suggests the existence of a sharp critical ve-
locity. Since this feature becomes well marked at only the
lowest temperatures we make the reasonable assumption that
it is associated with the superfluid component; i.e., that it
marks the onset of significant vorticity, in the form of a sig-
nificant density of vortex lines, in the superfluid component.
We denote this critical velocity by Ucs. We emphasize that no
hysteretic behavior is seen; the form of the drag versus ve-
locity is the same for increasing velocities as it is for de-
creasing velocities.

Let us now focus our attention on the results obtained
with fork A1; those obtained with forks B1 and C3 are simi-
lar. We see that, at velocities greater than that which we
identify as the superfluid critical velocity, the drag coefficient
passes through a broad maximum and then follows a curve
that is very similar to that for a classical fluid, tending to a
constant value of order unity at the highest velocity. Thus
there appears to be a critical velocity analogous to that given
by Eq. �4� in addition to the critical velocity Ucs. At first sight
we were tempted to associate this second transition with the
normal fluid,24 but in fact this is not reasonable because of
the strong coupling between the two fluids that must result
from the vortex lines produced by the transition in the super-
fluid component. Instead we start by suggesting the follow-
ing tentative scenario. The transition in the superfluid com-
ponent leads to the formation of a random tangle of vortex
line in the neighborhood of the fork. The resulting mutual
friction couples the two fluids together, so that they behave
as a single quasiclassical fluid. We assume that this single
coupled fluid can be characterized by an effective kinematic
viscosity, �e, which describes the combined effect of the vis-
cosity of the normal fluid and an eddy viscosity characteriz-
ing small-scale momentum transfer in the superfluid due to
small-scale vortex motion in the random tangle. The length
scale associated with this small-scale motion is the vortex
spacing, �, and the velocity scale is of order 
 /�, where 
 is
the quantum of circulation. The eddy kinematic viscosity

must therefore be of order 
, which has the same order of
magnitude as the kinematic viscosity, �n /�, of the normal
fluid �� is the total density of the helium�. Thus the effective
kinematic viscosity of the coupled fluids is likely to be of
order �n /�; the precise value may be either larger or smaller
by a factor of order unity. It is natural now to assume that,
provided that the vortex tangle extends far enough from the
surface of the fork, this coupled fluid system can undergo a
gradual transition to large-scale turbulence �turbulent eddies
on a scale of order the width of the prongs of the fork�, in a
way similar to that occurring in a classical fluid. Thus we
might assume tentatively that there are two transitions: the
first establishes a more or less random tangle in the super-
fluid component, allowing that component to undergo rota-
tional motion and to couple its motion to the normal compo-
nent; the second being a quasiclassical transition to large-
scale turbulence in the coupled components. At velocities
greater than the superfluid critical velocity but less than that
associated with the coupled fluids, the “random” vortex
tangle in the superfluid component might allow that compo-
nent to flow in a quasiclassical laminar mode, matching the
laminar flow in the normal fluid; the vortex tangle is then not
strictly random to the extent that it allows the superfluid to
flow with the large-scale vorticity field characteristic of lami-
nar viscous flow. We remark that in this laminar viscous flow
the parallel component of the velocity field, relative to the
velocity of the oscillating fork, would need to vanish at the
boundaries of the fork; this would be achieved by partial
pinning of the vortices on the rough surface of the fork. We
emphasize that these are tentative ideas. We shall find later,
following a more detailed consideration of the experimental
results, that they need some modifications; in particular
coupled laminar viscous flow does not seem to be observed,
the transition in the superfluid at the velocity Ucs leading
immediately to turbulent flow of the coupled fluids.

Our ideas can be expressed in terms of a model, according
to which the total drag coefficient can be represented math-
ematically by the following equations:

CD = 2�
S

A
��xe�e�1/2 1

U
+ xe	 , �6�

where

xe = x + �1 − x���U − Ucs�
�U − Ucs�2


 + �U − Ucs�2 , �7�

�e = � + ��c − ����U − Ucs�
�U − Ucs�2


 + �U − Ucs�2 , �8�

where U is the velocity amplitude of a fork, x is the normal-
fluid fraction, �n /�, �=�n /� is the kinematic viscosity of the
normal fluid referred to the total fluid density, ��y� is the
Heaviside step function, Ucs is the critical velocity of the
superfluid component, �c is the effective kinematic viscosity
of the fully coupled fluids, and �, 	, and 
 are constants.
Equation �6� has the form that applies to a classical fluid with
an effective density xe� and effective kinematic viscosity �e
��cf. Eq. �3��. We see that, according to these equations, the
effective normal-fluid fraction starts to rise from x to unity
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when the superfluid velocity exceeds the critical velocity Ucs,
the change taking place over range of velocity determined by
the parameter 
, and that the effective kinematic viscosity
changes �increases or decreases� from � to �c in a similar
way. The precise description of the transition region of width
� implied by these equations should not be taken too seri-
ously. The equations are intended to provide simply an inter-
polation between the regime in which the two fluids are un-
coupled, for U�Ucs, and that in which the fluids are fully
coupled, for U�Ucs. �It can be added, however, that other
simple forms of interpolation seem less successful when at-
tempting to fit all available experimental data. Better agree-
ment between the fits and the experimental data might be
achieved with additional free fitting parameters, but it is
hardly justified in view of the limited experimental accu-
racy.�

The solid lines in Fig. 2 are obtained with these fitting
functions, �, Ucs, 	, �e, and 
 being adjustable parameters
�normal-fluid parameters are taken from Donnelly and
Barenghi25�. We see that the fits are rather good, providing
evidence in favor of our model. We note in particular that the
model reproduces the maximum in CD at a velocity of order
200 mm s−1. As expected, the fitting parameters �, 	, and 

are independent of temperature, and they are displayed in
Table II. Values of the superfluid critical velocity, Ucs, and
the effective kinematic viscosity, �c, will be discussed later.
As expected, the parameters � and 	 are of order unity,
while �c is not very different from �. The parameter 
 is
small, showing that the initial transition that generates a vor-
tex tangle in the superfluid leads to a sharp rise in the cou-
pling between the two fluids.

C. Superfluid phase: Forks L1/L2 and U1

Looking at Figs. 3 and 4 we see what appears to be a
rather different behavior: the minimum that we associate
with the superfluid critical velocity is less sharp and at ve-
locities greater than the superfluid critical velocity there is no
maximum before the drag coefficient levels off at a constant
value. Nevertheless, as we see from Figs. 3 and 4, our trial
functions 6, 7, and 8 can still be fitted, but only with a value
of � that is significantly increased. This difference implies
that vortex line starts to be produced at velocities above the
superfluid critical value at a rate that is significantly smaller,
so that full coupling between the two fluids sets in more

gradually. The reason for this difference is not known. The
difference does not seem to be associated with a different
size or frequency of fork. A possible reason is that forks
L1/L2 and U1 have prongs with surfaces that are smoother
than is the case with forks A1, B1, and C3.

We remark at this point that not only does � vary from one
fork to another, but also � and 	, although the variation of
these latter parameters is much smaller. The variation of �
reflects an expected dependence of the laminar drag on the
exact shape of the fork. The variation of 	 reflects some
not-unexpected dependence of the limiting value of the drag
coefficient at large velocity on the detailed geometry. We can
add, however, that the values of 	 set out in Table II agree
within experimental error ��20%� in cases where we have
measured them with those obtained when the fork oscillates
in a classical fluid �either gaseous helium at 77 K or the
normal phase of liquid helium at an elevated pressure, the
elevated pressure ensuring that the cavitation observed at the
vapor pressure in the normal phase is suppressed14�; this ob-
servation is consistent with our assertion that at high veloci-
ties the superfluid in the neighborhood of the fork is behav-
ing like a classical fluid.

D. Comparison to vibrating forks at very low temperatures

The experimental results that we have been presenting
relate to vibrating forks in superfluid 4He at temperatures
above 1 K, where there is a significant fraction of normal
fluid. Very recently measurements at lower temperatures
were performed in Kharkov26 and we now compare them to
our own.

Details of the fork �K1� used in Kharkov are included in
Table I. For reasons connected with the way the experiments
were carried out, the response of the fork and the driving
force could not be calibrated in absolute units. Absolute val-
ues have therefore been obtained by direct comparison to the
measurements on our fork A1, which displays almost identi-
cal behavior in an overlapping range of temperature. Typical
results so obtained for the fork K1 are shown in Fig. 5, along
with those for our fork A1 for comparison. We see a very
similar behavior, except that the drag on fork K1 at subcriti-
cal velocities is much smaller. There is no hysteresis.

Various forks suffer some damping due to internal friction
even in vacuo �the Q factor in vacuo is typically 5�105�. At
temperatures above 1 K this damping can be neglected at all
velocities in comparison to that due to the helium. In the case
of the Kharkov results, however, relating to temperatures be-
low 1 K, the damping cannot be neglected. It leads to an
apparently temperature-independent contribution to the drag
at low velocities, a contribution that is dominant at the low-
est temperatures. Subtraction of this contribution leads to a
linear drag that is proportional to T4 at the lowest tempera-
tures, which is to be expected from the scattering of ballistic
phonons. In Fig. 5 we show both the uncorrected and the
corrected values of the drag.

If our ideas were correct, we can expect that our Eqs.
�6�–�8� will still describe the corrected results, provided that
we modify our model to take account of this ballistic scat-
tering, which replaces laminar drag from the normal fluid.

TABLE II. Values of the adjustable parameters �, 	, and �.

Fork � 	 �

A1 0.72 0.85 0.015

B1 0.65 0.43 0.045

C3 0.36 0.42 0.075

U1 0.26 0.52 0.14

U2 0.27 0.5

L2 0.4 0.63 0.85

L1 0.38 0.63 0.95

K1 0.55 0.85 0.003
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The phonons form what is in effect a fluid with high viscos-
ity, which cannot become turbulent. We shall suppose that
the drag due to the phonons is unaffected by the transition to
turbulence in the superfluid component. This may not be
strictly correct because the ballistic scattering may be af-
fected by interaction between the phonons and the vortex
lines, but the drag due to the phonons is small in comparison
to that due to the superfluid turbulence, so that corrections to
it are unlikely to be important. We can therefore modify Eqs.
�6�–�8� by putting x=0 and adding to Eq. �6� a term ��T� /U
to represent the effect of the ballistic scattering. The fits seen
in Fig. 5 are obtained by taking ��0.78 K�=0.013 ms−1 and
��0.43 K�=0.001 ms−1. The good quality of these fits pro-
vides evidence in favor of our model. Values of the other
adjustable parameters are given in Table II. Judging from the
value of 
 we see that the transition to turbulence in the
superfluid is such that the vortex line is produced at a rate
that increases rather sharply with increasing velocity, as was
seen with forks A1, B1, and C3, but not with the other forks.

E. Values of the effective kinematic viscosity

Values of the effective kinematic viscosity �c deduced by
fitting Eqs. �6�–�8� �modified in the case of K1� to the ex-
perimental data for the various forks are shown in Fig. 6.
Although the values have the expected orders of magnitude,
they fall into two distinct groups: those with �c
�10−8 m2 s−1 and those with �c�2�10−9 m2 s−1. There is
no obvious explanation of this fact; the forks belonging to

one group do not seem to have any obvious characteristic
that is different from those in the other group.

IV. COMPARISON TO OTHER VIBRATING STRUCTURES

In Figs. 7 and 8 we show plots of the drag coefficient
versus velocity for an oscillating grid4,5 and an oscillating
sphere.3 The results for the grid, which show little or no
hysteresis, have a form very similar to that for the forks.
However, the data do not extend to sufficiently large veloci-
ties for us to determine the limiting value of the drag coef-
ficient �i.e., the value of 	�. The sphere exhibits hysteretic

FIG. 5. �Color online� Plots of the observed drag coefficient at
several low temperatures and at the saturated vapor pressure for the
vibrating tuning fork K1. Results for our fork A1 are included for
comparison. The lines are fits to a theoretical expression that is
described in the text. The data for K1 do not extend to high enough
velocities to allow an accurate determination of the parameter 	 and
therefore 	 is taken to have the same value as that for A1. The
uncorrected data for K1 are shown as open circles; data corrected
for the internal damping of the fork �see text� are shown as filled
circles. The broken �green� line is derived from Eq. �3� for a clas-
sical fluid of kinematic viscosity �c.

ν

FIG. 6. �Color online� Plots of the effective kinematic �c against
temperature for the various forks as indicated. The solid �green� line
is a plot of kinematic viscosity of the normal fluid �referred to the
total fluid density; i.e., �n /��, based on values tabulated by Don-
nelly and Barenghi �Ref. 25�.

FIG. 7. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for a vi-
brating grid.
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and switching effects,3 which we shall discuss later, but
again the data seem not to extend to high enough velocities
�the apparent rise in drag coefficient at high velocities sug-
gests that the data might then be affected by heating�. We do
not show data for vibrating wires:1,2 again they do not extend
to large enough velocities and, more seriously, it seems dif-
ficult from the available data to correct for significant non-
linear internal damping. Furthermore, the wires have very
small diameters, so that our type of analysis may not be
applicable. We conclude that the available data for oscillating
grids, spheres, and wires are not sufficiently extensive to
permit the type of detailed analysis that underlies our Eqs.
�6�–�8� and that they can be used only to extract values of the
superfluid critical velocity. Further experiments are clearly
required.

Values of the observed critical velocities for the various
oscillating structures are displayed in Fig. 9 �the data labeled
“Fork Lanc” were provided by Haley27�. In cases where there
is hysteresis we have taken the critical velocity that is ob-
served on reducing the velocity. We see that there is a clear
indication that the critical velocities increase with increasing
temperature. Structures of different size seem to have critical
velocities that are very similar in magnitude, but not exactly
the same. The suggestion has been made �see Sec. V� that the
critical velocities increase with increasing angular frequency,
�, as �1/2. To test this suggestion we have plotted in Fig. 10
the dimensionless ratio Ucs / ��
�1/2 against temperature.
There is little evidence that the data then collapse onto a
single line, as would be required by this suggestion. We re-
turn to this question in Sec. V.

V. ORIGIN OF THE CRITICAL SUPERFLUID VELOCITY

It is generally accepted that when the superfluid critical
velocity is exceeded a tangle of vortex lines forms in the
superfluid component in the neighborhood of the oscillating
structure. We argued in earlier sections that at high tempera-
tures this leads to a strong coupling between the two fluids,
and that the coupled fluids, behaving like a single fluid with

a kinematic viscosity determined by a combination of the
viscosity of the normal fluid and the eddy viscosity of the
superfluid, undergoes a gradual transition to a fully turbulent
state in a way closely similar to that observed when the
structure oscillates in a classical fluid. At very low tempera-
tures, when the normal fluid is effectively absent, there is a
similar gradual transition, but one in which the superfluid
component acts alone as a single quasiclassical fluid with a
kinematic viscosity equal to the eddy viscosity associated
with a tangle of vortex lines. These pictures leave us with an
important open question: can we understand the value of the
velocity at which the superfluid makes the initial transition to
a tangled vortex state?

The first point that must be made is that the nucleation of
vortex line at the critical velocity must be “extrinsic”; i.e., it
must arise from the multiplication or stretching of existing
remanent vortex line. Intrinsic nucleation of vortex line is

FIG. 8. �Color online� Plots of the observed drag coefficient at
various temperatures and at the saturated vapor pressure for vibrat-
ing sphere.

FIG. 9. �Color online� Values of the critical superfluid velocity,
Ucs, observed for various oscillating structures, plotted against tem-
perature. The different structures oscillate at different frequencies as
shown.

FIG. 10. �Color online� Values of the dimensionless ratio
Ucs / ��
�1/2 plotted against temperature.
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possible in superfluid 4He only at velocities that are much
larger than those encountered here. Very strong experimental
evidence comes from the recent work of the Osaka group
with vibrating wires.1

As we have already mentioned, the superfluid critical ve-
locity seems not to depend very strongly on the size of the
oscillating structure. If it were accurately independent of size
and shape and if it were then to depend on only the angular
frequency, �, and the quantum of circulation, 
, a dimen-
sional argument leads to

Ucs = const��
�1/2. �9�

This is the predicted dependence on frequency that we
mentioned earlier. However, as we also mentioned earlier,
there is as yet little convincing experimental evidence for
this dependence. The wide scatter on the experimental points
in Figs. 9 and 10 leads us to believe that the critical velocity
depends to a significant extent on the detailed geometry of
the structure and perhaps also on the state of roughness of
the surface. Moreover, it may depend also on the form of the
remanent vortex or vortices.

We shall now focus largely on the behavior of the forks
because, as we have explained, it is for this case that we have
the most complete sets of experimental data. We recall from
Sec. III A that the transition to turbulence in a classical fluid
is rather gradual and described by Eq. �3�. Let us look espe-
cially at the superfluid data in Fig. 2 and consider the way in
which the drag coefficient varies as the velocity is reduced
from a large value. The drag coefficient is observed to rise
with decreasing velocity, just as it does in a classical fluid.
As it approaches proportionality to 1 /U, the drag coefficient
drops rather suddenly to the value appropriate to the normal
fluid acting alone. In other words, the superfluid critical ve-
locity appears at a velocity closely equal to that at which
flow of a classical fluid with density equal to the total helium
density and kinematic viscosity equal to the parameter �c
makes a transition to laminar flow; i.e., at a velocity analo-
gous to the classical critical velocity Uc1 introduced in Sec.
III A �see especially the broken green lines in Figs. 2 and 5�.
Although data for other forks are less clear cut, owing to a
larger value of the smoothing parameter, �, they nevertheless
show very similar behavior. Furthermore, this behavior
seems to be common to all oscillating structures, although
more detailed experimental data will be needed to provide
really convincing evidence. Evidence that the superfluid
critical velocity is generally very similar to the classical criti-
cal velocity Uc1 was discussed in more detail in a recent
review by Skrbek and Vinen.9

Of course this similarity may result from a numerical ac-
cident. The classical critical velocity �Eq. �4�� is of the order
����1/2. The effective kinematic viscosity of the fully
coupled fluids is of the order 0.1
 and therefore the critical
velocity given by Eq. �9� is similar in order of magnitude to
that given by Eq. �5�. But the observations suggest that the
two critical velocities are not merely similar in order of mag-
nitude but are actually closely equal.

At first sight this equality seems very strange. The two
transitions are apparently quite different in character: the
classical transition is from a state of laminar viscous flow

with zero slip at a solid boundary; the quantum transition is
from a state of laminar potential flow with complete slip at a
solid boundary. However, this picture of the quantum transi-
tion is not quite correct because of the need for one or more
nucleating vortices. Superfluid transitions arise from the
multiplication and stretching of these nucleating vortices.
The way in which this multiplication and stretching occurs is
not generally known. Appropriate simulations would be
helpful, but only those of Hänninen et al.10 are available and
they relate to an oscillating structure �a sphere� the surface of
which is smooth, so that the nucleating vortices are not
pinned to particular points on the sphere. However, the re-
sults of these simulations ought to be considered. The tem-
perature is assumed to be zero. The nucleating vortex is in
the form of a vortex stretching across the helium, to which
the sphere is attached. Oscillation of the sphere at angular
frequency � leads to the generation of Kelvin waves on the
nucleating vortex with wave number equal to approximately
k= �� /
�1/2, and as the amplitude of these waves increases to
values of order k−1 self-reconnections result in the produc-
tion of vortex rings with radius of order k−1. These rings are
produced even at quite low velocities. However, above a
certain critical velocity, which we denote by UcH, the density
of these rings in the neighborhood of the sphere suddenly
increases and leads to the formation of what appears to be a
random vortex tangle, which is usually localized in the form
of a wake that oscillates from one side of the sphere to the
other as the sphere itself oscillates. It should be noted that
the critical velocity obtained in the simulations is signifi-
cantly larger than the observed value of Ucs for a sphere.

The formation of this tangle would undoubtedly be modi-
fied if the oscillating structure were rough, but let us suppose
that something similar still occurs, only at a lower velocity.
We suppose then that when the critical velocity Ucs is ex-
ceeded a dense tangle of vortex line envelopes the oscillating
structure. At very low temperatures this tangle causes the
superfluid in the region of the tangle to behave like a classi-
cal viscous fluid, with viscosity equal to the eddy viscosity
associated with a random tangle of vortex line; at a higher
temperature, mutual friction gives rise to a strong coupling
between the two fluids, so that they behave as a single fluid
with an effective viscosity, �c, that depends on both the
normal-fluid viscosity and the superfluid eddy viscosity. This
is of course the idea that we used in developing the model on
which Eqs. �6�–�8� are based. We assumed also that the en-
veloping tangle of vortex line extends away from the oscil-
lating structure to a distance of order that at which flow is
induced by the oscillation of the structure concerned.

However, this quasiclassical behavior requires presum-
ably that the density of vortex line be sufficiently large. In
other words the line spacing, �, must be small compared with
some characteristic lengths in the quasiclassical flow. One
obvious characteristic length in the quasiclassical flow is the
classical viscous penetration depth, given by

� = �2�c

�
�1/2

. �10�

This penetration depth is clearly relevant to quasiclassical
laminar flow; such laminar flow is possible only if ���. The
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characteristic length that is relevant to flow at velocities
greater than those for which laminar flow is stable is less
obvious. We can, however, assert with fair certainty that the
initial instability occurs on a scale that is equal to the viscous
penetration depth �this is known to be true for an oscillating
cylinder of circular cross section21,22�. As long as there is no
hysteresis, which is the case with our tuning forks, the scale
of the turbulent motion at velocities close to critical must
also be confined to a region of size comparable with the
viscous penetration depth, even when the velocity has been
reduced from a large value. Thus we conclude that turbulent
motion also requires that ���, at least at velocities close to
critical.

We return to the way in which the drag coefficient
changes as the velocity is reduced from a large value. Ex-
periment tells us that, as the velocity is reduced toward a
value at which quasiclassical turbulence might be expected
to give way to quasiclassical purely laminar flow �the analog
of Uc1�, the vortex density must decrease rather suddenly to
a value that is too small to maintain quasiclassical behavior;
i.e., to a density such that ���. A sensible conclusion is that
the high density of vortex lines at velocities where there is
quasiclassical turbulence is being maintained by the quasi-
classical turbulence itself.

This view is not unreasonable. The large-scale quasiclas-
sical turbulence is maintained by the large-scale flow round
the structure �combined with the no-slip boundary condi-
tion�. There is an injection of energy into the large-scale
turbulent motion in much the same way as occurs in flow
through a grid �the large superfluid eddies being associated
with a partial polarization of the underlying vortex tangle�.
The energy in the large eddies tends to flow through nonlin-
ear coupling into smaller-scale turbulence until it reaches a
scale of order the vortex spacing, where it serves to generate
extra length of vortex line. The rate of decay of the large
eddies is governed by their lifetimes, which are equal to their
turnover times. Thus an important contribution to the genera-
tion of vortex line could come from the large-scale turbu-
lence, so that failure to maintain this turbulence, for quasi-
classical reasons, could result in a rather sudden reduction in
the vortex line density. The observed link between the criti-
cal velocity Ucs and the velocity at which quasiclassical tur-
bulence is extinguished then becomes natural. Similarly, dur-
ing an increase in velocity, the vortex line density cannot
increase to a value large enough to produce an observable
drag until there is a development of large-scale turbulence.
This situation implies an instability, so that the development
of large-scale turbulence linked to the generation of a large
vortex density may take place in practice only at a velocity
larger than that at which the large-scale turbulence disap-
pears on reducing the velocity. As we have noted, such hys-
teresis is indeed observed with some, but not all, structures,
especially at lower temperatures.

We have noted that a critical velocity, UcH, is observed in
the simulations of Hänninen et al.,10 although its magnitude
is larger than the observed Ucs. This critical velocity seems to
be unrelated to any quasiclassical critical velocity. There are
various possibilities: the existence of UcH may be peculiar to
a structure with a smooth surface; UcH may always be larger
than Ucs and therefore unobservable; or the line density pro-

duced in a steady state above UcH may remain quite small
and too small to allow a quasiclassical transition to turbulent
flow.

It is instructive to estimate the rate of production of vortex
line resulting from the decay of large-scale turbulence. In the
case of homogeneous isotropic turbulence the largest eddies,
characterized by a velocity U and size D, decay on a time-
scale D /U, so that they lead to a flux of energy to smaller
scales equal to roughly U3 /D per unit mass of helium. If we
suppose that this decay rate applies also to eddies of size of
order W in a volume of order WTL /2 around each prong of a
tuning fork �W, L, and T are the fork dimensions shown in
Fig. 1�, then the rate of production of vortex line must be
given in order of magnitude by

�s

2
dL
dt

=
Us

3

W
�

WTL

2
, �11�

where L is the total length of vortex line, Us is the superfluid
velocity relative to a prong of the fork, and where we have
taken the energy per unit length of vortex line, in a random
tangle, to be �s


2. For typical values of the various param-
eters, we find that dL /dt�7�106 ms−1. This is much larger
than the values found in the simulations of Ref. 10, tending
therefore to confirm that vortex production by decay of
large-scale eddy motion is more effective than by direct
stretching of remanent vortices �although the proviso must
be added that the simulations of Ref. 10 were not extended to
very large times�.

Our model of the physics underlying the critical velocity
Ucs implies that there is a small density of vortex lines in the
neighborhood of the oscillating structure at velocities less
than Ucs. The model does not tell us the magnitude of this
small density. Experiments reported so far indicate a density
that is too small to have an observable effect on the drag,
although we note that the drag is likely to be determined not
only by the density but also by the configuration of vortex
line. Experiments at lower temperatures than have so far
been studied, where the drag due to the normal fluid has
become very small, ought to throw light on this question.

We return to the actual value of the critical superfluid
velocity Ucs. We have suggested that it is equal to Uc1, evalu-
ated for a classical fluid with kinematic viscosity equal to the
effective kinematic viscosity �c; i.e.,

Ucs =
�

2	

S

A
���c�1/2. �12�

Thus we predict that Ucs is proportional to the square root of
the frequency only if the parameters �, 	, S /A, and �c are
constant. This prediction is consistent with our earlier sug-
gestion that the critical velocity seems to depend to a signifi-
cant extent on the detailed geometry of the structure.

The views that we have been expressing are of course
speculative. Significant features of the experimental results,
especially the variation of both the parameter � and the ef-
fective kinematic viscosity �c from one structure to another,
remain puzzling. But we hope that our views will serve to
stimulate further work, both in the acquisition of more ex-
tensive experimental data and in the development of the
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theory. If confirmed, a link between a superfluid critical ve-
locity and an instability of quasiclassical flow would be an
interesting feature of quantum turbulence.

We have noted that we have as yet little detailed knowl-
edge or understanding of the transition to turbulence in the
flow round our oscillating forks in a classical fluid. We em-
phasize, however, that this fact does not seriously affect our
argument. In essence we have based this argument on the
idea that quasiclassical flow of the superfluid around our
forks mimics the purely classical flow, whatever that classi-
cal flow might be. This is not to say that a detailed knowl-
edge of this classical flow would not lead ultimately to a
better understanding of the quantum case.

VI. SUMMARY AND CONCLUSIONS

We have reported the results of experiments in which we
have measured the drag on the prongs of a number of small
tuning forks oscillating in superfluid 4He, over a range of
temperatures above 1 K, and we have compared our results
to those obtained with forks at lower temperatures and with
other forms of oscillating structure. We have presented our
results in the form of plots of the drag coefficient against

velocity; we have argued that the detailed form of these plots
contains valuable information that extends beyond a knowl-
edge of a critical superfuid velocity above which there is an
increased drag; and we have noted similarities with the be-
havior of oscillating structures in classical fluids. In the light
of this information we have discussed the nature of the criti-
cal superfluid velocity. We have observed that the velocity
seems often to be associated with a transition to turbulence
that is essentially classical in its characteristics, and we have
tentatively suggested that this quasiclassical behavior has its
origin in an instability in which the generation of vortex line
at the rate required to produce large-scale turbulence is a
by-product of the large-scale turbulence itself.
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