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In the framework of Ginzburg-Landau theory, we numerically investigate the thermally activated phase slips
which are responsible for the current dissipation in ultrathin doubly connected superconducting cylinders in the
presence of transport current and external magnetic field along the cylinder axis. A hollow cylinder of radius R
is mathematically transformed into a two-dimensional �2D� superconducting strip of width w=2�R with
periodic boundary condition. The phase slips may occur via free-energy saddle points of two distinct kinds.
The saddle points of the first kind exhibit a one-dimensional �1D� variation of order parameter described by the
�extended� Langer-Ambegaokar-McCumber-Halperin �LAMH� theory �Phys. Rev. 164, 498 �1967�; Phys. Rev.
B 1, 1054 �1970��. The saddle points of the second kind exhibit a 2D variation of order parameter, showing
that each phase slip is realized through a thermally activated process of vortex-antivortex pair creation and
annihilation. In particular, there exists a critical radius Rc separating the 1D LAMH behavior �below Rc� and
the 2D vortex-antivortex behavior �above Rc�. The effects of external magnetic field on these saddle points are
presented. The critical radius Rc is found to decrease with increasing field strength, and hence applying a
magnetic field may induce a transition in the phase-slip characteristics.
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I. INTRODUCTION

Suppression of superconductivity by fluctuations in low-
dimensional systems has been of theoretical and experimen-
tal interest for decades. In one-dimensional �1D� systems,
i.e., wires, thermally activated phase slips are responsible for
the decay of supercurrent at temperatures below the critical
temperature Tc, according to a series of theoretical works by
Little,1 Langer and Ambegaokar �LA�,2 and McCumber and
Halperin �MH�.3 The LAMH theory2,3 provides a framework
for quantitative studies of the current dissipation in super-
conducting wires below Tc. In two-dimensional �2D� super-
conducting thin films that are wide enough, the current dis-
sipation is due to the flow of free vortices induced by the
thermally activated �and/or current assisted� unbinding of
vortex-antivortex pairs �VAPs�, quantitatively described by
the resistance theory based on the Kosterlitz-Thouless
transition.4–10 The above 1D �Refs. 1–3 and 11–13� and 2D
�Refs. 4–10� problems have been extensively investigated
both theoretically and experimentally. However, the case of
intermediate dimension has received relatively less attention.
Recently, the mechanism of current dissipation in quasi-2D
narrow superconducting strips has been investigated.14–16 We
have numerically shown that the current dissipation in
quasi-2D strips may arise from phase slips that involve two
distinct kinds of saddle points of the free-energy functional.16

A critical value of strip width wc is numerically determined.
Below wc, the strip behaves as a 1D superconducting wire in
which the phase slips are described by the LAMH theory.
Above wc, however, the 2D character of the strip is recov-
ered: each phase slip is realized through a single vortex
crossing the strip.

Similar to a quasi-2D superconducting strip, an ultrathin
doubly connected superconducting cylinder �DCSC� consti-
tutes another link between 1D and 2D superconductors. One

of the most important properties of the cylindrical geometry
is the Little-Parks oscillation of the critical temperature with
the magnetic flux piercing the cylinder.17–19 In particular, the
novel destructive regime near half-integer flux quanta �in
which there is no superconducting condensation at zero tem-
perature� has been investigated in ultrathin DCSCs.20–22 A
phase-separation mechanism21,22 has been proposed for the
observed temperature dependence of resistance, but the cur-
rent dissipation in ultrathin DCSCs remains an unresolved
issue. Conceptually, a hollow superconducting cylinder can
be viewed as a rolled-up 2D strip. Compared to a usual “flat”
superconducting strip, the cylindrical geometry means that
transverse �circumferential� persistent current can be induced
by a magnetic field piercing the cylinder. For temperatures
below Tc and transport currents below the critical current,
thermally activated phase slips may still be responsible for
the current dissipation in ultrathin DCSCs, but under the in-
fluence of field-induced persistent current. In this paper, we
present a numerical study of these phase slips, with a focus
on the quantitative effects of applied magnetic field.

The paper is organized as follows. The theoretical model
is presented in Sec. II. The ultrathin DCSC is described by a
Ginzburg-Landau �GL� free-energy functional and the corre-
sponding time-dependent GL equation with a Langevin
noise. For the convenience of presentation, the DCSC is
transformed into a mathematically equivalent geometry, i.e.,
a 2D strip with appropriate boundary conditions. The meta-
stable current-carrying states, free-energy saddle points, and
current-reducing phase-slip fluctuations are then described.
The numerical results are presented in Sec. III. There exist
two distinct kinds of phase slips corresponding to two dis-
tinct kinds of free-energy saddle points. The phase slips of
the first kind are of 1D character numerically observed for
cylinder radius below a critical value. Those of the second
kind are of 2D character observed for cylinder radius above
the critical value. The effects of the external magnetic field
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piercing the cylinder are investigated, with the critical radius
found to decrease with increasing field strength. The paper is
concluded in Sec. IV.

II. PHASE-SLIP FLUCTUATIONS IN ULTRATHIN
DOUBLY CONNECTED SUPERCONDUCTING

CYLINDERS

A. Ultrathin DCSC

Figure 1�a� is a schematic illustration of an ultrathin
DCSC. The radius, length, and thickness of the hollow cyl-
inder are denoted by R, l, and d, respectively. The external
magnetic field Be and transport current of density je are both
applied along the axis of cylinder, i.e., the z direction. For the
ultrathin DCSC considered here, the thickness d is assumed
to be much smaller than the temperature-dependent correla-
tion length and penetration length. The variations of the or-
der parameter � along the radial direction are energetically
prohibited and the self-induced magnetic field is negligible.
�Typically, we consider R of several temperature-dependent
correlation lengths and assume R�d, so that there is no need
to distinguish the outer and inner radii.� The GL free-energy
functional is of the form

F��� = d� dS�K
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where K=�2 /m, � is the Planck’s constant, and m is the
effective mass of a Cooper pair, e�=2e, A is the vector po-
tential, �=�0�Tc−T�, and �0 and � are both phenomenologi-
cal material parameters. The integration over the cylinder
surface is represented by �dS=R/dzd	, with 	 being the
azimuthal angle in cylindrical coordinate system. It is con-
venient to choose the symmetric gauge A=Be
r /2 and

hence A=BeR�̂ /2, with �̂ being the unit vector in the azi-
muthal direction. Mathematically, a hollow cylinder of radius
R is equivalent to a 2D strip of width w=2�R supplemented

with the periodic boundary condition �PBC� along the �̂ di-
rection. For the convenience of presentation, we make the
coordinate transformation z→x and R	→y to construct a
new xy coordinate system, in which the equivalent 2D strip
has its center located at the origin, as shown in Fig. 1�b�. In

the xy system, the current density je becomes jxx̂ and the
vector potential A becomes Aŷ which induces a persistent
current of density jyŷ, to be detailed below, with x̂ and ŷ
being the unit vectors in the x and y directions.

The time evolution of � is governed by the time-
dependent GL equation with a white noise,

�
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where � is the damping coefficient, the asterisk denotes the
complex conjugate, and �x ,y , t� is a white noise satisfying
the autocorrelation functions

�x,y,t��x�,y�,t��� = 0,

�x,y,t���x�,y�,t��� = 4d−1�kBT��x − x����y − y����t − t�� .

This noise generates a random motion of ��x ,y� in the con-
figuration space and stabilizes an equilibrium distribution
with the probability density proportional to e−F���/kBT.

For computational purpose, we use the dimensionless
form

F̄��̄� =� dx̄dȳ�1
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for the free-energy functional. Here the overbar denotes the
dimensionless quantities obtained with F scaled by G�T�
=d�2�2 /�, � by �� /�, x and y by the temperature-
dependent correlation length �=�K /�, and the vector poten-
tial A by �o /2�� with �o=2��c /e� being the flux quan-
tum. The magnetic flux piercing the cylinder �=�R2Be is a
physical quantity measuring the strength of applied field.
Scaling the applied flux �=�R2Be by �o yields the dimen-

sionless flux �=� /�o with the relation �= ĀR̄. The dimen-
sionless equation corresponding to Eq. �2� is of the form

��̄

� t̄
= −

�F̄��̄�

��̄�
+ ̄ = �̄2�̄ − 2iA · �̄�̄ + �1 − Ā2 − 
�̄
2��̄ + ̄ ,

�4�

in which the time is scaled by ��T�=� /�, i.e., t̄= t /��T�, and

the dimensionless noise ̄ satisfies the autocorrelation func-
tions

̄�x̄, ȳ, t̄�̄�x̄�, ȳ�, t̄��� = 0,

̄�x̄, ȳ, t̄�̄��x̄�, ȳ�, t̄���

= 4�kBT/G�T����x̄ − x̄����ȳ − ȳ����t̄ − t̄�� .

Throughout the remainder of this paper, we mostly use the
dimensionless quantities with the overbar dropped. We want
to point out that all the temperature effects have been ab-
sorbed into the units �e.g., G�T�, �� /�, and �� in defining the
dimensionless quantities.

FIG. 1. �a� Schematic illustration of an ultrathin DCSC of radius
R, length l, and thickness d, with the external magnetic field Be and
transport current of density je applied along the cylinder axis, i.e.,
the z direction. �b� Schematic illustration of the corresponding su-
perconducting strip of width w=2�R, with x and y coordinates
corresponding to z and R	 in �a�, respectively.
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B. Metastable states, saddle points, and phase slips

The metastable current-carrying states are the local
minima of the GL free-energy functional, which can be ob-
tained from the stationary GL equation

�2� − 2iA · �� + �1 − A2 − 
�
2�� = 0. �5�

It is convenient to take ��x ,y�= f�x ,y�ei��x,y�, in which f and
� represent the magnitude and phase of the complex order
parameter. Then, Eq. �5� becomes

�2f − f � � · �� + 2fA · �� + �1 − A2 − f2�f = 0 �6a�

and

� · �f2��� − A�� = � · j = 0, �6b�

in which j= f2���−A� is the �dimensionless� superconduct-
ing current density. The GL equations �6a� and �6b� can be
solved under appropriate boundary conditions. Besides the
PBC along the y direction ��x ,−w /2�=��x ,w /2�, which is
required to transform the hollow cylinder into the strip, the
PBC is also applied in the x direction, with ��−l /2,y�
=��l /2,y�. Under these boundary conditions, the metastable
states are of uniform magnitude, i.e., �f =0, and the solu-
tions of Eqs. �6a� and �6b� are of the form

�n�x,y� = fneiknx, �7�

where kn=2n� / l is the wave vector along the x direction,
fn=�1−A2−kn

2 is the constant magnitude, and n is an integer
usually called the winding number. Physical observables are
periodic functions of the applied magnetic flux �. Here we
only consider 0���1 /2 and assume a zero winding num-
ber in the y direction �to minimize the free-energy contribu-
tion from order-parameter variation in that direction�. The
current density now has two components: the longitudinal x
component jx= fn

2kn from the transport current and the trans-
verse y component jy =−fn

2A from the persistent current in-
duced by the external magnetic field. In the presence of an
external field, �n remains metastable if the magnitude of
wave vector 
kn
 does not exceed the critical value kc

=��1−A2� /3, which corresponds to the critical current den-
sity jxc=2��1−A2� /3�3/2. As expected, jxc decreases with in-
creasing external field.

Between two neighboring metastable states �n and �n−1,
there is a saddle point of the GL free-energy functional,
�s�x ,y�, which is also a solution of the stationary GL equa-
tion. Physically, this saddle point corresponds to the most
probable thermally activated fluctuation which can carry the
system from �n to �n−1 and vice versa. The free-energy bar-
rier �F is given by �F=Fs−Fn ��F=Fs−Fn−1� for the tran-
sition �n→�n−1 ��n−1→�n�, with Fn �Fn−1� and Fs denoting
the free energies of �n ��n−1� and �s, respectively. According
to the free-energy expression Fn=−�1−A2−kn

2�2wl /4, a
smaller winding number �corresponding to a weaker trans-
port current� yields a lower free energy. Therefore, the tran-
sition �n→�n−1 �for positive n� with a phase change of −2�
�over the length l� is much more probable than the transition
�n−1→�n with a phase change of 2� since the free-energy
barrier �F=Fs−Fn is smaller. Because of this current-biased
barrier crossing, the thermally activated phase slips result in

a spontaneous �irreversible� process in which the free energy
is lowered and the current is reduced. Based on this obser-
vation and also for the convenience of presentation, our dis-
cussions will be focusing on the current-reducing transition
�n→�n−1; the extension to the transition �n−1→�n is
straightforward.

For 2D superconducting strips with superconductor-
insulator boundary condition �y��x , �w /2�=0 applied at the
two edges y= �w /2, we have verified that there exist two
distinct kinds of saddle points corresponding to two distinct
kinds of phase slips.16 Saddle points of the first kind have
been called the phase-slip-strip �PSS� solution,15,16 in which
the superconducting strip acts as a 1D wire with the order
parameter uniformly distributed along the y direction across
the strip. The PSS solution �s

PSS and the corresponding free-
energy barrier �FPSS can be quantitatively described by the
LAMH theory. Saddle points of the second kind have been
called the phase-slip-vortex �PSV� solution, in which vorti-
ces are involved and thus the order parameter varies in the
two directions. The phase slip occurs through a single vortex
�generated at boundary� crossing the strip. The PSV solution
�s

PSV disappears as the strip width is reduced to a critical
value �4.4,16 below which the PSS solution is the only
channel for phase slips to occur. Above this critical value,
however, saddle points of the two kinds coexist with the PSV
solution dominating the phase slips because of �Fs

PSV

��Fs
PSS, where �Fs

PSV is the free-energy barrier for the PSV
solution.

With the PBCs applied in both the x and y directions, the
PSS solution remains unchanged since the 1D order-
parameter variation satisfies the PBC in the y direction auto-
matically. However, the PSV solution is now prohibited as a
single vortex is not allowed to exist alone under the PBCs in
both the x and y directions. �The 2D system is mathemati-
cally equivalent to a torus, which does not permit the exis-
tence of a single vortex.� The vortices may however exist in
the form of VAP, which is permitted by the PBCs in 2D
space. To be shown in Sec. III is a kind of saddle points that
involve the creation and annihilation of a vortex-antivortex
pair through which a phase slip may occur. We call this kind
of saddle points the phase-slip-VAP �PSVAP� solution, a
generalization of PSV solution to cylinders. In the absence of
external magnetic field, the PSVAP solution can be obtained
simply through a mapping for a given uniform transport cur-
rent. That is, a strip of width w that contains a VAP and
satisfies the PBC in the transverse �y� direction can be di-
vided into two strips of width w /2. Of these two strips, one
holds a vortex and the other holds its image, i.e., an antivor-
tex. The superconductor-insulator boundary condition is sat-
isfied at the edges in the transverse direction of each strip.
Based on this mapping, the free-energy barrier �FPSVAP as-
sociated with the PSVAP solution for a cylinder of width w is
given by �FPSVAP�w�=2�FPSV�w /2�, where �FPSV�w /2� is
the free-energy barrier associated with the PSV solution for a
strip of width w /2. This relation can also be established from
the analytical expressions derived in the framework of Lon-
don theory �see Appendix, Sec. 2 for details�. The above
mapping suggests that, in the absence of external field, the
behavior of phase slips in the DCSC system �with the PBC
applied in the y direction� is determined by a critical width
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wc0�8.8, which is twice the critical width ��4.4� found for
strips.16 �Here the subscript “0” indicates zero external field.�

Naturally, it is expected that the saddle points described
above, i.e., the PSS solution and the PSVAP solution, would
be affected as an external magnetic field is applied, by which
a persistent current along the transverse y direction is in-
duced. In Sec. III, we present the numerical results showing
the quantitative effects of the applied field on phase slips. As
expected, the magnetic field always suppresses the supercon-
ductivity: it enhances the current-reducing fluctuations by
reducing the free-energy barrier. Because of the 1D character
of the PSS solution, the LAMH theory can be readily ex-
tended to obtain �s

PSS and the corresponding free-energy bar-
rier �FPSS analytically �see Appendix, Sec. 1�. For the PS-
VAP solution, however, it would be very difficult to obtain
any analytical results in the GL description.

Recently, the string method23–25 has been presented for
the numerical evaluation of thermally activated rare events.
This method first locates the most probable transition path-
way connecting two stable/metastable states in configuration
space. This is done by evolving strings, which are smooth
curves with intrinsic parametrization �such as arc length� in
configuration space, toward the minimal-energy path �MEP�.
Once the MEP is obtained, the saddle point is determined by
locating the maximum of energy potential along the MEP.
We have demonstrated the string method to be an efficient
numerical tool for evaluating the thermally activated phase
slips in 1D superconducting wires26,27 and quasi-2D narrow
superconducting strips.16 The extension of this method to the
ultrathin DCSC system is straightforward. In particular, by
using appropriately prepared initial strings, we can obtain
both the PSS solution and the PSVAP solution. The simplest
initial string is constructed as a linear interpolation between
the metastable states �n and �n−1 �expressed in Eq. �7�� and
leads to the PSS MEP �i.e., the MEP along which the saddle
point is found to be the PSS solution�. Mathematically, a
linear interpolation between �n and �n−1 involves only 1D
variation of � along the x direction, and so does the saddle
point �s

PSS obtained from such an initial string. In order to
obtain the PSVAP MEP �i.e., the MEP along which the PS-
VAP solution occurs at the saddle point�, a small perturbation
to the above initial string has to be used to introduce some
variation along the y direction as well.

III. NUMERICAL RESULTS

Below we present the numerical details for the evaluation
of saddle points intervening neighboring metastable states.
Without losing generality, we start from the transition �3
→�2 for a system of length l=200 and width w=16 �corre-
sponding to a DCSC of radius R�2.55�. As w�wc0�8.8,
phase slips may be thermally activated through either the
PSS solution or the PSVAP solution. In the absence of exter-
nal field, the transport current density is found to be jx
�0.0934�0.24jxc, which is moderately strong. When the
external field of flux �=0.2 is applied, a transverse persis-
tent current of density jy �−0.0774 is induced and the trans-
port current density is slightly reduced to a value �0.0928.

A. Phase slips via PSS solution

Figure 2�a� shows the free-energy variation along the PSS
MEP from �3 to �2, evaluated for �=0 �solid line� and �
=0.2 �dashed line�, respectively. By locating the free-energy
maximum at each curve, we find the free-energy barrier to be
�FPSS=F��s

PSS�−F3=10.90 for �=0 and �FPSS=10.79 for
�=0.2. The latter is slightly suppressed compared to the
former. These values are very close to the theoretical predic-
tions of the �extended� LAMH theory �see Appendix, Sec. 1�:
�FPSS=10.92 for �=0 and �FPSS=10.80 for �=0.2. Dis-
played in Figs. 2�b� and 2�c� are the spatial distributions of
order-parameter magnitude �left� and current density �right�
evaluated at the PSS solution �i.e., the saddle point located at
the PSS MEP�, both showing clearly the 1D character �with
no variation in the y direction�. Figures 2�b� and 2�c� also
show that the x component of current density jx is a constant
in the x direction, as required by Eq. �6b�, which becomes
� · j=�xjx=0 for the present 1D variation. It is interesting to
note that for �=0.2 �shown in Fig. 2�c��, the y component of
current density jy is not a constant in the x direction �with jy
vanishing at the phase-slip center� due to the order-parameter

FIG. 2. �Color online� �a� Dimensionless free energy F evalu-
ated along the PSS MEP from �3 to �2 plotted as a function of the
arc length s in the ��x ,y�-function space, for l=200 and w=16,
with the black solid and red dashed lines representing the �=0 and
�=0.2 cases, respectively. The �3 state is taken as the reference
point at which s=0. The arc length measured along the MEP is
normalized by that from �3 to �2; hence, s runs from 0 to 1. In each
set of the data, the corresponding value at �3 has been subtracted to
let the curve start from zero. �b� Distributions of order-parameter
magnitude �left� and current density �right� for the PSS solution at
�=0. The grayscale varies from black for 
�
=0 to white for 
�

=1. Here only the segments of noticeable spatial variations are
shown for clear illustration. �c� The same as �b� obtained for �
=0.2.
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variation in this direction. A phase slip occurs once the
saddle point is crossed in a large thermal fluctuation and a
segment of superconductor turns normal momentarily, thus
allowing the winding number to change by 1 and the phase
to slip by 2�.

B. Phase slips via PSVAP solution

Now we turn to the saddle points of the second kind.
Figure 3�a� shows the free-energy variation along the PSVAP
MEP connecting the current-carrying states �3 and �2 for the
cases of �=0 �solid line� and 0.2 �dashed line�. The free-
energy barrier associated with the PSVAP solution is evalu-
ated to be �FPSVAP=F��s

PSVAP�−F3=8.70 for �=0 and
�FPSVAP=8.32 for �=0.2. These values are smaller than
those obtained for the PSS solution in Sec. III A, i.e.,
�FPSVAP��FPSS for both �=0 and 0.2. Therefore, in the
strip of width w=16, phase slips are dominated by thermal
fluctuations through the PSVAP solution, i.e., VAP creation
and annihilation. In addition, the free-energy barrier associ-
ated with the PSVAP solution is much more susceptible to
the applied magnetic field. As � is increased from 0 to 0.2,
�FPSVAP is suppressed by 0.38 while �FPSS is suppressed by
0.11. The sensitivity of the PSVAP free-energy barrier
�FPSVAP to external field will be further discussed in Sec.
III C.

In the framework of London theory, we have presented an
analytical expression of the PSV free-energy barrier �FPSV

for strips with superconductor-insulator boundary
condition.16 In this approximate description based on the

London theory, the internal structure of the vortex core is
neglected and the PSV solution is simply represented by a
2D position of the vortex center that yields the maximum
free energy. Excellent agreement has been achieved for rela-
tively wide strips �w�10�, with a positive fitting parameter
used for the core energy. Although the London description is
oversimplified and inaccurate for narrow strips, it provides a
direct picture of the vortex motion in real space. We have
developed a London description for the PSVAP solution
which dominates in DCSCs of relatively large radius. We
find that explicit expression for the PSVAP solution can only
be obtained for a few special cases. The string method is also
employed to numerically evaluate the PSVAP solution and
the associated free-energy barrier in the London description
�see Appendix, Sec. 2 for details�. For the system investi-
gated above, the free-energy barrier is evaluated to be
�FPSVAP=8.69 for �=0 and �FPSVAP=8.28 for �=0.2. In
quantitatively fitting the corresponding values of 8.70 and
8.32 obtained earlier in the framework of GL theory, we use
the core energy Ec=1.25, which is close to the values Ec
�1.27 and 1.22 used in Ref. 16.

Displayed in Figs. 3�b� and 3�c� are the distributions of
order-parameter magnitude �left� and current density �right�
evaluated for a sequence of states along the PSVAP MEP
from �3 to �2. It is shown that a pair of vortex �with clock-
wise current circulation� and antivortex �with counterclock-
wise current circulation� is first nucleated at the center in the
transverse direction �state I�. They are then separated from
each other by thermal activation �state II, which is the sta-
tionary PSVAP solution� and finally annihilated at the bound-
aries �state III� where they are recombined �because of the

FIG. 3. �Color online� �a� Di-
mensionless free energy F evalu-
ated along the PSVAP MEP from
�3 to �2 plotted as a function of
the arc length s in the
��x ,y�-function space, with the
black solid and red dashed lines
representing the �=0 and �
=0.2 cases, respectively. Here F
and s are defined in the same way
as for Fig. 2�a�. �b� Distributions
of order-parameter magnitude
�left� and current density �right�
for a sequence of states labeled
along the curve for �=0 in �a�.
The grayscale varies from black
for 
�
=0 to white for 
�
=1. Only
the segments of noticeable spatial
variations are shown for clear il-
lustration. �c� The same as �b� ob-
tained for �=0.2.
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PBC in the y direction�. Compared to Fig. 3�b� for �=0, the
orientation of VAP in Fig. 3�c� for �=0.2 deviates from the
y direction, indicating that the vortex and antivortex are not
moving perpendicularly to the strip. To show this field-
induced feature more clearly, we plot in Fig. 4 the passage
rR= �xR ,yR� for the motion of the vortex relative to the anti-
vortex along the PSVAP MEP for �=0.2. The passage ob-
tained in the framework of GL theory is compared with that
obtained in the framework of London theory, and a semi-
quantitative agreement is seen. Physically, the x component
of the relative motion arises from the force in the x direction
caused by the field-induced y component of current density
�see Eq. �A5� in Appendix, Sec. 2�.

To see how a phase slip occurs in 2D space, we turn to the
phase distribution ��x ,y� of the complex order parameter.
Without losing generality, we take the PSVAP solution for
�=0.2 �state II in Fig. 3�c�� as an example. Figure 5�a�
shows the contour plot of ��x ,y�, from which the existence
of a vortex and an antivortex is clearly observed. In the space
above the vortex and below the antivortex, the phase in-
creases continuously in the +x direction. In the space in be-
tween, there is a sudden phase change of 2� around x=0
�with the color jumped from blue to red�. This is shown more

clearly in Fig. 5�b�, where ��x ,y� is plotted as a function of
x for three y levels �above the vortex, below the antivortex,
and in between�. These phase variations show that the phase
change accumulated along the +x direction will decrease/slip
by 2� once the VAP traverses the strip along the y direction.

C. Crossover from 1D PSS regime to 2D PSVAP regime

In the presence of external magnetic field, the motion of
the vortex relative to the antivortex is no longer along the y
direction. This field-induced distortion in the vortex passage
indicates that the strip may accommodate the VAP with a
transverse dimension smaller than the critical width at zero
field wc0�8.8. To verify this conjecture, we purposely study
the saddle points for a strip of width w=8, which is slightly
smaller than wc0. Figure 6 shows the free-energy barrier as a
function of � evaluated for transport current densities jx
�0.02jxc and jx�0.4jxc, which correspond to the initial
winding numbers n=1 and n=20 for a strip of length l
=800. The solid lines represent �FPSS associated with the
PSS solution calculated according to the �extended� LAMH
theory and numerically verified by using the string method.
There are two sets of data presented for �FPSVAP associated
with the PSVAP solution. The squares represent the numeri-

FIG. 4. �Color online� The passage for the motion of the vortex
relative to the antivortex at �=0.2. The black solid line represents
the result obtained in the framework of GL theory and the red
dashed line represents the result obtained in the framework of Lon-
don theory. Here the dotted lines represent an extrapolation of the
GL result because the positions of vortex and antivortex become
indistinguishable as they are close enough. The squares denote the
position of the vortex relative to the antivortex in the PSVAP
solution.

FIG. 5. �Color online� �a� Contour plot of the phase distribution ��x ,y� �in the unit of 2�� in the PSVAP solution for �=0.2 �corre-
sponding to state II in Fig. 3�c��. The reference point of �=0 is taken at x=−l /2 and the color scale varies from blue for �=1 to red for �=2.
�b� The phase variation in the x direction, plotted for the three y levels, marked by the horizontal lines in �a�: y=−6 �black solid line�, y
=0 �red dashed line�, and y= +6 �blue dotted line�. Only the segment of −20�x�20 is shown for clear illustration.

FIG. 6. �Color online� Free-energy barrier plotted as a function
of �, evaluated for a sample of width w=8 and length l=800, with
the initial winding numbers n=1 �black� and n=20 �red�. The solid
lines represent �FPSS associated with the PSS solution calculated
according to the �extended� LAMH theory, while the symbols rep-
resent �FPSVAP associated with the PSVAP solution numerically
obtained in the GL description �squares� and the London description
�circles� by employing the string method.
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cal results obtained in the framework of GL theory and the
circles represent those obtained in the framework of London
theory. The core energy Ec=1.25 is used to make the London
results match the GL results semiquantitatively, but with an
observable deviation between the two data sets. This is ex-
pected for narrow strips in which the distance between the
vortex and antivortex is too short to allow a satisfactory de-
scription by the London theory. The critical value of mag-
netic flux �c, at which �FPSS=�FPSVAP, is found to be
�0.26 for n=1 and �0.30 for n=20. Below �c, although
order-parameter variations along the y direction are still al-
lowed in computation, only those phase slips that occur
through the 1D PSS solution are numerically found to exist.
�That is, by evolving a string toward the stationary MEP, any
order-parameter variation along the y direction would be
gradually removed and a PSS MEP is always reached in the
end.� Above �c, however, phase slips may occur through
either the 1D PSS or the 2D PSVAP solution. The dominant
contribution comes from those through the saddle point of
lower free energy. Figure 6 shows that at the critical field �c
we have �FPSVAP=�FPSS within numerical error, and above
�c we have �FPSS��FPSVAP, i.e., phase slips occur domi-
nantly through the 2D PSVAP solution. Comparing the criti-
cal fields for the two transport current densities, we find that
a larger transport current density determines a stronger criti-
cal field. This is because for w�wc0�8.8, the distorted vor-
tex passage, which is necessitated by the existence of VAP,
results from a competition between the field-induced persis-
tent current in the transverse direction and the transport cur-
rent in the longitudinal direction.

As noted in the beginning, the strip width used here, w
=8, is slightly smaller than the critical width wc0�8.8 at
zero field. Therefore, for w=8 the PSVAP solution is prohib-
ited in the absence of external field but may be brought into
existence by a sufficiently large external field. In other
words, the critical width separating the 1D PSS regime and
the 2D PSVAP regime is dependent on external field. Figure
7 shows the field dependence of the critical width wc for the
weak and strong transport current densities used in Fig. 6. As
expected, the critical width always decreases with increasing
�. In particular, Fig. 7 shows that at the strongest external
field ��=0.5�, phase slips can occur through the PSVAP
solution in strips as narrow as w�3.5 for the weak current or
w�3.9 for the strong current.

IV. CONCLUSION

In the framework of GL theory, we have numerically cal-
culated the saddle points and the associated free-energy bar-
riers for the thermally activated phase slips in ultrathin DC-
SCs with transport current and external magnetic field both
applied along the cylindrical axis. The hollow cylinder of
radius R is transformed into a 2D superconducting strip of
width w=2�R with the PBC applied along the circumferen-
tial �y� direction. The numerical results show the existence of
a critical radius Rc �or equivalently a critical width wc for the
2D strip�. Below Rc, the DCSC behaves as a 1D wire with
the phase slips described by the �extended� LAMH theory.
Above Rc, the system recovers the 2D character with each
phase slip realized through a thermally activated process of
vortex-antivortex pair creation and annihilation. The effects
of external magnetic field are quantitatively evaluated. The
critical radius Rc is found to decrease with increasing field
strength, and hence applying a magnetic field may induce a
1D-to-2D transition in the phase-slip characteristics. It
should be noted that the rate of phase slips �hence the resis-
tance� is determined by both the prefactor � and the free-
energy barrier �F. Here we have been focusing on the latter
only as it always plays the dominant role through the expo-
nential factor e−�F/kBT.

We want to point out that our numerical results are pre-
sented for the dimensionless system �defined in Sec. II�. For
a real DCSC the temperature dependence of free-energy bar-
rier comes directly from the temperature-dependent units
through which relevant dimensionless parameters are de-
fined. Obviously, our numerical study does not give a com-
plete prediction for the temperature dependence of resis-
tance. However, in the limit of weak transport current, the
influence arising from the temperature-dependent unit of cur-
rent density can be neglected, and hence the dominant tem-
perature effect comes from the unit G�T��Tc−T for free
energy and the dimensionless radius of DCSC R�T�� �Tc
−T�1/2, which lead to the decrease in free-energy barrier and
hence the increase in resistance (�exp�−G�T��F /kBT�) as Tc
is approached from below. For relatively large DCSCs �with
R�Rc at T well below Tc�, the temperature dependence in
R�T�� �Tc−T�1/2 indicates a crossover temperature T� that
separates the 1D PSS and 2D PSVAP regimes. Above T� �but
still below Tc�, the resistance follows the description by the
�modified� LAMH theory. Below T�, however, the system
enters into the 2D regime and the resistance becomes larger
than that predicted by the LAMH theory because of the re-
duced PSVAP barrier. For the difference between the two
regimes, as far as temperature dependence is concerned, we
emphasize that the difference in dependence on the dimen-
sionless width w�T�=2�R�T� �linear for PSS solution vs
logarithmic for PSVAP solution� plays the dominant role.
Furthermore, as the external field is gradually increased, T�

can be shifted toward higher temperatures because smaller
dimensionless critical width �wc in Fig. 7� corresponds to
larger length unit and thus temperature closer to Tc. Given
the large radii �2�R�wc� required for PSVAP activation to
occur, one may wonder whether the free-energy barrier is
already too large to produce a measurable resistance �i.e., the
rate �e−�F/kBT is too small to contribute to a measurable

FIG. 7. �Color online� The critical width wc plotted as a function
of �, evaluated for weak �black squares� and strong �red circles�
transport current densities, realized by using the initial winding
numbers n=1 and n=20 for the system of length l=800.
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signal�. To see whether the 1D-to-2D crossover is observable
�presumably for relatively large radii and low temperatures�,
here we make a comparison as follows. Consider a 1D su-
perconducting whisker of radius Rwhi and a DCSC of radius
Rcyl and thickness d. The free-energy barrier for the whisker
is given by a��Rwhi

2 ���2 /� while that for the DCSC is given
by b�2�Rcyld���2 /�. Here �Rwhi

2 and 2�Rcyld are the cross-
sectional areas of the whisker and the DCSC, respectively,
�2 /� is the energy density unit, � is the correlation length,
and a and b are two numerical values. Let the whisker be a
1D system with Rwhi=� /2 and the DCSC be close to the
crossover dimension with 2�Rcyl�8.8� and thus b�a. The
ratio of the free-energy barrier for DCSC to that for whisker
becomes 2�Rcyld /�Rwhi

2 �11d /�. Therefore, if the thickness
d is made small enough �d�0.1��, then the free-energy bar-
rier for DCSC close to the crossover is of the same order as
that for a 1D whisker whose resistance due to phase slips is
considered measurable. Finally, we note that our results show
no signal for the peculiar temperature steps of resistance de-
scribed in Refs. 21 and 22, whose origin calls for further
theoretical and experimental works.
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APPENDIX

Without lengthy yet straightforward derivations, here we
present the analytical expressions for both the PSS solution
in the extended LAMH theory and the PSVAP solution based
on the London theory28–30 for DCSCs in the presence of
external magnetic field and transport current, both applied
along the cylindrical axis. Mathematically, a hollow cylinder
of radius R is transformed into a 2D strip of width w=2�R
with PBC applied in the transverse y direction, as illustrated
in Fig. 1. For consistency the dimensionless quantities de-
fined in Sec. II are used.

1. PSS solution in the extended LAMH theory

In the extended LAMH theory, the PSS solution �s
PSS is

expressed as

�s
PSS�x� = ��1 − A2 − 3ks

2 tanh���1 − A2 − 3ks
2�/2x�

− i�2ks�eiksx, �A1�

where ks is a wave vector determined by

ks = kn − �2/l�tan−1��1 − A2 − 3ks
2�/2ks

2, �A2�

which satisfies kn−1�ks�kn. From the explicit expressions
for �n and �s

PSS, the free-energy barrier �FPSS=F��s
PSS�

−F��n� can be readily obtained as follows:

�FPSS = w�2�1 − A2��2�1 − A2 − 3ks
2�

3

+
l�ks

2 − kn
2��2 − 2A2 − kn

2 − ks
2�

4
� , �A3�

which is proportional to the circumference of DCSC as ex-
pected from the 1D character of the PSS solution. The origi-
nal LAMH results can be recovered from Eqs. �A1�–�A3� as
the vector potential A goes to zero.26,27 Although not the
focus of this paper, it is worth mentioning some limiting
behaviors, which might be instructive to experiments. In the
limit of weak transport current, kn→0, then ks��2n−1�� / l
to the leading order, and hence �FPSS�w�2�1−A2��3/2 /3,
which gives �FPSS�w�2�2 /3−A2� in the limit of weak field
�A→0�.

2. PSVAP solution in the London theory

Considering the translational invariance of the VAP en-
ergy due to the PBCs applied in the x and y directions, we
simply assume the VAP to be generated in the origin. In the
presence of a current of density j= f2k�k, where f �1 for
weak currents, kx=kn for the transport current, and ky =−A
for the field-induced persistent current, the energy of a VAP
in a strip of width w can be expressed as

F�rR� = � ln��w/��2�sin2��yR/w� + sinh2��xR/w���

− 2��kxyR − kyxR� + 2Ec, �A4�

which is a function of the position of the vortex relative to
the antivortex, rR= �xR ,yR�. In the right-hand side of Eq.
�A4�, the first and second terms come from the vortex-
antivortex interaction and vortices-current interaction, re-
spectively, and Ec in the third term is the positive vortex core
energy, usually treated as an adjustable parameter.16 Note
that as rR→ �0,0� or �0,w�, F→−� in approaching the �n
state or the �n−1 state. Equation �A4� becomes invalid as the
vortex-antivortex distance approaches �1 because the size
of the vortex core has not been taken into account. The
saddle point rs= �xs ,ys�, i.e., the PSVAP solution in real
space, satisfies the stationary condition �F�rs�=0, i.e.,

w

�2� �F

�xR
�

rs

=
sinh�2�xs/w�

sin2��ys/w� + sinh2��xs/w�
+

2wky

�
= 0

�A5�

and

w

�2� �F

�yR
�

rs

=
sin�2�ys/w�

sin2��ys/w� + sinh2��xs/w�
−

2wkx

�
= 0,

�A6�

which can be solved numerically. To find the passage for the
motion of the vortex relative to the antivortex in a thermally
activated phase slip, the string method has been employed to
obtain the MEP in real space for F�rR�. The free-energy bar-
rier �FPSVAP=F�rs� can be obtained by locating the maxi-
mum of F�rR� along the MEP. Analytical expressions for the
PSVAP solution can be obtained in the following special
cases:

�1� In the absence of external field, ky =0, and the saddle
point is given by xs=0 �vortex passage along the transverse
direction� and ys= �w /��tan−1�� /wkx�, with the correspond-
ing energy barrier
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�FPSVAP = 2��ln
w

��1 + �wkx/��2
−

wkx

�
tan−1� �

wkx
	� + 2Ec.

Therefore, �FPSVAP�kx ,w�=2�FPSV�kx ,w /2�, where �FPSV

is the free-energy barrier associated with the PSV solution
for a strip of width w /2 with superconductor-insulator
boundary condition �see Eq. �A3� in Ref. 16�. This relation is
a direct consequence of the mapping introduced in Sec. II B
for zero field: a strip of width w with PBC in the y direction
is equivalent to two strips of width w /2 with superconductor-

insulator boundary condition in the same direction. Further-
more, in the limit of kx→0, �FPSVAP�−�wkx+ �w2 /��kx

2

+2� ln�w /��+2Ec.
�2� In the limit of kx→0 and ky→0, the saddle point rs

can be approximated by xs�−�w /��2ky and ys�w /2
− �w /��2kx, which lead to the free-energy barrier �FPSVAP

�−�wkx+ �w2 /���kx
2−ky

2�+2� ln�w /��+2Ec. Therefore, the
response of the free-energy barrier to weak field in the limit
of zero transport current is a net change of −ky

2w2 /�
=−A2w2 /�.
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