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The quantum Smoluchowski equation for the reduced Wigner function in configuration space pertaining to
the quantum Brownian motion of a particle in a tilted cosine potential in the high dissipation �or noninertial�
limit as applied to a model point Josephson junction �namely, a resistively shunted junction in the presence of
noise and an arbitrarily large microwave ac driving current� is considered. The solution of the resulting
recurrence relations for the Fourier amplitudes of the statistical moments describing the nonlinear dynamics of
the junction �ignoring the capacitance� is obtained using the matrix continued fractions previously developed
for the stationary ac field solution of the corresponding classical problem. Quantum effects in the nonlinear
response of the junction to an ac microwave current of arbitrary amplitude �nonlinear microwave impedance,
frequency dependence of the dc current-voltage characteristic, etc.� are estimated.
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I. INTRODUCTION

Wigner’s phase-space formulation of quantum mechanics
in terms of quasiprobability distributions of the canonical
variables1–7 as extended to open quantum systems �see, e.g.,
Refs. 8–16� has recently been used15,17 to derive a quantum
Smoluchowski equation �QSE� governing the time evolution
of the configuration-space distribution function P�x , t� for
particles with separable and additive Hamiltonians in the
overdamped �or noninertial� limit. In the present context,
pertaining to a quantum Brownian particle of mass m moving
along the x axis under the influence of a potential V�x�, the
canonical variables are the position x and the momentum p
of the particle. The corresponding reduced �single-particle�
joint quasiprobability distribution function in phase space,
namely, the Wigner function W�x , p , t�, represents the projec-
tion of all the other degrees of freedom of the system, com-
prised of the quantum Brownian particle and its heat bath,
onto the phase space �x , p� of that particle. The evolution of
W�x , p , t� is governed by the master equation8
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where M̂D is the collision kernel operator representing the
bath-particle interaction and � is Planck’s constant. Here the
left-hand side is the single-particle Wigner equation1,6,8

�which is the quantum analog of the classical Liouville equa-
tion� governing the evolution of the joint quasiprobability
distribution function for the closed system. The stationary
solution of this equation �i.e., the master Eq. �1� with the
right-hand side equal to zero� is the Wigner stationary distri-
bution W0�x , p�, which can be developed as a power series in
�2, viz.,1
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����2
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+ ¯
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where ��x , p�= p2 / �2m�+V�x� is the classical energy of the
particle, �= �kT�−1, k is Boltzmann’s constant, and T is the
temperature. Regarding the general open system governed by

Eq. �1�, various forms of the collision operator M̂D have been
discussed in detail in Ref. 8. Now, on specializing to the
quantum Brownian motion in the high-temperature and

weak-coupling limits, the collision operator M̂D can be rep-
resented just as in the classical theory by a Kramers-Moyal
expansion truncated at the second term. However, unlike the
classical theory in order that W0�x , p� should also render the
right-hand side of Eq. �1� zero, the coefficients of the trun-
cated Kramers-Moyal expansion must become functions of
the derivatives of the potential. The master Eq. �1� in phase
space then describes the relaxation of W�x , p , t� to the sta-
tionary state given by W0�x , p� in the long time limit.15,17 The
ansatz that the Wigner stationary distribution W0�x , p� ren-
ders the right-hand side of the master Eq. �1� zero �whence
the diffusion coefficients must depend on the derivatives of
the potential� may be used if the interactions between the
Brownian particle and the heat bath are small enough to al-
low one to use the weak-coupling limit, and if the correlation
time characterizing the bath is so short that one can regard
the stochastic process originating in the bath as Markovian.
For parameter ranges, where such an approximation is in-
valid �e.g., throughout the very-low-temperature region,
where non-Markovian effects are substantial�, other methods
should be used.9 We remark that the imposition of W0�x , p�
as the stationary solution of Eq. �1� is exactly analogous to
the assumption of the Maxwell-Boltzmann distribution as the
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stationary distribution in the classical Brownian motion.18

The configuration-space distribution P�x , t� may then be cal-
culated by integration of W�x , p , t� over the momenta, i.e.,

P�x,t� =� W�x,p,t�dp . �2�

Now, in general18 in both the classical and quantum cases it
is impossible to write a partial differential equation in con-
figuration space describing the evolution of the probability
distribution P�x , t�. The sole exception, however, is the over-
damped �or noninertial� limit, where the governing equation
is the quantum Smoluchowski equation15,17

�P�x,t�
�t

=
�

�x
	P�x,t�

�

�V�x�
�x

+
�

�x
�D�x�P�x,t��
 . �3�

Here D�x� is the quantum diffusion coefficient which de-
pends on the derivatives of the potential and which is repre-
sented as a power series in �2,15,17 �=�m is the friction
coefficient, � is a dissipation �damping� parameter character-
izing the bath-particle interaction, and the drift coefficient
−�−1�xV coincides with its classical counterpart. The qua-
siprobability density P�x , t� is simply the trace of the density-
matrix operator �̂.4–6

Here we apply the QSE �3� to evaluate quantum correc-
tions to the nonlinear noninertial response to a strong ac
force f cos 	t of a Brownian particle moving in a tilted co-
sine �or inclined washboard� potential with amplitude V0,
characteristic length a, and constant tilt �slope� F, viz.,

V�x� = − V0 cos�2
x/a� − xF − xf cos 	t . �4�

We first remark that the overdamped Brownian motion of a
particle in a tilted cosine potential arises in a number of
important physical applications. We mention Josephson
junctions,19–21 superionic conductors,22 ring-laser
gyroscopes,23 phase-locking techniques in radio
engineering,24 charged density waves,25 diffusion of colloidal
particles in periodic structures,26 dynamics of vortices in
superconductors,27 etc. As a particular example, we shall es-
timate quantum effects on the nonlinear dynamics of a point
Josephson junction in the zero-capacitance limit �so-called
RSJ model�19–21 initiated by Ambegaokar and Halperin28 and
by Ivanchenko and Zil’berman.29 Despite its limitations,19–21

the RSJ model yields for the linear response of the junction
to an ac driving current a relatively simple treatment of both
the dc current-voltage characteristic and the impedance both
in the classical19–21,30 and quantum31 cases. In the quantum
case, the dc current-voltage characteristic and the differential
resistance may be expressed31 as modified Bessel functions
of the first kind just as in the classical limit.30 Moreover, the
linear impedance characteristic resembles that of a simple
resonant circuit, where the real part exhibits a pronounced
minimum at the resonant frequency and the imaginary part a
pronounced maximum. In particular, the quantum effects are
discernible in the linear response as an enhanced current for
a given voltage in the dc current-voltage characteristic and
an enhanced slope in the differential-resistance, which, be-
sides the impedance, are the other quantities of physical
interest.31 As far as the dc characteristics in the linear regime

are concerned, the quantum effects arise31 due to high-
temperature nondissipative tunneling near the top of a barrier
and are readily detectable for a relatively large supercurrent
and small bias. This behavior is due to the effective reduction
in the barrier height, associated with a well of the inclined
washboard potential. This barrier lowering mechanism due to
high-temperature quantum tunneling was originally identi-
fied by Wigner in his quantum transition state theory,1,32

which of course ignores the dissipation to the bath. On the
other hand, in the resonant peak in the impedance curve, the
quantum effects manifest themselves essentially31 as an en-
hancement of the Q factor, which is an example of dissipa-
tive tunneling reducing the damping of the Josephson oscil-
lations.

However, the restriction of the treatment of the Josephson
junction to linear response means that many important fea-
tures of both the dc and the ac microwave behavior cannot be
reproduced. For example, in the dc response these include
the ubiquitous Shapiro steps33 in the obviously time-
independent �but frequency-dependent� dc current-voltage
characteristics. The steps are due to dynamical phase slips
caused by change in the phase locking of the Josephson os-
cillator at multiple harmonics of the frequency of the applied
ac current as that current is increased. This behavior consti-
tutes a form of modulation due to nonlinear effects. In the ac
response, other nonreproducible effects include the manifold
oscillations �see, e.g., Refs. 34–36 and references cited
therein� appearing in the reactive part of the nonlinear im-
pedance �again due to dynamical phase slips� and the thresh-
old points and saturation behavior of the resistive part,
whereby the dynamic resistance approaches the shunt resis-
tance of the junction. Hitherto, the nonlinear ac response
�mainly, the microwave resistance and reactance� to a strong
probing ac current has usually been calculated via perturba-
tion theory �e.g., Ref. 34�. However, this approach is valid
for small ac current amplitudes only, or in the noiseless limit,
where the governing nonlinear equation of motion can be
solved numerically �e.g., Refs. 35 and 37�. As far as experi-
mental observations are concerned, nonlinear effects in the
microwave resistance have been observed and explained �us-
ing the classical RSJ model� in Refs. 36 and 37. Experimen-
tal data38 on the nonlinear microwave surface impedance Zs
of high-temperature superconducting thin films have also
been interpreted39–41 using the classical RSJ model, and
qualitative agreement with experimental measurements of Zs
has been reported, showing that these systems also behave
like a Josephson junction. Moreover, the RSJ model can also
describe the main features of the nonlinear surface imped-
ance, namely, the steps in the ac current dependence of the
resistance,33,34 the threshold points,40,41 and saturation.40,41

Among other experiments, which can be analyzed using the
classical RSJ model, are microwave absorption measure-
ments in weak-link Josephson junctions42 in high-Tc super-
conductors, where the microwave surface resistance Rs was
studied. Furthermore, as shown in Ref. 42, the numerical
solution of the nonlinear dynamical equation governing the
noiseless RSJ model agrees closely with experiment. Finally,
the nonlinear ac response of a point Josephson junction in
the presence of noise has been evaluated in Refs. 43 and 44
using the matrix continued fraction technique. This technique
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has also been used27 for the solution of a very similar Lange-
vin equation for a two-dimensional nonlinear guided vortex
motion in a tilted cosine pinning potential in the presence of
an ac for arbitrary values of the Hall effect.

Mindful of the several distinctive features of the nonlinear
stationary response, which we have summarized above, it is
the purpose of this paper to extend the calculations of the
classical nonlinear stationary response43,44 to the quantum
nonlinear stationary response in the zero-capacitance limit.
This will be accomplished by solving the QSE �3� for the
nonlinear stationary ac response in a tilted cosine potential
for an ac driving current of arbitrary amplitude using the
matrix continued fraction method as developed in Refs. 43
and 44 for the corresponding classical problem. In particular,
we shall calculate the nonlinear impedance and the
frequency-dependent dc current-voltage characteristics, not-
ing that certain aspects of quantum effects in the character-
istics of Josephson junctions have already been analyzed,
e.g., in Refs. 45–49. We remark that a matrix-continued frac-
tion is invariably involved in the solution of the nonlinear
response rather than the scalar continued fraction of the lin-
ear response. This is so because the distribution function for
the phase variable must now be expanded in a double Fourier
series in both space and time because of the coupling be-
tween the time-varying harmonic components of the driving
force induced by the nonlinearity. This behavior is of course
not evident in the linear-response approximation where the
ac response is simply the stimulus shifted in amplitude and
phase �so that no harmonics of the stimulus occur� along
with a dc response independent of the ac response.

II. QSE FOR THE RSJ MODEL

The Josephson junction as described by the RSJ model
comprises two superconductors separated by a thin layer of
oxide. The phase difference �=�l−�r between the wave
functions of the right and left superconductors is given by
the Josephson equation19–21

d

dt
��t� =

2ev�t�
�

, �5�

where v�t� is the potential difference across the oxide layer
and e is the charge of the electron. If the junction is small
enough �a point Josephson contact�, it may be modeled19–21

by a resistance R in parallel with a phase-dependent current
generator, I sin �, representing the Josephson supercurrent
due to the Cooper pairs tunneling through the junction,
which has capacitance C. The junction is connected to an
external current generator Iex �representing the bias current
applied to the junction�. We suppose that the current Iex con-
sists of a dc current Idc and an ac current Iac= Im cos 	t of
arbitrary amplitude Im. In the classical RSJ model, the dy-
namics of the junction �in the noninertial limit� in the pres-
ence of thermal agitation are described by the classical
Smoluchowski equation19–21,28,29 for the time evolution of
the configuration-space distribution function. This equation
is formally equivalent to that describing a Brownian particle
moving in a tilted cosine potential in the high dissipation
limit. Thus, the junction is now treated as a purely classical

system, where the phase difference � across the junction and
the charge vC on the junction are considered as classical
variables which can be determined with arbitrary accuracy.21

However, the classical accuracy is inherently limited by
Heisenberg’s uncertainty principle, which in this case is
���N
1, where N is the number of Cooper pairs trans-
ferred across the junction. Hence, the results of classical
theory �in particular, those arising from the classical Smolu-
chowski equation� require modification when quantum ef-
fects become important, e.g., at very low temperatures T
�0.1 K.21 Noting that the mass m and the friction coeffi-
cient � of the mechanical Brownian particle are replaced in
Eq. �3� by the corresponding electrical parameters R and C
via m=C�� /2e�2 and �= �� /2e�2 /R,19–21,30,31 the QSE for the
reduced Wigner function in configuration space P�� , t� is
given by Eq. �3�, viz.,

�P��,t�
�t

=
�

��
	P��,t�

�

�U���
��

+
�

��
�D���P��,t��
 , �6�

where the potential U��� is

U��� = − �−1��cos � + ��� + � cos 	t�� , �7�

�=�I� / �2e� is the normalized Josephson coupling energy
�the parameter � also characterizes the noise strength�, �
= Idc / I and �= Im / I are, respectively, the ratios of the dc and
ac current amplitudes to the supercurrent amplitude �tilt and
nonlinear parameters�, and the diffusion coefficient D is

D��� =
1

��
	1 + ��U���� −

����2

5
��U�����2

+ 3U����U�3���� − 3�−1U�4����
 + . . .
 . �8�

Here ����−1 is the classical diffusion coefficient and �
=e2� / �3C� is the dimensionless parameter corresponding to
the quantum parameter �2� / �12m� for a mechanical Brown-
ian particle.15 The QSE �6� is formally equivalent to the dif-
fusion equation in configuration space describing classical
noninertial Brownian motion in a potential with coordinate-
dependent diffusion coefficient D. Thus, the dynamics of the
system described by the QSE �6� may be equivalently de-
scribed using a quantum analog of the noninertial Langevin
equation with multiplicative noise �see Appendix A�. In the
classical limit �=0, Eq. �6� reduces to the Smoluchowski
equation used by Ambegaokar and Halperin28 and by Iv-
anchenko and Zil’berman.29 The conditions for the validity
of the QSE �6� are discussed in Ref. 31. We remark that the
mathematical form of the leading quantum correction term in
the diffusion coefficient D��� is similar to that derived by
entirely different reasoning in Refs. 8 and 49.

Now, quantum effects in the nonlinear �as well as in the
linear� impedance of a point Josephson junction should be
detectable when the quantum correction terms in Eq. �8�
�e.g., ��U����, etc.� are comparable with unity, i.e., when
the model parameter values are such that
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�� =
��e2

3C
� 0.6 � 10−3 �

C�pF�T�K�

 0.1 ÷ 0.2. �9�

�The parameter �� must not be too large in order to guaran-
tee convergence of the perturbation expansion of D in ��.
According to Eq. �9�, the quantum effects should become
more pronounced at lower temperatures T, smaller junction
capacitances C, and larger dimensionless Josephson coupling
energies �. For example, with ��15 and C�1 pF, these
effects are negligible in the temperature range T�1 K; how-
ever, they can play a vital role at temperatures below 0.1 K.
We remark that �� is very small for values of T, �, and C for
typical Josephson junctions, as studied experimentally, for
example, in Refs. 50–53 �here the current-voltage character-
istics of Josephson junctions have been measured and com-
pared with the RSJ model of Ambegaokar and Halperin28

and Ivanchenko and Zil’berman29�. Thus, use of the classical
RSJ model in these cases50–53 is entirely justified.

III. NONLINEAR RESPONSE: MATRIX CONTINUED
FRACTION SOLUTION

In order to calculate the nonlinear impedance of the Jo-
sephson junction from the QSE �6�, we note that the spatially
periodic function P�� , t� can be expanded in a Fourier series
in �,18,30 viz.

P��,t� =
1

2

�

n=−�

�

cn�t�ein�. �10�

By substituting Eq. �10� into the QSE �6�, we then find that
the Fourier coefficients �statistical moments� cn�t�
= �e−in���t� satisfy the five-term differential recurrence rela-
tion to second order in the quantum correction parameter �

�
d

dt
cn�t� + �n2 +

��n��2

5
+ in��� + � cos 	t��cn�t�

=
�n

2
��1 − n��cn−1�t� − �1 + n��cn+1�t��

+
�n2�2

10
�2�cn−2�t� + 3�1 − i��� + � cos 	t��cn−1�t�

+ 3�1 + i��� + � cos 	t��cn+1�t� + 2�cn+2�t�
 + O��3� .

�11�

Here

� = � �

2e
�2�

R

is the characteristic relaxation time. The recurrence relation,
Eq. �11�, may also be obtained directly from the appropriate
quantum Langevin equation by averaging that equation over
its realizations in configuration space as is illustrated in Ap-
pendix A.

Here, we are solely concerned with the nonlinear station-
ary ac response, where the ac has been applied for a very
long time, i.e., we seek a solution independent of the initial
conditions. Thus we make the following perturbation expan-
sion:

cn�t� = �
k=−�

�

cn
k�	�eik	t, �12�

accounting for the infinite number of harmonics of the stimu-
lus produced by the nonlinear characteristics of the junction.
The Fourier coefficients have the following properties
cn

k�	�=c−n
k��−	�=c−n

−k��	� arising ultimately from the fact that
P�� , t� must be real �asterisk denotes complex conjugate�.
By substituting Eq. �12� into Eq. �11�, we have the dual-
index algebraic recurrence relation for the Fourier ampli-
tudes cn

k�	�, viz.,

izn
k�	�cn

k�	� + qn
+cn+1

k �	� + qn
−cn−1

k �	� + q̄n�cn−2
k �	� + cn+2

k �	��

+ i��cn
k−1�	� + cn

k+1�	� − �3/4�q̄n�cn−1
k−1�	� + cn−1

k+1�	�

− cn+1
k−1�	� − cn+1

k+1�	��
 = 0, �13�

where n and k are integers varying from −� to �, c0
0�	�=1,

c0
k�	�=0 �k�0�, and

zn
k�	� = 2� k	�

n�
−

in

�
+ � −

i�n�2

5
� ,

qn
� = � �1 � n� � 3n�2�1 � i���/5� ,

q̄n = − 2�n�2/5.

Thus, invoking the familiar general matrix continued fraction
method for solving multi-index recurrence relations gener-
ated by Fokker-Planck equations,18,30 one may obtain the so-
lution of the differential recurrence Eq. �13� �details of this
solution are given in Appendix B�.

An intrinsic feature of the nonlinear response is the modu-
lation of the dc current-voltage characteristic, giving rise, for
example, to the famous Shapiro steps originating in the
phase locking. Here, the time-independent but frequency-
dependent dimensionless average dc voltage ���= �v� /RI in
the presence of an alternating force � cos 	t is given by

��� = � + Im�c1
0�	�� , �14�

while the nonlinear impedance is given by �recalling that
c−1

k �	�=c1
k��−	��

R	 − iX	 = R�1 − i�−1�c1
1�	� − c1

1��− 	��
 , �15�

where R	 and X	 are the dynamic resistance and the reac-
tance, respectively.

IV. RESULTS AND DISCUSSION

In Fig. 1 we show the averaged dc voltage ��� versus the
normalized dc bias current � for fixed frequency 	� and
coupling energy �, showing the stimulus-induced Shapiro
steps occurring at integer multiples of the fundamental fre-
quency due to dynamical phase slips and the difference be-
tween the quantum and classical results. In Fig. 2 we show
the average frequency-dependent dc voltage ��� for various
values of the applied ac current �. The effect of nonlinearity
is to modulate the dc response, i.e., to induce large
frequency-dependent troughs and peaks in the previously
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constant curve of the dc voltage vs normalized frequency 	�
characteristic of the linear response. In other words the time-
dependent response now affects the dc response. In general
the effect of the quantum corrections for the ac amplitude
between 0.1 and 1.0 is to enhance the troughs and peaks in
the response. However, as the amplitude of the driving cur-
rent increases above unity, the quantum effects decrease so
that the quantum curves are very close to the corresponding
classical curves, except at high frequencies, where the quan-
tum peaks decrease more slowly. Thus it appears in this in-
stance that relatively large nonlinear effects will mask the
quantum effects. The enhancement of the nonlinear effects at
intermediate amplitudes of the applied current is also evident
in Fig. 3, where for all coupling energies the quantum effects
enhance the relative heights of the classical peaks and
troughs and also cause a shift of these extrema toward higher
frequencies. This behavior appears to be entirely consistent
with the enhancement of the Q factor caused by dissipative
quantum tunneling near the top of the barrier �reducing the
damping of the Josephson oscillations� in the linear-response
impedance characteristic31 and is an example of how dissi-

pative tunneling can now affect the dc characteristics. The
convergence of the perturbation procedure in � is demon-
strated in Fig. 4 by comparing the first and second order of
perturbation-theory solutions. Here we show the averaged dc
voltage vs frequency for various values of � to first �dashed
lines� and second �solid lines� order in � showing that the
quantum effects invariably enhance the troughs and peaks
�the dotted line corresponds to the classical solution, i.e., the
recurrence Eq. �11� ignoring all quantum terms�. Clearly, the
first-order perturbation solution closely approximates the
second-order one for small values of ��0.2 /�. Moreover,
inclusion of the second-order term is essential for the calcu-
lations at higher values of � as is obvious in curve 3. An-
other interesting point concerning Fig. 4 is that the main
peak in the frequency curve is so enhanced in comparison to
the classical case as to be experimentally detectable. Further-
more, its height is rather sensitive to � as is again obvious
from curve 3 of Fig. 4. We remark that the diffusion coeffi-
cient D��� in Eq. �8� is written explicitly to o��2� and that
the greater the values of � and �, the higher the order of
perturbation theory required. Higher-order correction terms
to the diffusion coefficient D��� may be calculated as de-
scribed in Ref. 31. Hence, D��� can be given, in principle, to
any desired degree r of �r. For example, the next term in the
perturbation expansion of D��� in Eq. �8� is

1 2
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4 1

FIG. 1. �Color online� Averaged dc voltage ���= �v� /RI vs nor-
malized dc bias current amplitude �= Idc / I for various values of the
normalized ac amplitude �= Im / I, fixed frequency 	�=10, and cou-
pling energy �=10 showing the stimulus induced Shapiro steps for
classical �dashed lines� and quantum �solid lines; �=0.2� cases.
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FIG. 2. �Color online� Averaged dc voltage ��� vs dimensionless
frequency 	� for various values of the applied ac stimulus � for
classical �dashed lines� and quantum �solid lines� cases. Strong non-
linearity, corresponding to large �, causes pronounced oscillatory
behavior of the dc voltage with numerous frequency-dependent
troughs and peaks as opposed to the smooth behavior associated
with the linear response. The quantum effects, which are most pro-
nounced at intermediate � �curves 1, 2, and 3�, comprising an in-
crease in amplitude of the extrema and a shift of these to higher
frequencies, diminish as � increases �curve 4�.
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FIG. 3. �Color online� ��� vs 	� for various values of the nor-
malized Josephson coupling energy �=�I� / �2e� �or noise strength�
parameter and ac strength �=1; classical �dashed lines� and quan-
tum �solid lines� results. The quantum effects enhance the nonlinear
behavior for all values of �.
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FIG. 4. �Color online� ��� vs 	� for various values of the quan-
tum parameter � to first- �dashed lines� and second- �solid lines�
order quantum corrections in �, showing throughout that the quan-
tum effects emphasize the troughs and peaks. Dotted line: classical
limit, �=0. Inclusion of the second-order term is essential for
higher values of �=0.2 �curve 3�.
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+
�2�3

35�
�2�U�����3 + 12U�����3U�3����U���� − 2�−1U�4�����

+ 9��U�����2U�4���� − 2�−1U����U�5���� + �−2U�6����


− 30�−1�U�3�����2
 .

In Fig. 5 we show the normalized dynamic resistance R	 and
reactance X	 versus the driving amplitude � for various dc
bias current amplitudes � and �=10, 	�=5. The results dis-
play strong nonlinearity for small bias and ohmic-resistance-
like behavior for high bias. Again, little difference is appar-
ent between the classical and quantum corrected curves for
high driving amplitudes �, demonstrating that quantum ef-
fects are most pronounced in the linear region �small �� be-
ing negligible for large �, showing once again how nonlinear
effects mask the quantum effects for large �. This is corrobo-
rated in Fig. 6, where again the quantum effects are most
obvious in the linear-response region �=0.01. On increasing
�, that is, proceeding from the linear region to the nonlinear
region, one also perceives masking by the nonlinearity,
which is evident in Fig. 7.

To conclude, we have demonstrated how the QSE may be
used to calculate quantum corrections to the nonlinear im-
pedance and current-voltage characteristics of the Josephson
tunneling junction in the zero-capacitance limit, by evaluat-
ing the ac nonlinear response in the presence of noise for
wide ranges of the noise strength �, the dc bias current �,
and the nonlinearity �. In order to obtain these results, we
have solved the QSE using matrix-continued fractions, al-
lowing us to determine various characteristics of the nonin-
ertial Brownian motion in a tilted cosine potential in the
presence of a large ac driving force. We finally remark that
the treatment outlined here may be extended to the general
inertial �or nonzero-capacitance� case. The zero-capacitance
�noninertial� limit used in the present paper automatically

restricts the band of frequencies in which the model is appli-
cable to frequencies much less than the Josephson plasma
frequency 	p=�2Ie /�C.19–21 If one wishes to treat accu-
rately the GHz and THz regions, the complete phase-space
distribution W�� , p , t� �p=m�̇� must be used, giving
rise,15–18,30 on expansion of the momentum part of the distri-
bution in orthogonal Hermite polynomials, to a hierarchy of
partial differential recurrence relations in configuration
space. The actual configuration-space distribution P�� , t�
must then be extracted from the hierarchy, usually by con-
tinued fractions, with the much simpler QSE naturally
emerging15,17 from the hierarchy in the high-damping limit

0.0

0.5

1.0

1.5

Λ = 0
Λ = 0.1

γ = 10
ωτ = 5

R ω
/R

1
2

3
1: α = 0.1
2: α = 0.5
3: α = 1.0
4: α = 2.0

4

0 1 2 3 4 5
−0.5

0.0

0.5

1.0

X ω
/R

ξ

12

3

4

FIG. 5. �Color online� Normalized dynamic resistance R	 and
reactance X	 vs applied ac stimulus amplitude � for various dc bias
current amplitudes � and �=10, 	�=5, showing strong nonlinearity
for small bias and ohmic-resistance-like behavior for high bias.
Dashed and solid lines are the classical and quantum results,
respectively.
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FIG. 6. �Color online� Normalized dynamic resistance R	 and
reactance X	 vs the dc bias amplitude � for various ac amplitudes �
and �=10, 	�=5, showing relatively strong quantum effects for
small stimuli �curve 1� indicating that the quantum behavior de-
pends more strongly on the dc bias for small ac amplitudes than
relatively large ones �curves 3 and 4�. Dashed and solid lines are the
classical and quantum results, respectively.
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FIG. 7. �Color online� Normalized dynamic resistance R	 and
reactance X	 vs the dc bias amplitude � for various Josephson
coupling energies � and �=2, 	�=2, showing that the quantum
effects are relatively small compared to the nonlinear ones. Dashed
and solid lines are the classical and quantum results, respectively.
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as originally demonstrated by Brinkman for the classical
case.54
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APPENDIX A: DERIVATION OF EQ. (11) DIRECTLY
FROM THE QUANTUM LANGEVIN EQUATION

By way of illustration of the Langevin equation method of
generating the hierarchy of differential recurrence relations
for the statistical moments, we shall demonstrate how aver-
aging of the semiclassical noninertial Langevin equation cor-
responding to the QSE �3� over its realizations yields the
same hierarchy of equations as the QSE. The Langevin equa-
tion corresponding to Eq. �3� in the Stratonovich
interpretation55 for the random variable ��t� reads

�̇�t� = −
1

�
��	V���t�� +

�

2
D���t��
 +��

�
D���t��L�t� ,

�A1�

where the dot denotes the time derivative and L�t� is a ran-
dom current with Gaussian white-noise properties, viz.,

L�t� = 0, L�t�L�t�� = 2kTR−1��t − t�� .

�The overbar means the statistical average over the realiza-
tions of the random current�. However, one must remember
that the quantum Langevin equation is written down from a
priori knowledge of the QSE, which is dissimilar to the situ-
ation encountered in the classical case. There the Langevin
equation is written down independently of either the Fokker-
Planck or SE, and the results of the two methods only coin-
cide as a consequence of the Gaussian white-noise properties
of L�t�, particularly Isserlis’s theorem �Wick’s theorem�30 is
satisfied. This theorem allows multiple time correlations of
Gaussian random variables to be expressed as two time cor-
relations. Now ��t� is governed by the Langevin Eq. �A1�,
which contains a multiplicative noise term and is of the stan-
dard classical form18

�̇�t� = h���t�� + g���t��L�t� . �A2�

The corresponding Langevin equation for the evolution of an
arbitrary function f���t�� whose expectation value we wish
to calculate is then

ḟ���t�� = h���t��
d

d�
f���t�� + g���t��

d

d�
f���t��L�t� .

�A3�

�Here we have noted that in the transformation of variables
in a Stratonovich stochastic differential equation, one can
apply the usual rules of calculus.18,30� Next, we recall the
theorem18,30 that the averaged evolution equation for a func-
tion f���t�� is given by

d

dt
�f���� = �h���

d

d�
f����

+
2kT

R
�g���

d

d�
�g���

d

d�
f����� , �A4�

hence, with

f���t�� = e−in��t�, �A5�

Eq. �A4� with the potential Eq. �7� yields the recurrence Eq.
�11� for cn�t�= �e−in��t��.

APPENDIX B: MATRIX-CONTINUED FRACTION
SOLUTION OF EQ. (13)

The dual-index scalar five-term recurrence relation, Eq.
�13�, can be rewritten in terms of solvable matrix three-term
recurrence relations as

Q1
−C0 + Q1C1 + Q1

+C2 = − FC1
� �B1�

and

Qn
−Cn−1 + QnCn + Qn

+Cn+1 = 0. �B2�

Here the column vectors C�n are

C0 = �c0�, C�n = � c�2n

c��2n−1�
�, n = � 1, � 2, . . . ,

c0 =�
]

0

1

0

]

� , cn =�
]

cn
−1�	�

cn
0�	�

cn
1�	�
]

� ,

the supermatrices Qn, Qn
�, and F are given by

Qn = � q2n q2n
−

q2n−1
+ q2n−1

�, Qn
+ = �q2ni q2n

+

0 q2n−1i
� ,

Qn
− = � q̄2ni 0

q2n−1
− q̄2n−1i

�
with

Q1
− = �q̄2i

q1
− � and F = �0 0

0 q1f
� ,

where i denotes the unit matrix, and f is given by

f =�
� ] ] ] �

¯ 0 0 1 ¯

¯ 0 1 0 ¯

¯ 1 0 0 ¯

� ] ] ] �

� ,
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qn = i�
� ] ] ] �

¯ zn
−1�	� � 0 ¯

¯ � zn
0�	� � ¯

¯ 0 � zn
1�	� ¯

� ] ] ] �

� ,

qn
� =�

� ] ] ] �

¯ qn
� �3i�q̄n/4 0 ¯

¯ �3i�q̄n/4 qn
� �3i�q̄n/4 ¯

¯ 0 �3i�q̄n/4 qn
�

¯

� ] ] ] �

� .

Thus, the column vectors Cn can be calculated from Eqs.
�B1� and �B2� via matrix continued fractions as the matrix
products26

Cn = SnSn−1 . . . S2C1, �B3�

C1 = S1C0 + �1FC1
�, �B4�

where Sn and �1 are matrix continued fractions defined by
the recurrence equation

Sn = �− Qn − Qn
+Sn+1�−1Qn

−,

�n = �− Qn − Qn
+�n+1Qn+1

− �−1.

Next we introduce complex vectors and matrices via

C1 = C1� + iC1�, S1 = S1� + iS1�, F = �1F = F� + iF�

so that we have from Eq. �B4�

�I − F��C1� − F�C1� = S1�C0, �B5�

�I + F��C1� − F�C1� = S1�C0, �B6�

where I denotes the unit matrix. Ultimately, we have for the
real and imaginary parts in the simultaneous matrix Eqs.
�B5� and �B6�

C1� = �I − F� − F��I + F��−1F��−1�S1� + F��I + F��−1S1��C0,

C1� = �I + F� − F��I − F��−1F��−1�S1� + F��I − F��−1S1��C0.
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