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We consider different effects that arise when time-reversal symmetry breaking superconductors are subjected
to an external magnetic field, thus rendering the superconductor to be in the mixed state. We focus in particular
on two time-reversal symmetry breaking order parameters which are believed to be realized in actual materials:
p+ ip� wave and d+ is or d+ id� wave. The first-order parameter is relevant for Sr2RuO4, while the latter order
parameters have been suggested to exist near surfaces in some of the high-Tc cuprates. We investigate the
interplay between surface states and vortex states in the presence of an external magnetic field and their
influence on both the tunneling conductance and the local density of states. Our findings may be helpful to
experimentally identify the symmetry of unconventional time-reversal symmetry breaking superconducting
states.
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I. INTRODUCTION

Recently, considerable attention has been devoted to the
chiral superconducting phase which is believed to be realized
in the p-wave triplet superconductor1 Sr2RuO4. The chiral
state of a p-wave superconductor corresponds to a nonzero
projection lz= �1 of the Cooper pairs angular momentum l
along the z axis, and thus breaks time-reversal symmetry
�TRS�. The spatially homogeneous triplet order parameter

�OP� �̂=�0�d · �̂�i�̂y is described by the vector1 d�p�
= �0,0 , px+ i�py�, which depends on the direction of electron
momentum p. Here �0 is the bulk value of the order param-
eter, �̂= ��̂x , �̂y , �̂z� is the vector of Pauli matrices of conven-
tional spin operators, and �= �1 corresponds to the two pos-
sible values of chirality. Also, chiral superconducting states
can be associated with an admixture of two order parameters
corresponding to different irreducible representations of
crystal point group. Different order parameter components
can naturally coexist in the vicinity of interfaces between
superconductors and surfaces due to the broken symmetry of
the crystal group.2–5 Among the possibilities of subdominant
order parameter symmetries,2 there are states which break
time-reversal symmetry.3–5 The coexistence of order param-
eters shows up in the local density of states,6–9 as well as in
the generation of spontaneous currents flowing along the sur-
faces in the time-reversal symmetry breaking cases.7,8

Time-reversal symmetry breaking order parameters have
been proposed to exist near surfaces10 and within vortex
cores11 in high-Tc superconductors. This proposal stems from
the observation of a split zero-bias conductance peak in the
absence of any applied magnetic field. In this case, it has
been suggested that the relevant order parameter is either d
+ is or d+ id� wave. The gap may then be written as �
=�0g��p�+ i�s or �=�0g��p�+ i�dg1��p�, respectively,
where �0 is an amplitude of the main component and the
admixture of another pairing symmetry is denoted by the
amplitudes �s and �d. Here, �p is a polar angle in momen-
tum space p= p�cos �p , sin �p�; g��p�=cos�2�p+�� and

g1��p�=sin�2�p+��, where � /2 is an angle measuring the
disorientation of crystalline symmetry axes and coordinate
axes. One obtains dx2−y2-wave symmetry of the main order-
parameter component for �=0 and dxy-wave pairing for �
=	 /2. While the experimental data so far clearly indicate an
order parameter which breaks time-reversal symmetry, the
question of whether the symmetry is d+ is or d+ id� wave
remains unsolved. Clearly, experimental signatures that may
distinguish these two types of pairings would be highly de-
sirable.

One of the important features of unconventional super-
conductors is the possibility for the existence of surface An-
dreev bound states.12–14 They occur in the vicinity of the
scattering interface between a superconductor and an insula-
tor if the incident and reflected quasiparticles �QPs� with
different momentum directions see different phases of the
order parameter. The consequence of the Andreev bound-
state formation is an increase in the local density of states
�DOS� �LDOS� at the surface resulting in zero-bias conduc-
tance peak anomaly observed15 in tunneling spectroscopy of
high-Tc cuprates with d-wave symmetry of superconducting
pairing as well as in the p-wave triplet superconductor
Sr2RuO4.16 Also, the Andreev bound states determine the
anomalous low-temperature behavior of the London penetra-
tion length17 and the Josephson critical current in d-wave18

and chiral superconductors.19

Under the influence of an applied magnetic field, screen-
ing currents and vortices may be generated in a supercon-
ductor. As a result, the spectrum of surface states acquires a
Doppler shift, leading to a splitting of the zero-bias conduc-
tance peak.10 Abrikosov vortices located near a supercon-
ducting surface generate an essentially inhomogeneous su-
perfluid velocity field, which leads to a nontrivial electronic
structure of the surface-bound states.20–22 Also, it was
recently22 proposed that the same Doppler-shift effect should
lead to a chirality-selective influence of the magnetic field on
the surface states in a p-wave chiral superconductor with
broken time-reversal invariance. The quasiparticle DOS near

PHYSICAL REVIEW B 79, 054508 �2009�

1098-0121/2009/79�5�/054508�12� ©2009 The American Physical Society054508-1

http://dx.doi.org/10.1103/PhysRevB.79.054508


a flat surface was shown to depend on the orientation of
magnetic field with respect to the chirality as well as on the
vorticity in the case where the Abrikosov vortex is pinned
near the surface of superconductor. Additionally, in super-
conductors featuring gap nodes, such as in the case in pure
dx2−y2-symmetric superconducting cuprates, a vanishing pair
potential in nodal directions results in important ramifica-
tions for the physics of the system.11,23–26

To understand the effect of an externally applied magnetic
field on the surface DOS, let us consider a spectrum of An-
dreev bound states near a flat surface of a time-reversal sym-
metry breaking superconductor occupying the half-space x

0. Below, we focus on the p+ ip-, dxy + is-, and dxy
+ idx2−y2-wave cases for concreteness. We consider a model
situation assuming spatially homogeneous gap function, hav-
ing the following form in momentum space:

� = �0ei��p �1�

for p+ ip-wave,

� = �0 sin�2�p� + i�s �2�

for dxy + is-wave, and

� = �0 sin�2�p� + i�d cos�2�p� �3�

for dxy + idx2−y2-wave superconductors.
Assuming that the QPs are specularly reflected at the

surface of the superconductor within a Doppler-shift
approach,27 the spectrum of the surface states can be ex-
pressed as follows:19,28 �a=�a0+�D, where �a0 is a position
of energy level in zero magnetic field and �D=
kFvs is the
Doppler-shift energy which is determined by a local field of
superfluid velocity. The superfluid velocity vs near a surface
has only a tangential component, directed along the y axis
vs= �0,vsy ,0�, and can be related to the density of supercur-
rent flowing along the surface js=envs, where e is the elec-
tron charge and n is the concentration of Cooper pairs. The
magnetic field is screened in a superconductor at the London
length � as follows: B=He−x/�, where H is the value of mag-
netic field outside the superconductor. Therefore, the super-
fluid velocity is vsy =−�2e /mc��H.

If the magnetic field is absent, the spectrum of surface
states is given by12,29

�0a = ��0ky/kF �4�

for a chiral p wave,

�a0 = �s sgn�ky� �5�

for a dxy + is wave, and

�a0 = �d sgn�ky�cos�2�p� �6�

for a dxy + idx2−y2 wave. Here ky is the projection of QP mo-
mentum along the surface. The above spectra may be for-
mally obtained by solving13

���p�

�a0 − i�����p��2 − �a0
2

=
��	 − �p�

�a0 + i����	 − �p��2 − �a0
2

. �7�

In the dx2−y2 + is-wave case, one finds that �a0

=��0
2 cos2�2�p�+�s

2, from which one infers that there are no

subgap surface states. This is qualitatively different from the
dxy + is-wave case. The interesting effects occur in the latter
case, so we focus on the dxy + is�d�-wave symmetry in the
following, corresponding to �=	 /2.

The transformation of these spectra due to the Doppler-
shift effect is shown in Fig. 1. To be definite we assume that
�s
0, �d
0, and �=1. Considering the DOS at Fermi
level, �= ���a /�ky��=0

−1 , in a chiral p-wave superconductor one
can see that its dependence on the magnetic field is mono-
tonic: it either increases or decreases for different field direc-
tions �see Fig. 1�a�� as discussed in Ref. 22.

Another behavior of the DOS occurs in the case of a d
+ is-wave superconductor. From Fig. 1�b� it follows that for a
certain field direction there are no states at the Fermi level
�=0 �red dashed lines in Fig. 1�b��. For the opposite field
direction �blue dashed-dotted lines in Fig. 1�b��, intersections
of spectral branches with the Fermi level appear when the
superfluid velocity is large enough, �vsy�
�s / pF, so that the
value of momentum projection at the intersection point is
smaller than the Fermi momentum �ky

���kF. Thus, one can
expect that the DOS at the Fermi level should be zero when
H�H�, where H� is the magnetic field value providing the
condition �vsy�= ��s� / pF to be fulfilled.

On the contrary, in the d+ id-wave case the DOS at the
Fermi level is nonzero even in the absence of a magnetic
field. As can be seen from Fig. 1�c� �black solid lines� the
spectral branches intersect the level �=0 at ky

�= �kF /�2.
The transformation of the spectrum due to the magnetic field
of different directions is shown in Fig. 1�c� by red dashed
lines �H
0� and by blue dashed-dotted lines �H�0�. Then,
it can be easily seen that for H
0 the coordinates of the
intersection points ky

� shift toward �kF and for a certain
value of the magnetic field H
H� the DOS at the Fermi
level �=0 disappears.

In the presence of an Abrikosov vortex near the surface of
chiral superconductor a nontrivial structure of the local den-
sity of states distribution appears which depends on the vor-

FIG. 1. �Color online� Plot of the surface states spectrum for �a�
chiral p+ ip-wave, �b� d+ is-wave, and �c� d+ id-wave supercon-
ductors. Spectrum in zero magnetic field is shown by solid lines.
Blue �dash-dotted� and red �dotted� lines correspond to the spec-
trum transformation due to magnetic field directed along and oppo-
site the z axis correspondingly.
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tex orientation.22 Along with the Doppler-shift effect,22 an
important modification of the quasiparticle spectrum and the
DOS can be obtained due to the overlapping of the surface
states and the low-energy QP states localized within the vor-
tex core found in the pioneering work by Caroli, de Gennes,
and Matricon �CdGM�.30 It was shown that QP states with
energy lower than the bulk superconducting gap value � are
localized within the vortex core at the characteristic scale of
the order of coherence length � and have a discrete spectrum
�v��� as a function of the quantized �half-integer� angular
momentum �. At small energies ����� the spectrum for a
vortex with vorticity M is given by

�v��� � − M�� , �8�

where kF= pF /
 and ���0 /kF�. For most of superconduct-
ing materials, including Sr2RuO4, the interlevel spacing � is
much less than the superconducting gap � since kF��1.
Therefore, the CdGM spectrum may be considered as a con-
tinuous function of the impact parameter of the quasiclassi-
cal trajectory b=−� /kF and the direction of QP momentum
�p as in the following form:

�v�b,�p� � M��b/�� . �9�

In the case of a chiral p-wave superconductor, the spectrum
of vortex core states differs from the CdGM result and is
given by Eq. �8� with integer �. For the d+ is- and
d+ id-wave superconductors the quasiclassical spectrum of
vortex core states is given by Eq. �9� with ���p�
=��0

2g2��p�+�s
2 and ���p�=��0

2g2��p�+�d
2g1

2��p�. The dis-
crete spectrum is obtained by applying the Bohr-Sommerfeld
quantization rule to the canonical variables �=−kFb and
�p.23,31 It should be noted that when the superconducting
order parameter contains nodes, the quasiclassical expression
�9� is invalid near the nodal directions since energy states
near the vortex core are not truly localized but rather “leak”
out through the gap nodes.11,23–26 This is not the case for us
since we consider superconducting order parameters which
are gapped over the entire Fermi surface.

To study the interaction between vortex and surface states,
let us consider an example of vortex positioned near a flat
surface of chiral p+ ip-wave superconductor. Comparing the
energies of surface �a �4� and vortex �v �9� states one can see
that for certain QP trajectories the condition of resonance
�a=�v is realized. Thus the spectrum transformation in such
almost degenerate two-level system is given by a secular
equation

�� − �a��� − �v� = J2. �10�

Since we consider a low-energy spectrum �����0, the tra-
jectories should pass close to the vortex center for the spec-
trum modification �10� to be effective. Then, the interaction
of surface and vortex states is determined by the overlap
integral J�� exp�−ã /��, where ã=a /cos �p and a is the dis-
tance from the vortex to the surface. Taking a certain point at
the surface �see point A in Fig. 2�a�� of the superconductor
one can obtain a relation between the angles and impact pa-
rameters of trajectories passing through this point as follows:
b= ã sin��−�p�. Thus the energy of vortex core states can be
written as �v=M�ã /���0 sin��−�p�. Then, from Eq. �10� we

obtain the spectrum transformation shown qualitatively in
Fig. 2 for the particular case of �=0. It is easy to see that for
equal values of vorticity and chirality �Fig. 2�b�� there ap-
pears a minigap in quasiparticle spectrum near the Fermi
level and therefore the zero-energy DOS is suppressed. On
the other hand, in the case of opposite vorticity and chirality
�Fig. 2�c�� there is no minigap and the DOS is not sup-
pressed.

In d+ is- and d+ id-wave superconductors, the interaction
between vortex and surface states can also lead to noticeable
effects, which will be discussed later in the present paper.
Recently, it was pointed out that tunneling of quasiparticles
into vortex core states leads to a resonant enhancement of
subgap conductance of normal-metal/superconductor �N/S�
junction.32 In the case of chiral superconductors, such a tun-
neling effect can lead to either stimulation or suppression of
conductance, depending on the direction of vorticity. We will
show that if vortices are located far from the N/S interface,
the conductance follows the behavior expected from the
Doppler-shift approach. On the other hand, when the dis-
tance from the vortex to the interface becomes comparable
with coherence length � the tunneling into vortex core states
comes into play, leading to the peculiar nonmonotonic con-
ductance dependence on the vortex coordinate with respect
to the superconducting surface.

This paper is organized as follows. In Sec. II, we give an
overview of the theoretical framework which is employed in
this work, namely, a Bogoliubov approach and a quasiclassi-
cal Eilenberger approach. In Sec. III, we present our main
results for the influence of magnetic field on bound surface
states spectra and local density of states near the surface. We
discuss the transformation of surface states in the Meissner
state of superconductor as well as the effects of interplay
between surface and vortex core states. We give our conclu-
sions in Sec. IV.

FIG. 2. �a� Sketch of QP trajectories forming surface and vortex
states and qualitative plot of spectrum transformation due to the
interaction of surface and vortex states in the case of a chiral
p-wave superconductor; vorticity and chirality have �b� equal and
�c� opposite values.
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II. THEORETICAL APPROACH

Our further considerations are based on the
Bogoliubov–de Gennes �BdG� equations for particlelike �u�
and holelike �v� parts of the wave function, which have the
following form:

−
1

2m
	p̂ −

e

c
A
2

u + �̂v = �� + �F�u ,

1

2m
	p̂ +

e

c
A
2

v + �̂†u = �� − �F�v . �11�

Here �̂ is the gap operator, A is the vector potential, pˆ
=−i�� /�x ,� /�y�, and r= �x ,y� is the radius vector in the plane
perpendicular to the anisotropy plane. Hereafter we assume
the Fermi surface to be cylindrical along the z axis and con-
sider a motion of QPs only in xy plane.

In the case of unconventional superconductors, the gap

potential �̂ is a nonlocal operator, so the BdG system effec-
tively becomes a very complicated integrodifferential equa-
tion. Another complexity arises from the broken spatial in-
variance of the superconducting gap in the presence of
vortices near the N/S interface. A simplification can be ob-
tained if one considers a quasiclassical approximation, as-
suming that the wavelength of quasiparticles is much smaller
than the superconducting coherence length �see, e.g., Ref.
33�. Within such an approximation, QPs move along linear
trajectories, i.e., straight lines along the direction of QP mo-
mentum n=kFkF

−1= �cos �p , sin �p�. Generally, the quasiclas-
sical form of the wave function can be constructed as fol-
lows: �u ,v�=eikF·r�U ,V�, where (U�r� ,V�r�) is a slowly
varying envelope function. Then system �11� reduces to a
system of first-order differential equations along the linear
trajectories defined by the direction of the QP momentum
n=kFkF

−1= �cos �p , sin �p�. Introducing the coordinate along
trajectory x�= �n ·r�=r cos��p−��, we arrive at the following
form of the quasiclassical equations:

	− i
vF�x� + vF ·
e

c
A
U + �V = �U ,

	i
vF�x� + vF ·
e

c
A
V + �†U = �V , �12�

where the Fermi velocity is vF=n
kF /m. The pairing poten-
tial in Eq. �12� may generally be written as

��r,�p� = ���p���r� , �13�

where ���p� describes the orbital symmetry of the supercon-
ducting order parameter in momentum space, while ��r�
describes its spatial dependence both magnitudewise and
phasewise.

The LDOS can be expressed through the eigenfunctions
of the BdG equation �11� in the following form:34

N��,r� = �
n

�un�r��2��� − �n� , �14�

where un�r� is electron component of quasiparticle eigen-
function corresponding to an energy level �n. The eigenfunc-

tion has to be normalized; ��−�
� �un�r��2+ �vn�r��2d2r=1.

We will also later employ the quasiclassical Eilenberger
approach to study the spatially resolved DOS. Let us here
sketch the framework of the treatment which makes use of
the Eilenberger equation, following the notation of Refs. 35
and 36. It is now convenient to solve the Eilenberger equa-
tion along trajectories along the Fermi momentum and to
introduce a Ricatti parametrization for the Green’s
function.36 In this way, one obtains20


vF�x�a�x�� + �2�̃n + �†a�x���a�x�� − � = 0,


vF�x�b�x�� − �2�̃n + �b�x���b�x�� + �† = 0, �15�

where i�̃n= i�n+mvF ·vs is a Doppler-shifted Matsubara fre-
quency and

vs =
1

2m
	
 � � −

2e

c
A


is a gauge-invariant superfluid velocity where ��r� is a gap
function phase; ��r�= ���ei�. The LDOS may be expressed
through the scalar coherence functions a and b as follows:20

N��� = 

0

2	 d�

2	
Re�1 − ab

1 + ab
�

i�n→�+i�

, �16�

where � is the quasiparticle energy measured from Fermi
level and � is a scattering parameter which accounts for in-
elastic scattering.

To investigate the transport properties of N/S junction, we
employ an approach similar to what was used in work by
Blonder et al.37 The expression for the dimensionless zero-
bias conductance of the N/S junction measured in terms of
the conductance quantum e2 /	
 can be written as follows:

G =
GSh

2



−	/2

	/2

�1 − Rn��0� + Ra��0��cos �0d�0, �17�

where Rn��0� and Ra��0� are the probabilities of normal and
Andreev reflections respectively, �0 is the incident angle,
kF=kF�cos �0 , sin �0�, characterizing the propagation direc-
tion of quasiparticles coming from the normal-metal region.
The Sharvin conductance GSh=kFLy /	 equals the total num-
ber of propagating modes determined by the channel width
Ly.

The problem of quasiparticle scattering at the N/S inter-
face is formulated within the BdG theory �11�.38 An interfa-
cial barrier separating the N and S regions can be modeled
by repulsive delta function potential W�x�=W0��x� param-
etrized by a dimensionless barrier strength Z=W0 /
vF. The
boundary conditions at the N/S interface then read39

�f�0�� = 0, ��xf�0�� = 2kFZf�0� , �18�

where f = �u ,v� and �f�x��= f�x+0�− f�x−0�.
Considering a zero-bias problem we will have to analyze

only zero-energy excitations with �=0. For wave functions
in S region corresponding to subgap quasiparticles, the fol-
lowing representation can be used: �U ,V�

SILAEV et al. PHYSICAL REVIEW B 79, 054508 �2009�

054508-4



=e��ei��+��/2 ,e−i��+��/2�, where �=��s ,b� and �=��s ,b� are
real-valued functions. Then, the quasiclassical equation �12�
can be written as follows:

�x�� + 2���cos � + 2�D = 0,

�x�� + 2���sin � = 0. �19�

where �D�r�=
kFvs is the Doppler-shift energy. For wave
functions decaying at the different ends of trajectory
�U ,V��x�= ���=0 from Eq. �19� we obtain

��x� = � �� = � 	/2. �20�

The boundary conditions �18� model the specularly re-
flecting N/S interface, coupling the waves with wave vectors
kF=kF�cos �0 , sin �0� and kF� =kF�cos�	−�0� , sin�	−�0��.
Therefore if the incident electron wave is ui=eikF·r, then the
reflected electron ur and hole vr waves will have the form

ur = Ure
ikF� ·r, vr = Vre

ikF·r,

where Ur and Vr are the envelope functions. Thus, each point
�0,y� at the N/S interface lies on the intersection of two
quasiclassical trajectories characterized by the angles �p=�0
and �p=	−�0. Let us denote the distribution of phases ��x��
along these trajectories as �+�x�� and �−�x�� correspondingly.
Using the boundary conditions we obtain the following ex-
pression for the conductance:32

G =
N0

2



−Ly/2

Ly/2 

−	/2

	/2

g�y,�0�cos �0d�0dy , �21�

where g�y ,�0� is given by

g�y,�0� =
2

�Z̃4 + Z̃2��1 − ei��2 + 1
�22�

with Z̃=Z /cos �0 and ��y ,�0�=�−−�+ is determined by the
difference of phases �−�x�� and �+�x�� at the intersection
point �0,y�. To evaluate the conductance, one needs to find
the factor ei� in Eq. �22� and then the reflection probabilities
by solving numerically Eq. �19� with the boundary condi-
tions in Eq. �20�.

III. RESULTS

To illustrate the basic effect of how the interplay between
the Doppler shift and the time-reversal symmetry breaking of
the superconducting order parameter is manifested, we con-
sider a situation where an external magnetic field is applied
near the surface of the superconductor along the ẑ axis, thus
inducing a vector potential A in the superconductor which
drives the shielding supercurrent. In order to proceed analyti-
cally, we make the simplifying assumption that the superfluid
velocity field is nearly homogeneous and that the spatial
variation in the superconducting order parameter near the
interface is small. Choosing a real gauge, we then find that
the Ricatti functions a and b in Eq. �15� may be written
as20,22

a��� = s�������, b��� = s�������� ,

s��� = 1/��̃n��� + ���̃n����2 + ������2� , �23�

where �̃n depends on � through the Doppler shift. To evalu-
ate the LDOS in Eq. �16� at the surface, we need to take into
account proper boundary conditions at x=0. Assuming an
impenetrable surface with perfect reflection, these boundary
conditions read

asurface��� = a�	 − ��, bsurface��� = b��� . �24�

Inserting these into the expression for the LDOS, we obtain

N��� = 2 Re�� 1

1 + a�	 − ��b�����i�n→�+i�

− 1. �25�

�¯� denotes angular averaging, which we restrict to angles
−	 /2���	 /2 due to the surface. It may be shown that, for
a chiral p-wave superconductor,22 the zero-energy DOS at
the surface reads

N�0� = 1 +

kFvsy

�0
+ ¯ , �26�

while for pure s- or d-wave superconductors one finds

N�0� = C1 + C2vsy
2 + ¯ , �27�

where C1 and C2 are arbitrary constants. From numerical
investigations of Eq. �25� at �=0, we find that the zero-
energy DOS may quite generally be written as

N�0� = C1 + C2vsy + ¯ �28�

whenever the superconducting order parameters �i� break
time-reversal symmetry and �ii� support the presence of sub-
gap surface-bound states. This is the case both for the px
+ ipy-wave pairing which is believed to be realized in
Sr2RuO4, as well as the d+ is-wave and d+ id-wave pairings
that are relevant for the cuprates. In particular, tunneling
spectroscopy measurements have indicated the presence of
such a time-reversal symmetry breaking order parameter
near surfaces by a split zero-bias conductance peak that was
observed in the absence of an external field in several
experiments.10

In Ref. 35, it was pointed out that the neglect of the gra-
dient term in the Eilenberger equation is expected to be a
reasonable approximation as long as the Doppler-shift energy
mvF ·vs is small compared to the local gap energy ����. This
approximation would then fail close to the vortex core or gap
nodes of ����. Nevertheless, in the model case of spatially
homogeneous gap function and superfluid velocity field, the
gradient terms in the —Eilenberger equation can be ne-
glected in the whole range of Doppler-shift energies. How-
ever considering a model situation the above discussion nev-
ertheless serves to illustrate our main qualitative argument,
namely, that chirality-sensitive effects should be expected in
superconductors with order parameters that �i� break time-
reversal symmetry and �ii� support the presence of subgap
surface-bound states. We now proceed to discuss the cases of
px+ ipy-wave and d+ is�d�-wave pairings in more detail since
these are relevant to actual materials.
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A. Surface states in p+ ip and d+ is(d) superconductors under
the influence of magnetic field

In Fig. 3, we show numerical plots of the surface LDOS
given by Eq. �25� for the chiral p-wave �Fig. 3�a��,
d+ is-wave �Fig. 3�b��, and d+ id-wave �Fig. 3�c�� cases in a
wide domain of superfluid velocities. The structure of gap
functions is chosen in the form of Eqs. �1�–�3� and the pa-
rameter characterizing inelastic scattering in Eq. �16� is cho-
sen as �=0.1�0. We introduce the following notations for the
different critical velocities: vc=�0 /
kF, vcs= ��s� /
kF and
vcd= ��d� /
kF.

As seen, the surface LDOS has sharp peaks at a certain
value of the superfluid velocity in all cases. We will show
below that peaked structure of LDOS is provided by bound
surface states. Another contribution to the LDOS comes from
the delocalized states corresponding to the continuous part of
QP spectrum. A delocalized state with zero energy �=0 ex-
ists provided that �i� �vsy�
vc in case of chiral p-wave su-
perconductor and �ii� �vsy�
vcs and �iii� �vsy�
vcd in cases of
d+ is-wave and d+ id-wave superconductors correspond-
ingly. Condition �i� is unlikely to be realized because it
means that the superfluid velocity is larger than the critical
depairing value. Conditions �ii� and �iii� can be realized be-
cause the values vcs and vcd can be well below the critical
depairing velocity if the amplitude of additional order-
parameter components is small enough.

To analyze the contribution to LDOS provided by the
bound surface states we will consider the domain of low

energies �����0. By neglecting small deviations of the elec-
tron and hole momenta, the normalized wave function of QP
localized near the boundary can be written as

	u

v

 = 	1

i

� 2

�̃�cos �p�
eikyy sin�kxx�e−x/��̃ cos �p�,

where �kx ,ky�=kF�cos �p , sin �p�. This wave-function decay
in the superconducting side x
0 at a characteristic localiza-

tion scale �̃ is given by �̃=
vF /�0 for chiral p wave and �̃
=
vF / ��0 sin�2�p�� for d+ is- and d+ id-wave superconduct-
ors correspondingly with gap functions given by Eqs. �2� and
�3�. The spectrum of the Andreev bound states, shifted by the
superfluid velocity, is given by

�a = ��0ky/kF + 
vsyky �29�

for the p-wave case,

�a = �s sgn�ky� + 
vsyky �30�

for d+ is-wave case, and

�a = �d sgn�ky�cos�2�p� + 
vsyky �31�

for d+ id-wave case. Consequently, the contribution from
Andreev bound states to the zero-energy LDOS at the sur-
face of a chiral p-wave superconductor is given by

Na = N0
1

�vsy/vc + ��
,

where N0=m /2	
2 is the normal-metal LDOS per one spin
direction. For a chiral d+ is superconductor, the behavior of
the LDOS is more complicated. Assuming that �s
0, we
obtain that the LDOS is zero for vsy 
−�s /
kF. Otherwise, it
is given by

Na = 4N0
vcsvc

vsy
2 .

On the contrary, for the d+ id case the LDOS is zero if vsy

�d /
kF �for �d
0� and otherwise it is given by

Na = N0
�0

��d�	1 +
vcd

�vsy
2 + 8vcd

2 
 .

It can be seen that these contributions to LDOS have
peaks at vsy =vc for p-wave case. For d+ is-wave and
d+ id-wave superconductors the peaks are positioned at vsy
=−sgn��s�vcs and vsy =sgn��d�vcd correspondingly. Even
though the position of the peaks are different, the dependen-
cies of the surface LDOS on the superfluid velocity �and
consequently on magnetic field� are very similar for d+ is-
and d+ id-wave superconductors. Therefore, it might be dif-
ficult to distinguish which case is realized experimentally.

On the other hand the considered model with a spatially
homogeneous gap function ��r�=1 is adequate only when
the applied magnetic field is not too large. When the mag-
netic field is large enough, it breaks the Meissner state and
generates vortices near the surface of superconductor. There-
fore, we investigate the influence of vortices on the LDOS
distribution near a superconducting surface as well as on the

FIG. 3. Plot of the normalized zero-energy LDOS N�0� for
�a� p-wave superconductor with �=1, �b� d+ is-wave case with �s

=0.4�0, and �c� d+ id-wave case with �d=0.4�0. Dashed lines are
guides for eyes. The vertical ones denote positions of LDOS peaks
and the horizontal ones correspond to the level of normal-metal
DOS N0.
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conductance of normal-metal/superconducting junctions. We
will show that vortices have different effects on the conduc-
tance in d+ is and d+ id cases.

B. Interplay between vortex and surface states in chiral
superconductors

A chirality-sensitive LDOS transformation due to vortices
situated near the surface of a chiral p-wave superconductor
was considered in Ref. 22. It was shown that depending on
the chirality and vorticity values, the surface LDOS near is
either enhanced or suppressed upon decreasing the distance
from the vortex to the surface. In the case of d+ is�d� super-
conductors the transformation of LDOS profile is also sensi-
tive to the value of vorticity. Similar behavior is expected for
a conductance of normal-metal/chiral superconductor junc-
tion in the presence of vortices.

To investigate the influence of a single vortex on the
LDOS profile and conductance, we assume that at x
0 �su-
perconducting region� the coordinate dependence of the or-
der parameter may be written as follows:

��r� = ei�. �32�

Here, we consider a model situation where the magnitude of
the order parameter is constant. The phase distribution ��r�
consists of a singular part �v�r�=arg�r−rv� and a regular

part �r�r� determined by the particular metastable vortex
lattice configuration realizing near the boundary. We assume
that the regular part of the phase distribution is �r�r�
=−arg�r−rav� corresponding to the image vortex situated at
the point rav= �−2a ,0 ,0� behind the N/S interface.

1. p+ ip wave

In Fig. 4 we show the LDOS profile near the surface of a
chiral p-wave superconductor in the presence of a single vor-
tex positioned at some distance a from the surface. When the
vortex is positioned far from the surface a�2� the LDOS
profile follows the behavior, as expected from the picture of
local Doppler shift.22 Depending on the relative values of
vorticity and chirality, the surface LDOS is either increased
�Fig. 4�a�� or decreased �Fig. 4�b��. An analytical estimate
with the help of spectrum �33� yields the following estima-
tion of the amplitude of LDOS peak in Fig. 4�a�: �N /N0
= �1+M�a�−1. At smaller distances a�2�, the behavior of
LDOS changes drastically. In the case of opposite vorticity
and chirality, the surface LDOS grows at a�2�, obviously
due to the overlapping with the peak of vortex core states. In
the case of equal vorticity and chirality the same overlapping
occurs, but on the contrary it leads to reduction in DOS, as it
was discussed in Sec. I. The peak of the LDOS at the surface
discussed in Ref. 22 transforms into a dip-and-peak structure
as the vortex comes close to the surface.

( )c ( )d

( )a ( )b

FIG. 4. �Color online� Plot of the normalized zero-energy LDOS N�0� in the presence of a vortex near the surface of a chiral p-wave
superconductor. �a� and �c� correspond to equal vorticity and chirality and �b� and �d� correspond to opposite vorticity and chirality. The
distance from vortex to the surface is a=2� for �a� and �b� and a=� for �c� and �d�.
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This is illustrated in Fig. 5�a�, where we plot the LDOS at
the surface point �0,0�, which is the nearest point to the vor-
tex in Fig. 4. At large distances a�� the LDOS is a mono-
tonic function of a, either increasing or decreasing depending
on the relation between vorticity and chirality. At smaller
distances a�2�, the extremum of LDOS appears. In the case
of opposite vorticity and chirality �lower curve in Fig. 5�a��,
the surface LDOS grows at a�2� due to the overlapping
with the peak of vortex core states. In the case of equal
vorticity and chirality �upper curve in Fig. 5�a�� the same
overlapping leads to reduction in LDOS.

To investigate the influence of vortices on the transport
properties of normal-metal/chiral p-wave superconductor
junction we solve the generic problem of the influence of a
single vortex near the N/S surface on the zero-bias conduc-
tance of the junction. A numerical plot of the conductance G
as a function of a distance of vortex to the junction interface
is shown by the solid lines in Fig. 5�b� for equal �upper
curve� and opposite �lower curve� values of chirality and
vorticity. The conductance is normalized to the value of
Sharvin conductance GSh=kFLy /	.

At large distances a�� an analytical estimation of con-
ductance can be obtained by using a local Doppler-shift ap-
proximation on the quasiparticle spectrum. Indeed, the modi-
fication of the surface states energy due to a supercurrent
flowing along the boundary of superconductor can be written
as

�a � ���0 + 
vsykF�ky/kF, �33�

where ky is the quasiparticle momentum along the surface,
�= �1 is the chirality value, and vsy = �M
 /m�a / �y2+a2� is
the projection on the surface plane of superfluid velocity
generated by the vortex and image antivortex, where M is the
vorticity value and m is the electron mass. It follows from
Eq. �33� that the Doppler-shift effect leads to a change in the
slope of anomalous branch. It is easy to obtain that in this
case the function g�y ,�0� in expression �22� takes the follow-
ing form:

g�y,�0� =
2

4�Z̃4 + Z̃2���a/�0�2 + 1
. �34�

The straightforward integration in Eq. �21� yields G=G0
+�G, where G0=GSh�	 /Z2� is the conductance without vor-
tex and

�G/GSh = �
2	�

Z2Ly
arctan�Ly/2a� �35�

is the vortex-induced conductance shift, where the upper
�lower� sign corresponds to equal �opposite� vorticity and
chirality.

At distances smaller than 2�, an extremum of the conduc-
tance appears. Upon placing the vortex closer to the surface,
an opposite effect occurs: one obtains a conductance sup-
pression instead of enhancement and vice versa. The origin
of the conductance extremum is a tunneling of quasiparticles
into the vortex core states or, in other words, the overlapping
of vortex and surface-bound states. Comparing Figs. 5�a� and
5�b� one can see that the conductance in general follows the
behavior of the surface DOS.

2. d+ is and d+ id waves

In chiral d+ is and d+ id superconductors the LDOS trans-
formation appears to also be vorticity sensitive. In Fig. 6 we
show the profile of zero-energy LDOS in the case where the
vortex is placed at a distance of a=2� from a flat boundary
of a d+ is-wave superconductor characterized by a gap func-
tion in momentum space given by Eq. �2�. In this section, we
use the notation �=
vF /�0.

One can see that for one sign of vorticity the surface
LDOS shows two peaks which are symmetric with respect to
the vortex position. As we have shown above, the large peaks
in surface LDOS appear when the energy coincides with the
position of bound-state level. For a different sign of the vor-
ticity, there are no surface states at the Fermi level and the
LDOS along the surface is a flat function. A nonzero level of
LDOS in this case is provided by inelastic scattering which
leads to the smearing of the QP energy levels. Applying a
local Doppler-shift approach, which holds if the distance
from vortex to surface is rather large �a���, one can inter-
pret the results shown in Fig. 6.

The coordinates y� of surface LDOS peaks can be esti-
mated from the relation vsy =�s / pF, where vsy
= �M
 /m�a / �y2+a2� is the projection on the surface plane of
superfluid velocity generated by the vortex with vorticity M
and image antivortex. It can be seen that for a
���0 / ��s��
the peak is situated at y�=0, i.e., at the surface point nearest
to the vortex. Otherwise, we obtain y�

= �a�1− �a /�����s� /�0�. Comparing this estimation with the
numerical results in Fig. 6, one observes a minor difference.
For example, it follows from the estimation that the LDOS
peaks should be positioned at y�= �2.4� for �s=0.2�0, but
in Fig. 6 they are located at y�= �2.0�. This discrepancy can
be attributed to the complex shift of the energy �→�+ i� due
to the effective scattering parameter �=0.1�0 which was

FIG. 5. �a� Plot of the normalized zero-energy LDOS at the
point on the surface which is closest to the vortex core. Different
curves correspond to different vorticities. �b� Plot of the vortex-
induced conductance in chiral p+ ip-wave superconductor for equal
and opposite values of vorticity and chirality. The strength of inter-
face barrier is Z=5. Large-distance asymptotes for N and G are
shown by dash lines.
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used in the numerical calculations. If we increase the dis-
tance from vortex to surface, a, the LDOS peaks will merge
when a
���0 / ��s�� �see Fig. 6�.

In Fig. 7, we show the LDOS profile modulated by a
vortex placed at a distance of a=2� from a flat boundary of
d+ id superconductor. The structure of the gap function was
chosen in the form �3�. Applying the approach based on the
local Doppler shift we obtain the similar expression for the
coordinates of the peaks of surface LDOS: y�

= �a�1− �a /�����d� /�0�. For the particular values of param-
eters �d=0.2�0 and a=2� this estimation yields y�= �2.4�,
which is much less than obtained from numerical plot in Fig.
7 �y�� �4��. This discrepancy can also be attributed to the
effect of inelastic scattering, which appears to have a larger
effect in d+ id-wave case than in discussed above d+ is-wave
case.

A numerical plot of the N/S junction conductance as a
function of distance from vortex to surface is shown in Fig. 8
for the d+ is and d+ id cases. The conductance is normalized
to the Sharvin conductance GSh=kFLy /	. Comparing Figs.
8�a� and 8�b� one can see that the conductance behavior is
qualitatively different for s- and d-wave symmetries of the
additional gap function component. For d+ is wave, the con-
ductance has a sharp peak for one vortex orientation �upper
curve in Fig. 8�a�� and it is a flat function of a for another
vortex orientation �lower curve in Fig. 8�a��. The origin of
the conductance enhancement is a formation of Andreev

bound states at the Fermi level which are localized near the
superconducting surface. As was discussed in Sec. I �see Fig.
1�b��, the zero-energy Andreev bound states can appear only
for a certain direction of superfluid velocity flowing along
the superconducting surface and if the value of the superfluid
velocity is larger than a critical value �vsy�
 ��s� /
kF. For a
high interface barrier Z�1, applying the approximate ana-
lytical expression �35�, we find that a sharp increase in con-
ductance in Fig. 8�a� can be described by the following ex-
pression:

G/GSh =
16	

3Z2

�

Ly

�0

��s�
	1 −

a

a�
3/2
+ �Z−4,

where a�=���0 / ��s�� and ��1. Otherwise, if a
a� the con-
ductance is much smaller since Z�1,

G/GSh � 	�0

�s

2 4

3Z4 .

When the distance a is decreased further, the conductance is
suppressed �see Fig. 8�a�, upper curve�. The decrease in con-
ductance can be attributed to the gap at the Fermi level
which appears due to the interaction of vortex and surface
states in a similar way as for the p+ ip-wave case discussed
in Sec. III B 1.

( )c ( )d

( )b( )a

FIG. 6. �Color online� Plot of the normalized zero-energy LDOS profile N�0� in the presence of vortex near the surface of chiral d
+ is-wave superconductor with �s=0.2�0. �a�–�d� correspond to different vortex orientations with respect to the z axis. The distance from
vortex to the surface is a=4� for �a� and �b� and a=2� for �c� and �d�.
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In a d+ id-wave superconductor, zero-energy Andreev
bound states may exist even in the absence of vortex. An
asymptotic value of the conductance G0 at a�� can be ob-
tained using expression �35� as follows:

G0/GSh = 	 �0

��d�
 	

2�2Z2
.

When the vortex approaches the superconducting surface,
the conductance is either suppressed �lower curve in Fig.
8�b�� or slightly enhanced �upper curve in Fig. 8�b��. This
behavior can be understood by again using the Eq. �35� with
the Doppler-shifted spectrum of Andreev bound states �6�.
The decrease �increase� in conductance corresponds to the
transformation of spectrum shown qualitatively in Fig. 1�c�
by dashed �dashed-dotted� lines. It is possible to obtain an
analytical expression for the vortex-induced conductance
shift at a�� in the following form:

�G/GSh = �
	

2Z2	�0

�d

2 �

Ly
arctan	 Ly

2a

 ,

where the upper and lower signs correspond to the different
vortex orientations. As the vortex approaches the surface fur-
ther, there appears an extremum of the conductance. Such
behavior can be explained by a conductance enhancement
due to the tunneling of QP into the vortex core states dis-
cussed in Ref. 32. A sharp decrease in the upper curve in Fig.
8�b� can be attributed to the opening of an energy gap at the

( )c ( )d

( )b
( )a

FIG. 7. �Color online� Plot of the normalized zero-energy LDOS profile N�0� in the presence of vortex near the surface of chiral d
+ id-wave superconductor with �d=0.2�0 �a�–�d� correspond to different vortex orientations with respect to the z axis. The distance from
vortex to the surface is a=4� for �a� and �b� and a=2� for �c� and �d�.

FIG. 8. Plots of the vortex-induced conductance in cases of
�a� chiral d+ is superconductor for �s=0.2�0 and �b� d+ id super-
conductor for �d=0.2�0. The strength of interface barrier is Z=5.
Different curves on each plot correspond to different vortex orien-
tations with respect to the z axis.
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Fermi level due to the interaction of vortex and surface
states.

IV. SUMMARY

In summary, we have investigated how the tunneling con-
ductance and the local density of states �LDOS� in supercon-
ductors are affected by the influence of an external magnetic
field when the superconducting OP breaks TRS. This is di-
rectly relevant for both Sr2RuO4, where chiral p+ ip-wave
pairing is believed to be realized, and for the high-Tc cu-
prates, where a d+ is- or d+ id-wave OP has been suggested
to exist near surfaces. In addition to breaking TRS, all of
these OPs feature surface-bound zero-energy states at sur-
faces under appropriate circumstances �e.g., a dominant
d-wave OP in the d+ is-wave case�.

We have shown how the Doppler shift conspires with an
interaction of vortex and surface states to produce a consid-
erable qualitative modification of both the tunneling conduc-
tance and the LDOS. When the vortex is located at distances
well above a coherence length � from the surface, the Dop-
pler shift produces an enhancement or suppression of the
LDOS depending on the relative sign of the vorticity and the
chirality of the superconducting OP. This effect may be di-
rectly probed by first applying an external magnetic field in a
direction while measuring the LDOS and then reversing the

field direction and measuring again. When the vortex is lo-
cated very close to the surface �a distance on the order of � or
smaller�, there is an overlap between the vortex and surface
states which effectively causes a dramatic change in the tun-
neling conductance and LDOS. This effect is also sensitive
to the relative signs of the vorticity and the chirality of the
superconducting OP. The overlap between these two sets of
states results in either a strongly enhanced or suppressed tun-
neling conductance/LDOS at zero-bias voltage/zero energy.

We have demonstrated the aforementioned effects both
qualitatively and quantitatively for p+ ip-, d+ is-, and
d+ id-wave symmetries. Experimentally, the distance from
the surface to the closest vortex can be altered by modifying
the field strength. All of our predictions should be possible to
test experimentally with present-day techniques.
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