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We develop an understanding of the anomalous metal state of the parent compounds of recently discovered
iron-based superconductors starting from a strong-coupling viewpoint, including orbital degrees of freedom.
On the basis of an intermediate-spin �S=1� state for the Fe2+ ions, we derive a Kugel-Khomskii spin-orbital
Hamiltonian for the active t2g orbitals. It turns out to be a highly complex model with frustrated spin and
orbital interactions. We compute its classical phase diagrams and provide an understanding for the stability of
the various phases by investigating its spin-only and orbital-only limits. The experimentally observed spin-
stripe state is found to be stable over a wide regime of physical parameters and can be accompanied by three
different types of orbital orders. Of these the orbital-ferro and orbital-stripe orders are particularly interesting
since they break the in-plane lattice symmetry—a robust feature of the undoped compounds. We compute the
magnetic excitation spectra for the effective spin Hamiltonian, observing a strong reduction in the ordered
moment, and point out that the proposed orbital ordering pattern can be measured in resonant x-ray diffraction.
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I. INTRODUCTION

The beginning of this year marked the discovery of a new
and very unusual family of high-temperature superconduct-
ors: the iron pnictides. Superconductivity at 26 K was dis-
covered in fluorine-doped rare-earth iron oxypnictide
LaOFeAs.1,2 In subsequent experimental studies involving
different rare-earth elements a superconducting Tc larger
than 50 K was reported.3–5 Since then a large number of
experimental and theoretical papers have been published,
making evident the immense interest of the condensed-
matter community in this subject.6

It has become clear that the iron-pnictide superconductors
have, besides a number of substantial differences, at least
one striking similarity with the copper oxides: the supercon-
ductivity emerges by doping an antiferromagnetic �AF� non-
superconducting parent compound. This antiferromagnetism
is however of a very unusual kind. Instead of the simple
staggered �� ,�� antiferromagnetism of the undoped cu-
prates, this “stripe” or �� ,0� spin order involves rows of
parallel spins on the square Fe-ion lattice that are mutually
staggered.7 In fact, before this order sets in a structural phase
transition occurs where the two in-plane lattice constants be-
come inequivalent. This structural distortion is very small,
but it appears that the electron system undergoes a major
reorganization at this transition. This is manifested by resis-
tivity anomalies, drastic changes in the Hall and Seebeck
coefficients, and so on.8 Although the magnetic and struc-
tural distortions appear to be coincident in the 122 family,7,9

in the 1111 compounds they are clearly separated,7 and there
it is obvious that the large scale changes in the electron sys-
tem occur at the structural transition, while barely anything
is seen at the magnetic transition.

Given that the structural deformation is minute, this is an
apparent paradox. Assuming that only the spins matter one
could envisage that the spin ordering would lead to a drastic

nesting-type reorganization of the Fermi surfaces, causing a
strong change in the electronic properties. But why is there
so little happening at the magnetic transition? One could
speculate that the spins are fluctuating in fanciful ways and
that these fluctuations react strongly to the structural
change.10–12 Such possibilities cannot be excluded on theo-
retical grounds but whichever way one wants to proceed in-
voking only spins and itinerant carriers: one is facing a prob-
lem of principle.

This paper is dedicated to the cause that valuable lessons
can be learned from the experiences with manganites when
dealing with the pnictides. A crucial lesson learned over a
decade ago, when dealing with the colossal magnetoresis-
tance �CMR� physics of the manganites, was the demonstra-
tion by Millis et al.13 that the coupling between fluctuating
spins and charge carriers can only cause relatively weak
transport anomalies. In the pnictides one finds that the resis-
tivity drops by a couple of m� cm, that the Hall mobility
increases by 2–3 orders of magnitude, and most significantly
the Seebeck coefficient drops by an order of magnitude from
a high-temperature limit order value of 40 �V /K in cross-
ing the transition. It is very questionable if spin-carrier cou-
pling of any kind, be it itinerant or strongly coupled, can
explain such large changes in the transport properties.

A. Role of electron-electron interactions

Comparing the pnictides with the cuprate superconductors
there is now a consensus that in two regards these systems
are clearly different: �i� in the pnictide system no Mott insu-
lator has been identified indicating that they are “less
strongly correlated” than the cuprates in the sense of the
Hubbard-type local interactions; and �ii� in the pnictide one
has to account for the presence of several 3d orbitals playing
a role in the low-energy physics, contrasting with the single
3dx2−y2 orbital that is relevant in the cuprates.
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As a consequence, the prevailing viewpoint is to regard
the pnictides as local-density approximation �LDA� metals,
where the multiorbital nature of the electronic structure gives
rise to a multisheeted Fermi surface, while the “correlation
effects” are just perturbative corrections, causing moderate
mass enhancements and so on.

Although there is evidence that the system eventually dis-
covers this “Fermi-liquid fixed point” at sufficiently low
temperatures, it is hard to see how this can explain the prop-
erties of the metallic state at higher temperatures. The data
alluded to in the above indicate pronounced “bad metal” be-
havior, and these bad metal characteristics do not disappear
with doping. In fact, one can argue that the term bad metal
actually refers to a state of ignorance: it implies that the
electron system cannot possibly be a simple coherent Fermi
liquid.

B. Spin-charge-orbital correlations

Another important lesson from the manganites is that the
presence of multiple orbitals can mean much more than just
the presence of multiple LDA bands at the Fermi energy.
Also in iron pnictides orbital degree of freedom can become
relevant.14 Manganite metals have a degree of itineracy in
common with the pnictides, but they still exhibit correlated
electron physics tied to orbital degeneracy which is far be-
yond the reach of standard band-structure theory.

The seminal work by Kugel and Khomskii �KK� �Ref. 15�
in the 1970s made clear that in Mott insulators orbital de-
grees of freedom turn into dynamical spinlike entities that
are capable of spinlike ordering phenomena under the con-
dition that in the local limit one has a Jahn-Teller �orbital�
degeneracy. The resulting orbital degrees of freedom can
have in dynamical regards a “life of their own.” This mani-
fests itself typically in transitions characterized by small
changes in the lattice accompanied by drastic changes in the
electronic properties.

In the manganites there are numerous vivid examples of
the workings of orbital ordering.16–18 Under the right circum-
stances one can find a transition from a high-temperature
cubic phase to a low-temperature tetragonal phase accompa-
nied by a quite moderate change in the lattice but with a
change in the electron system that is as drastic as a “dimen-
sional transmutation.” This system changes from an isotropic
three-dimensional �3D� metal at high temperature to a quasi-
two-dimensional electron system at low temperatures where
the in-plane resistivity is orders of magnititude lower than
the c-axis resistivity.19–21

The explanation is that one is dealing in the cubic man-
ganite with a Mn3+ ion with an eg Jahn-Teller degeneracy
involving 3dx2−y2 and 3d3z2−1 orbitals. In the low-temperature
“A phase” one finds a ferro-orbital order where cooperatively
the x2-y2 orbitals are occupied. This greatly facilitates the
hopping in the planes, while for simple orthogonality reasons
coherent transport along the c axis is blocked. Since the d
electrons only contribute modestly to the cohesive energy of
the crystal, this large scale change in the low-energy degrees
of freedom of the electronic system reflect only barely in the
properties of the lattice. On the other hand, this orbital order

is a necessary condition for the spin system to order, and at a
lower temperature one finds a transition to a simple stag-
gered antiferromagnet, in tune with the observation that in
the A phase the effective microscopic electronic structure is
quite similar to the ones found in cuprate planes.

The ruthenates are another class of materials in which the
orbital degrees of freedom play a decisive role, in both the
metallic and insulating phases. Bilayer Ca3Ru2O7, for in-
stance, has attracted considerable interest because the ob-
served CMR effect is possibly driven by orbital scattering
processes among the conduction electrons.22,23 Another ex-
ample is Tl2Ru2O7, in which below 120 K its 3D metallic
state shows a dramatic dimensional reduction and freezes
into a quasi-one-dimensional spin system, accompanied by a
fundamental orbital reorganization.24,25

It is very remarkable that the ground state of all iron pnic-
tides is characterized by a very similar spatial anisotropy of
the magnetic exchange interactions: along one direction in
the plane the Fe-Fe bonds are strong and antiferromagnetic,
whereas in the orthogonal direction they are very weak and
possibly even ferromagnetic.26 With all the others, also this
observation is consistent with our hypothesis that the un-
doped iron pnictides are controlled by “spin-charge-orbital”
physics, very similar to the ruthenates and manganites.

C. Organization of this paper

In Sec. II of this paper we derive the spin-orbital Hamil-
tonian starting with a three-orbital Hubbard model for the
iron square lattice of the iron pnictides. The phase diagrams
in the classical limit of this Hamiltonian are discussed in Sec.
III. We analyze the various phase transitions by also consid-
ering the corresponding spin-only and orbital-only models.
Section IV deals with the results on magnetic excitation
spectra, which provide a possible explanation for the reduc-
tion in magnetic moment, a central puzzle in the iron super-
conductors. We conclude by commenting briefly on how the
itineracy may go hand in hand with the orbital “tweed” order
that we put forward in the present study and point out that
the tweed orbital ordered state can, in principle, be observed
in resonant x-ray diffraction experiments.

II. SPIN-ORBITAL MODEL FOR IRON PLANES

As stated above, the superconducting iron pnictides are
not strongly coupled doped Mott insulators. Staying within
the realm of Hubbard-model language they are likely to be in
the intermediate coupling regime where the Hubbard U’s are
of order of the bandwidth. To at least develop qualitative
insight in the underlying physics it is usually a good idea to
approach this regime from strong coupling for the simple
reason that more is going on in strong-coupling band than in
the weak-coupling band-structure limit. As the experience
with for instance the manganites and ruthenates shows, this
is even more true when we are dealing with the physics
associated with orbital degeneracy. The orbital ordering phe-
nomena that we have already alluded to take place in itiner-
ant systems but their logic is quite comprehensible starting
from the strongly coupled side.
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Thus as a first step we will derive the spin-orbital model
of pnictides starting from a localized electron framework. A
condition for orbital phenomena to occur is then that the
crystal fields conspire to stabilize an intermediate spin �S
=1� ionic states. These crystal fields come in two natural
varieties: one associated with the tetrahedral coordination of
Fe by the As atoms, and a tetragonal field associated with the
fact that the overall crystal structure consists of layers. When
these crystal fields would be both very large the Fe 3d6 ions
would form a low-spin singlet state. This is excluded by the
observation of magnetism, and moreover band-structure cal-
culations indicate that the crystal fields are relatively small.

The other extreme would be the total domination of
Hund’s rule couplings, and this would result in a high-spin
S=2 state, which appears to be the outcome of spin-polarized
LDA and LDA+U calculations.27 However, given that for
elementary chemistry reasons one expects that the tetrahedral
splitting is much larger than the tetragonal splitting, there is
the possibility that Hund’s rule overwhelms the latter but
loses from the former, resulting in an “intermediate” S=1
state. Although the issue is difficult to decide on microscopic
grounds, for orbital physics to be relevant we need an inter-
mediate spin state as in the present crystal-field scheme this
is the only ionic d6 state that exhibits a Jahn-Teller ground-
state degeneracy �see Fig. 1�.

In this situation the starting Hubbard model involves a
nondegenerate �xy� and two doubly-degenerate, �xz� and �yz�,
orbitals, as will be defined in Sec. II A. The details of the
derivation of the model are given in Sec. II B. The derivation

does not assume any specific structure for the hopping pa-
rameters and, hence, is completely general. The algebra in-
volved in the derivation is tedious but straightforward and a
general reader may wish to skip Sec. II B and jump directly
to Sec. II C where we discuss the relevant hopping processes
for the Fe-As plane. Incorporating these hopping parameters
leads to the model relevant to the iron plane.

A. Hubbard model for pnictide planes for the intermediate
spin d6 state

The iron ions are in a d6 configuration where we assume
the low-lying eg orbitals to be fully occupied due to a large
crystal-field splitting between the eg and t2g states. The two
remaining electrons occupy the three t2g orbitals �a�ª �xz�,
�b�ª �yz�, and �c�ª �xy� with x and y pointing along the
bonds of the iron square lattice. Due to Hund’s coupling JH
between the t2g electrons, such a configuration leads to an
S=1 intermediate spin state of the d6 Fe ions. Further, we
incorporate a small tetragonal splitting � between the �xy�
state and the �xz� , �yz� doublet �see Fig. 1�.

Assuming the eg electrons to be localized, the physical
situation is very similar to almost cubic vanadates such as
YVO3 or LaVO3 where the two d electrons of the V3+ ions
occupy nearly degenerate t2g orbitals. Interestingly, in these
systems orbital ordering in the presence of a small crystal-
field splitting � can lead to C-type antiferromagnetism28–30

characterized by an ordering wave vector Q= �� ,� ,0�. The
effective Hubbard model for the t2g electrons consists of a
kinetic-energy part Ht, a crystal-field splitting Hcf, and of the
on-site electron-electron interactions Hint,

H = Ht + Hcf + Hint, �1�

with a kinetic-energy contribution that is much richer than in
the vanadates. For the nearest-neighbor bonds the effective
hoppings between the Fe t2g orbitals have contributions from
both direct d-d and d-p-d processes via As p orbitals. These
As ions are located in adjacent layers above or below the Fe
ion plaquettes as illustrated in Fig. 1�a�. Because of this par-
ticular geometry, the indirect As-mediated hoppings should
be of similar strength for nearest-neighbor and next-nearest-
neighbor Fe ions. At this point, we do not specify the effec-
tive hopping matrix elements t�,�

�i,j� between orbitals � ,�
=a ,b ,c along a particular bond �i , j� and write the kinetic-
energy operator in the most general form,

Ht = − �
�i,j�

�
��,�

t��
�i,j��di��

† dj�� + H.c.� , �2�

where di��
† �di��� creates �annihilates� an electron on site i in

orbital � with spin �= ↑ ,↓. The crystal-field splitting be-
tween the t2g orbitals is simply given by

Hcf = �
i�

	�n̂i�, �3�

with n̂i�=��n̂i�� and n̂i��=di��
† di��. In our case the electron

energies are given by 	c=0 for the xy and 	a=	b=� for the
xz and yz orbitals. The electron-electron interactions are de-
scribed by the on-site terms,31

FIG. 1. �Color online� �a� Fe square lattice �circles� and relative
positions of the As ions. The latter are located in adjacent layers
above �filled squares� and below �empty squares� the Fe plaquettes.
�b� Schematic illustration of a ground-state d6 configuration of the
Fe ions corresponding to an intermediate S=1 spin state. �c� Mul-
tiplet structure of the di

6dj
6�di

7dj
5 charge excitations for localized eg

electrons.
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Hint = U�
i�

n̂i�↑n̂i�↓ +
1

2
�U −

5

2
JH� �

i��

���

n̂i�n̂i�

+ JH �
i��

���

di�↑
† di�↓

† di�↓di�↑ − JH �
i��

���

Ŝi�Ŝi�, �4�

with the Coulomb element U and a Hund’s exchange element
JH.

B. Superexchange model

In the limit of strong Coulomb repulsion, t
U, charge
fluctuations di

6dj
6�di

7dj
5 are suppressed and on each site the

two t2g electrons have to form a state belonging to the
ground-state manifold of Hint+Hcf in the two-electron sector.
For sufficiently small crystal-field splitting, �2�8JH

2 , these
states are given by two S=1 triplets in which on each site
either the xz or yz is unoccupied. This orbital degree of free-
dom can be viewed as a T= 1

2 pseudospin. From Eqs. �3� and
�4� we easily obtain E0=U−3JH+� as the ground-state en-
ergy of the t2g

2 sector.
A general spin-orbital superexchange model can be de-

rived by second-order perturbation theory controlled by the
kinetic-energy contribution Ht, where we have to consider
all virtual processes t2g

2 t2g
2 → t2g

1 t2g
3 → t2g

2 t2g
2 acting on the S

=1 and T=1 /2 ground-state manifolds. The most general
superexchange Hamiltonian in the sense of Kugel and
Khomskii for a given bond �i , j� takes the form,

HKK
�i,j� = − �

�i,�j

�
si,sj

J�i,�j,si,sj

�i,j� A�i,�j

�i,j� �T̂i,T̂ j� 
 Bsi,sj
�Ŝi,Ŝ j� , �5�

where Ŝ and T̂ denote the spin S=1 and pseudospin T= 1
2

operators. The functional form of B only depends on total
spins si and sj on the two sites in the intermediate t2g

1 t2g
3

states. Whereas the single-occupied site has necessarily s
=1 /2, the other site can be in a high-spin �s=3 /2� or low-
spin �s=1 /2� state. Likewise, the functions A�i,j� are deter-
mined by the pseudospins, �i and � j, of the involved inter-
mediate states.

To derive the effective spin-orbital superexchange model
we have to find the multiplet structure of the virtual interme-
diate t2g

3 configurations. It is straightforward to diagonalize
Hcf+Hint in Eqs. �3� and �4� in the three-particle sector. The
lowest energy we find for the 4A2 quartet of s=3 /2 high-spin
intermediate states

�4A2, 3
2 ,sz� ,

with

�sz� = � 3
2� = da↑

† db↑
† dc↑

† �0� ,

� 1
2� = 1

�3
�da↑

† db↑
† dc↓

† + da↑
† db↓

† dc↑
† + da↓

† db↑
† dc↑

† ��0� ,

�− 1
2� = 1

�3
�da↓

† db↓
† dc↑

† + da↓
† db↑

† dc↓
† + da↑

† db↓
† dc↓

† ��0� ,

and

�− 3
2� = da↓

† db↓
† dc↓

† �0� .

Their energy is 	�4A2�=E�4A2�−2E0=U−3JH, where E0=U
−3JH+� is the ground-state energy in the t2g

2 sector. In order
for the approach to be valid we have to assume that the
system has a charge-transfer gap, U−3JH�0 and that the
hopping matrix elements are sufficiently small compared to
the charge-transfer gap. All the other multiplets consist of
intermediate s=1 /2 doublets. The 2E multiplet with excita-
tion energy 	�2E�=U consist of the two spin-1

2 doublets,

	2E,
1

2
,�


1
=

1
�6

�2da�
† db�

† dc,−�
†

− da�
† db,−�

† dc,�
† − da,−�

† db�
† dc�

† ��0� , �6�

	2E,
1

2
,�


2
=

1
�2

�da,−�
† db�

† dc�
† − da�

† db,−�
† dc�

† ��0� . �7�

Finally, we have multiplets 2T1
��� and 2T2

��� which consist
of spin-1

2 doublets and invoke doubly-occupied orbitals,

	2T1/2,
1

2
,�
 =

1
�2

dc�
† �da↑

† da↓
† � db↑

† db↓
† ��0� , �8�

with excitation energies 	�2T1�=U and 	�2T2�=U+2JH, and

	2T1/2
� ,

1

2
,�


1
= da�

† ��1 − v�
2 dc↑

† dc↓
† � v�da↑

† da↓
† ��0� , �9�

	2T1/2
� ,

1

2
,�


2
= db�

† ��1 − v�
2 dc↑

† dc↓
† � v�db↑

† db↓
† ��0� ,

�10�

with v�=JH /�JH
2 + �����2+JH

2 �2 and excitation energies

	�2T1/2
� �=U+JH���2+JH

2 .
The resulting charge-excitation spectrum is shown sche-

matically in Fig. 1�c�. Although the single-occupied t2g
1 site

of a virtual t2g
1 t2g

3 intermediate state gives no contribution to
the on-site electron-electron interaction, it can lead to an ad-
ditional crystal-field energy � if the electron is in the a or b
orbital.

Let us first focus on the purely magnetic parts Bsi,sj
�Ŝi , Ŝ j�

of the superexchange Hamiltonian, which can be determined
entirely by group theoretical methods. To be precise, we con-
sider a two-ion system in the state �SA ,MA� � �SB ,MB� which
can be classified by the total spin St and the z component Mt.
Applying a hopping operator of the form Ht=−t���cA�

† cB�

+H.c.�, which preserves the quantum numbers St and Mt
because of the spin-rotation invariance, we obtain an inter-
mediate state �sA ,mA� � �sB ,mB�, with sA=SA�1 /2 and sB
=SB�1 /2. The effective superexchange involving interme-
diate spins sA and sB is given by the second-order process,

E�St,sA,sB� = − �
ma,mB

��sAmA,sBmB�Ht�StMt��2

�E
.

Using Clebsch-Gordan coefficients Cm1m2m
j1j2j = �j1j2m1m2 � jm�,

we can express the total spin states as
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�StMt� = �
MA,MB

CmAmBMt

SASBSt �SA,MA� � �SB,MB� .

Since the operators c�
† and c� are irreducible tensor operators

of rank 1/2 we can use the Wigner-Eckart theorem to obtain

�sAmA�cA�
† �SAMA� = �cA

†�CMA�mA

SA1/2sA ,

�sBmB�cB��SBMB� = �cB�CMB�−��mB

SB1/2sB �− 1�1/2−�,

where we have used � · � as a short-hand notation for the
reduced matrix elements. Using these expressions we can
rewrite the exchange energy as E�St ,sA ,sB�
= t2

�E ��cA
†� · �cB��2B�St ,sA ,sB�, where we can express the func-

tion B in terms of a Wigner 6j symbol as

B�St,sA,sB� = − �2sA + 1��2sB + 1�
SA sA
1

2

sB SB St
�

2

,

which by using the relation St�St+1�=SA�SA+1�+SB�SB+1�
+2ŜAŜB can be simplified further to

BsA,sB
= −

2

�2SA + 1��2SB + 1�


 ��sA +
1

2
��sB +

1

2
�

− sgn��sA − SA��sB − SB��ŜAŜB� .

We can evaluate this expression for SA=SB=S=1 for the
high-spin s=3 /2 and low-spin s=1 /2 intermediate states to
obtain the �normalized� spin-projection operators

B3/2,1/2�Ŝi,Ŝ j� = −
1

3
�ŜiŜ j + 2� , �11�

B1/2,1/2�Ŝi,Ŝ j� =
1

3
�ŜiŜ j − 1� , �12�

in agreement with Refs. 28 and 29. Hence, the Kugel-
Komskii superexchange Hamiltonian for a given bond �i , j�
can be written as

HKK
�i,j� = −

1

3
�ŜiŜ j + 2�Q�1��T̂i,T̂ j� +

1

3
�ŜiŜ j − 1�Q�2��T̂i,T̂ j� ,

�13�

where Q�n� are functions of orbital pseudospin operators.
Their functional form can be obtained by tracking the orbital
occupancies in the initial and final states during a virtual
hopping process. In terms of spinless Fermi operators, ai

+ and
bi

+, increasing the occupancy of the a or b orbital on site i the
pseudospin-1/2 operators acting on the ground-state mani-

fold can be expressed as T̂i
z= �n̂ia− n̂ib� /2, T̂i

+=bi
+ai, and T̂i

−

=ai
+bi, where n̂ia=ai

+ai and n̂ib=bi
+bi with the constraint n̂ia

+ n̂ib=1. Whereas it is straightforward to see that the general
functional form is given by

Q�n��T̂i,T̂ j� = fzz
�n�T̂i

zT̂j
z +

1

2
f+−

�n��T̂i
+T̂j

− + T̂i
−T̂j

+�

+
1

2
f++

�n��T̂i
+T̂j

+ + T̂i
−T̂j

−� + fzx
�n��T̂i

zT̂j
x + T̂i

xT̂j
z� + fz

�n�


�T̂i
z + T̂j

z� + fx
�n��T̂i

x + T̂j
x� + f0

�n�, �14�

it is quite tedious to determine the coefficients by acting with
the hopping operator Ht �2� on all states in the ground-state
sector and calculating the overlap of the resulting states pro-
jected on the different intermediate states listed above. The
resulting explicit expressions are given in Appendix A.

C. Hopping and resulting Hamiltonian

In Sec. II B we have derived the general KK superex-
change Hamiltonian only assuming the effective hopping
matrices to be symmetric, t��= t��. In order to write down
the spin-orbital model specific to the pnictide planes we have
to use the corresponding hopping parameters. We use the
Slater-Koster integrals32 along with the geometry of the
Fe-As planes to determine all the hopping parameters involv-
ing the three t2g orbitals on the nearest-neighbor and next-
nearest-neighbor Fe sites. This considerably reduces the
number of independent hopping parameters that enter the
Hamiltonian. The direct d-d hoppings are considered to be
much smaller therefore we use hoppings via the As p orbitals
only which are given in Appendix B and depend on the di-
rection cosines l ,m ,n of the As-Fe bond, as well as on the
ratio �= �pd�� / �pd��.14�d�,33,34 These resulting effective hop-
ping matrix elements between the t2g Fe orbitals are shown
schematically in Fig. 2 and can be parametrized by the lattice
parameter �= �n / l� and �.

In Fig. 3 the dependence of the hopping matrix elements
on the ratio �= �pd�� / �pd�� is shown for a lattice parameter
�=0.7 which is slightly below the value resulting from the
Fe-Fe spacing and the distance of the As ions to the Fe
planes. Over a realistic range −0.2���0.2 we find a very
strong dependence of the hopping amplitudes on � and there-
fore expect the stability of possible phases to depend cru-
cially on �. This parameter cannot be obtained by geometri-

FIG. 2. Illustration of the effective hopping parameters t��, be-
tween �a� the dxz and dyz orbitals and �b� those involving the dxy

orbitals. The projections of the dxz and dyz orbitals on the Fe plane
are depicted in white and light gray, respectively, and the dxy orbit-
als are shown in dark gray.
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cal considerations but depends for instance on how strongly
the orbitals delocalize.

Having specified the effective hopping parameters �i
ª ti / t between the Fe orbitals for nearest and next-nearest
neighbors �see Fig. 2� which are parametrized entirely by the
ratio �= �pd�� / �pd�� and the lattice parameter �= �n / l�, we
can now write down the effective KK model for the Fe
planes. For convenience, we rewrite the Hamiltonian in the
form

HKK = J�
�i,j�

�1

2
�ŜiŜ j + 1��̂�i,j� + �̂�i,j�� , �15�

introducing an overall energy scale J=4t2 /U. The orbital

bond operators are defined as �̂= U
6t2 �Q�2�−Q�1�� and

�̂=− U
12t2 �Q�1�+2Q�2�� and depend on the effective couplings

�i, the relative strength of Hund’s coupling �=JH /U, and the
crystal-field splitting �=� /U. For the nearest-neighbor
bonds along x̂ and ŷ along the x̂� ŷ diagonals the operators
are given in Appendix C.

III. CLASSICAL PHASE DIAGRAMS

In this section we discuss the phase diagrams of the spin-
orbital Hamiltonian in the classical limit. We have four pa-
rameters that enter the model: � and � determine the relative
strength of various hopping parameters and � and � enter via
the energy denominators. Zero-temperature phase transitions
are discussed in Sec. II A, Sec. II B is devoted to the under-
standing of finite temperature transitions, and Sec. II C ana-
lyzes the phases in terms of the corresponding spin-only and
orbital-only models.

The results that we discuss below demonstrate that the
Hamiltonian is highly frustrated in the spin and orbital vari-
ables. While the spin frustration is largely due to the com-
peting interactions between nearest and next-nearest neigh-
bors, the frustration in orbital sector is more intrinsic and
exists within a single bond in the Hamiltonian. The spin

�� ,0� state is found to be stable over a wide range of param-
eter space due to the strong nnn AF coupling. However, de-
pending on the parameters, there are three possible orderings
of the orbitals that accompany the spin-stripe order. Two out
of these three orbital ordering patterns break the in-plane
symmetry of the lattice and hence are likely candidates for
explaining the orthorhombic transition observed in the parent
compounds.

A. Zero temperature

Since the effective KK Hamiltonian derived in Sec. II
contains a large number of competing terms it is almost im-
possible to anticipate what kind of spin-orbital orderings are
realized for different parameter values, in particular since the
signs and relative strengths of the effective hoppings �i be-
tween nearest-neighbor and next-nearest-neighbor Fe orbitals
crucially depend on the ratio �= �pd�� / �pd�� as pictured in
Fig. 3. While the parameters �1, �4, and �7 do not show
large relative changes over the range of � shown in the fig-
ure, there are very clear crossings between �2 and �3 and �5
and �6.

Recall that �5 and �6 are the hoppings between nearest
and next-nearest neighbors involving orbital �c�ª �xy�. If we
infer the spin order arising purely from the nondegenerate �c�
orbital, it suggests that the spin state should be
�� ,0�-ordered for �5

2�2�6
2 and �� ,��-ordered otherwise.

Therefore, this would imply that as �→−0.2 the magnetic
superexchange resulting from the �c� orbitals only favors
�� ,�� antiferromagnetism, whereas the �� ,0� stripe AF be-
comes favorable for �→0.2.

A similar spin-only analysis for the degenerate orbitals
�a� , �b� is not possible, and one has to treat the full spin-
orbital Hamiltonian in order to find the ground states. Nev-
ertheless, the complicated variations in the hopping param-
eters already suggest that we can expect a very rich and
complex phase diagram for the ground state of the spin-
orbital Hamiltonian. In particular in the region of intermedi-
ate � where the magnetic superexchange model resulting
from the �c� orbitals only becomes highly frustrated, we ex-
pect the magnetic ordering to depend crucially on the orbital
degrees of freedom.

We first look at the classical ground states of this model.
We make use of classical Monte Carlo method in order to
anneal the spin and orbital variables simultaneously, starting
with a completely random high-temperature configuration.
Using this method we identify the various ground states that
exist for a combination of model parameters. In order to
obtain a ground-state phase diagram, we minimize the total
energy for a set of variational states which also include all
the Monte Carlo ground states obtained for different choice
of parameters.

Figure 4 shows the resulting T=0 phase diagram for vary-
ing �=JH /U and �= �pd�� / �pd��. The lattice parameter � is
fixed to 0.7, which is close to the experimental value for the
oxypnictides. The crystal-field splitting between the �c� and
the �a� , �b� orbitals is considered to be very small, �=� /U
=0.01. As expected, a large number of phases are present in
the phase diagram.

FIG. 3. �Color online� Various hopping parameters �iª ti / t as
illustrated in Fig. 2 as a function of the ratio �= �pd�� / �pd�� for
the lattice parameter �=0.7.

KRÜGER et al. PHYSICAL REVIEW B 79, 054504 �2009�

054504-6



With increasing � we indeed find a transition from a
�� ,�� to a �� ,0� antiferromagnet as suggested from the
analysis of the frustrated magnetic superexchange model in-
volving only the �c� orbitals. This is not surprising since the
corresponding couplings �5

2 and/or �6
2 are sufficiently strong

and as �→0.2 the biggest hopping element is in fact given
by �6 between next-nearest-neighbor �c� orbitals �see Fig. 3�.
Whereas the �� ,0� stripe magnet for large � is accompanied
by an antiferro-orbital ordering of the Tz components corre-
sponding to a checkerboard arrangement of the �a� and �b�
orbitals �see Fig. 5�c�� for intermediate small �, we find two
�� ,0� magnetic phases possessing orbital orderings which
are likely to break the in-plane symmetry of the lattice struc-
ture.

For small � we find a ferro-orbital arrangement of the Tz
components corresponding to the formation of chains along
the ferromagnetically coupled spin directions �see Fig. 5�a��.
The existence of this orbital order crucially depends on the
pre-existence of a spin-stripe state, which generates
magnetic-field-like terms for the orbital pseudospins. This
will be discussed in detail when we try to understand the
thermal phase transitions. For larger � the orbital order
changes to an orbital-�� ,0� tweed pattern with a condensa-
tion of the Tx components. This corresponds to the formation
of orbital zigzag chains along the antiferromagnetically
coupled spin direction as pictured in Fig. 5�b�. Interestingly,
the stripes in the magnetic and orbital sectors have the same
orientation, contrary to the conventional Goodenough-
Kanamori rules. However, since we are dealing with a highly
frustrated spin-orbital model involving nearest-neighbor and
next-nearest-neighbor bonds, these naive rules are not ex-
pected to hold. The tweed orbital order is expected to lead to

a displacement pattern of the As ions, which can in principle
be observed in x-ray diffraction experiments. The tweed or-
bital pattern should show up as a higher-order structural
Bragg peak at �� ,0�. The orbital order might also be directly
visible resonant x-ray diffraction at the iron K-edge, a tech-
nique that was pioneered in the manganites,35–37 and is
nowadays available for all transition-metal K-edges, in par-
ticular the iron one.38 Polarization analysis and azimuthal
angle dependence can distinguish between charge, spin, and
orbital contributions to the resonant signal35 which gives the
possibility in the iron pnictides to single out the tweed orbital
pattern.

The orbital-stripe order persists to the regime of larger
negative � where the magnetic order changes to the �� ,��
antiferromagnet. This shows that the orbital tweed state does
not have spin-�� ,0� order as a prerequisite, and therefore
this orbital order can, in principle, exist at temperatures
higher than the spin transition temperatures. In the regime of
large Hund’s coupling, ��0.3 the system becomes ferro-
magnetic. This tendency is easy to understand since in the
limit �→1 /3 the charge-transfer gap closes and the KK
model is dominated by processes involving the low-lying 4A2
high-spin multiplet favoring a ferromagnetic superexchange.

Let us further explore how the ground-state phase dia-
gram changes as we vary the lattice parameter � and the
crystal-field splitting �. Figure 6 shows the same phase dia-
gram as in Fig. 4 but for a slightly larger separation of the As
ions to the Fe-planes, �=0.8. The two interesting phases with
magnetic �� ,0� and orbital-stripe and orbital ferro-orderings
do not appear in this phase diagram indicating that the sta-
bility of these phases crucially depends on the relative
strength of nearest and next-nearest hoppings which can be
tuned by �. Presence of a tetracritical point is an interesting
feature in this phase diagram.

Finally, we analyze the dependence on the crystal-field
splitting �=� /U which so far we assumed to be tiny. We do
not find any qualitative change in the ground-state phase
diagram with increasing �. In particular, there are no new
phases that appear and therefore the crystal-field splitting

FIG. 4. �Color online� �-� phase diagram for �=0.7 and �
=0.01. �=JH /U and �= �pd�� / �pd��. The phases are denoted by
their ordering wave vectors in the spin and orbital variables. Tz or
Tx refers to the component of the orbital pseudospin that is satu-
rated in the ordered state.

FIG. 5. �Color online� Schematic pictures of the three ground-
state orbital ordering patterns that accompany the spin-stripe phase.
�a� Orbital ferro, �b� orbital stripe, and �c� orbital antiferro.
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does not seem to be a crucial parameter. For example, the
phase diagram in the �-� /�-plane for �=0.7 and �=−0.05
shown in Fig. 7 indicates that a change in � only leads to a
small shift of the phase boundaries.

B. Finite temperature

To obtain the transition temperatures for the various phase
transitions, we track different order parameters as a function

of temperature during Monte Carlo annealing where we mea-
sure the temperature in units of the energy scale J. For ex-
ample, the spin structure factor is defined as

S�q� =
1

N2�
i,j

�Si · S j�ave
iq·�ri−rj�, �16�

where �. . .�av denotes thermal averaging and N is the total
number of lattice sites. The orbital structure factor O�q� is
defined analogously by replacing the spin variables by the
orbital variables in the above expression. Depending on the
ground state, different components of these structure factors
show a characteristic rise upon reducing temperature.

We fix �=0.01, �=0.7, and �=−0.05 and track the tem-
perature dependence of the system for varying �. For T=0
this choice of parameters corresponds to a cut of the phase
diagram shown in Fig. 4 through four different phases in-
cluding the two �� ,0� stripe AFs with orbital orderings
breaking the in-plane lattice symmetry.

In Fig. 8 the temperature dependence of the correspond-
ing structure factors is shown for representative values of
Hund’s rule coupling �. For small values of � the ground
state corresponds to the orbital-ferro and spin-stripe states as
shown in the phase diagram in Fig. 4. Figure 8�a� shows the
temperature dependence of S�� ,0� and O�0,0� which are the
order parameters for the spin-stripe and orbital-ferro states,
respectively. While the S�� ,0� leads to a characteristic curve
with the steepest rise at T�0.5, the rise in O�0,0� is quali-
tatively different. In fact there is no transition at any finite T
in the orbital sector. We can still mark a temperature below
which a significant orbital-ferro ordering is present. The ori-

FIG. 6. �Color online� �-� phase diagram for �=0.8 and �
=0.01. Note that the orbital-ordered states that break the orthorhom-
bic symmetry do not exist for this choice of �.

FIG. 7. �Color online� �-� /� phase diagram for �=0.7 and �
= �pd�� / �pd��=−0.05. This phase diagram illustrates the point that
� is not a crucial parameter in the Hamiltonian.

FIG. 8. �Color online� Relevant structure factors as a function of
temperature for different values of �. The lattice parameter and the
relative strength of � and � hopping are fixed as �=0.7 and
�=−0.05, respectively.
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gin of this behavior lies in the presence of a Zeeman-type
term for the orbital pseudospin.

For �=0.15, the phase diagram of Fig. 4 suggests a state
with stripe ordering in both spin and orbital variables. We
show the temperature dependence of S�� ,0� and O�� ,0� in
Fig. 8�b�. In this case both the spin and orbital variables
show a spontaneous ordering, with the spins ordering at a
much higher temperature. An interesting sequence of transi-
tions is observed upon reducing temperature for �=0.18 �see
Fig. 8�c��. This point lies close to the phase boundary be-
tween spin-stripe and spin-ferro states with the orbital-stripe
ordering. The spin-stripe order parameter S�� ,0� shows a
strong rise near T=0.4. The orbital-stripe order sets in at T
�0.15. The onset of this orbital order kills the spin-stripe
order. Instead, we find that the �� ,�� components of the spin
structure factor shows a strong rise along with the �� ,0�
component of the orbital structure factor. Finally for �
=0.24 the orbital-stripe ordering is accompanied by the spin
antiferro-ordering, with the orbital ordering setting in at
slightly higher temperatures �see Fig. 8�d��.

The results shown in Fig. 8 are summarized in the T-�
phase diagram shown in Fig. 9. For small �, the ground state
is spin-stripe and orbital-ferro ordered. While the spin order
occurs at higher temperatures, there is no genuine transition
to the orbital-ferro state. The orbital-ferro state is driven by
the presence of a magnetic-field-like term for the orbital
pseudospin in the Kugel-Khomskii Hamiltonian. The stabil-
ity of the orbital-ferro state crucially depends on the presence
of the spin-stripe order. The dotted line joining the black
circles in the small-� range is only to indicate the tempera-
ture below which the orbital-ferro order is significant. This
typical temperature scale reduces with increasing � until the
system finds a different ground state for the orbital variables.
Note that the temperature scales involved are very small ow-

ing to the highly frustrated nature of the orbital model, nev-
ertheless there is no zero-temperature transition in this purely
classical limit.

The spin-stripe state remains stable with the transition
temperature reducing slightly. The transition temperature for
the orbital-stripe state increases upon further increasing �.
For 0.15���0.2, multiple thermal transitions are found for
the magnetic state. The spin-stripe order which sets in nicely
at T�0.35 is spoiled by the onset of orbital-stripe state,
which instead stabilizes the spin �� ,�� state. Beyond �
=0.2, The orbital-stripe state occurs together with the spin
antiferrostate, with the spin-ordering temperatures slightly
lower than those for the orbital ordering. For ��0.3, the
spin state becomes ferromagnetic.

C. Corresponding orbital-only and spin-only models

In an attempt to provide a clear understanding of the spin-
ordered and orbital-ordered phases, we derive the orbital
�spin� model that emerges by freezing the spin �orbital�
states. For fixed spin correlations, the orbital model can be
written as

HO = �
�

Kx
�� �

�i,j��x
Ti

�Tj
� + �

�

Ky
�� �

�i,j��y
Ti

�Tj
�

+ �
�

Kd
�� �

��i,j��
Ti

�Tj
� + Kz�

i

Ti
z. �17�

Here and below �· , ·� and ��· , ·�� denote bonds between
nearest-neighbor and next-nearest-neighbor pseudospins on
the square lattice, respectively. � denotes the component of
the orbital pseudospin. The effective exchange couplings for
this orbital-only model are shown in Fig. 10 as a function of
Hund’s coupling �=JH /U with the other parameters fixed as
�=0.01, �=−0.05, and �=0.7, as before. The solid lines are
obtained by fixing the spin degrees of freedom by the clas-
sical ground-state configurations of the corresponding
phases. For comparison, the effective couplings for disor-
dered spins are shown by dashed lines.

Similarly, we can freeze the orbital degrees of freedom to
obtain an effective Heisenberg model for spins,

HS = Jx �
�i,j��x

SiS j + Jy �
�i,j��y

SiS j + Jd �
��i,j��

SiS j . �18�

The coupling constants Jx, Jy, and Jd for spins are plotted in
Fig. 11.

Let us try to understand the phase diagram of Fig. 9 in
terms of these coupling constants. We begin with the small-�
regime where the ground state is spin stripe and orbital ferro.
Approaching from the high-temperature limit, we should
look at the spin �orbital� couplings with disordered orbitals
�spins�. The strongest constants turn out to be Jd, which is
slightly larger than Jx and Jy, all three being antiferromag-
netic. This suggests that the system should undergo a transi-
tion to a spin-stripe state consistent with the phase diagram.
The coupling constants of the orbital model are much weaker
in the small-� regime. The largest constant is Kd

xx suggesting
an orbital-stripe order. However, since the spin-stripe state
sets in at higher temperatures, in order to determine the or-

FIG. 9. �Color online� T-� phase diagram for �=0.01, �=0.7,
and �=−0.05.
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bital order one should look at the coupling constants corre-
sponding to the spin-stripe state. There are three main effects
�compare the solid and dashed lines in the low � regime in
Fig. 10�, �i� x and y directions become inequivalent in the
sense that the couplings along x are suppressed while those
along y are enhanced, �ii� the diagonal couplings are reduced
strongly, and �iii� a single-site term is generated which acts
as magnetic field for the orbital pseudospins. It is in fact this
single-site term that controls the ordering of the orbitals at
low temperatures. This also explains the qualitatively differ-
ent behavior of the orbital-ferro-order parameter observed in
Fig. 8�a�. Within the spin-stripe order, the single-site term
becomes weaker with increasing � whereas the diagonal
term increases. This leads to a transition in the orbital sector
from an orbital-ferro to an orbital-stripe phase near �=0.11.
The region between 0.14 and 0.2 in � is very interesting.

Approaching from the high temperature the spins order into
the stripe state but as soon as the orbitals order into stripe
state at lower temperature the diagonal couplings Jd are
strongly reduced and become smaller than Jy /2. This desta-
bilizes the spin-stripe state and leads to a spin antiferro-
ordering. For larger � the orbital ordering occurs at higher
temperature. There is another transition slightly below �
=0.3 where spins order into a ferro state. This is simply
understood as Jx=−Jy from the coupling constants of the
Heisenberg model.

IV. MAGNETIC EXCITATION SPECTRA

We now set out to compute the magnetic excitation spec-
tra, treating the orbital pseudospins as classical and static
variables. Fixing the orbital degrees of freedom for a given
set of parameters by the corresponding ground-state configu-
ration, we are left with an S=1 Heisenberg model written in
Eq. �18�. The exchange couplings are plotted in Fig. 11. As-
suming the presence of local moments, such J1-J2 models
with a sufficiently large next-nearest-neighbor exchange
have been motivated and used to rationalize the �� ,0� mag-
netism in the iron pnictides39 and been used subsequently to
calculate the magnetic excitation spectra,40,41 where the in-
corporation of a relatively strong anisotropy between the
nearest-neighbor couplings turned out to be necessary to un-
derstand the low-energy spin-wave excitations.41

In the presence of orbital ordering such an anisotropy of
the effective magnetic exchange couplings appears naturally.
Both, the orbital-ferro and the orbital-stripe orders lead to a
sizable anisotropy in the nearest-neighbor couplings, Jx and

FIG. 10. �Color online� The coupling constants as a function of
�=JH /U for the orbital-only model with frozen spin correlations
for �=0.01, �=−0.05, and �=0.7. The couplings along x, y, and
diagonal directions are plotted in panels �a�, �b�, and �c�, respec-
tively. The single site term is plotted in �b� to indicate that this term
arises due to a ferromagnetic bond along y direction. The solid lines
correspond to the ground-state spin order and the dashed lines are
for a paramagnetic spin state. The vertical dashed line indicates the
location in � of the phase transition from spin-stripe to spin-
antiferro state as seen in Fig. 9.

FIG. 11. �Color online� Effective exchange couplings Jx and Jy

for nearest-neighbor and Jd for next-nearest-neighbor spins as a
function of �=JH /U for �=0.01, �=−0.05, and �=0.7. The solid
lines correspond to the couplings resulting for the corresponding
orbital ground states, whereas the dashed lines correspond to the
orbitally disordered case. Note that for the orbitally disordered case
Jx=Jy for all values of �. The vertical dashed line indicates the
location in � of the various phase transition as seen in Fig. 9.
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Jy, where the anisotropy is much stronger for the orbital-
ferro order �see Fig. 11�. An even more drastic effect is the
huge suppression of Jd in the orbital-stripe regime.

On a classical level, the magnetic transitions are easily
understood in the spin-only model �18� as discussed before.
The transition from the stripe AF to the �� ,�� AF at �
�0.14 occurs exactly at the point where Jy =2Jd, whereas the
transition from �� ,�� to ferromagnetic order at ��0.3 cor-
responds to the point Jx=−Jy.

We proceed to calculate the magnetic excitation spectra in
the Q= �� ,0� and �� ,�� phases within a linear spin-wave
approximation. The classical ground states are given by Sr
=S�0,0 ,�r�, with �r=exp�iQr�= �1. After performing a

simple spin rotation, Sx= S̃r
x, Sr

y =�rS̃r
y, and Sr

z=�rS̃r
z, we ex-

press the rotated spin operators by Holstein-Primakoff

bosons, S̃+=�2S− n̂b, S̃−=b†�2S− n̂, and S̃z=S− n̂, with n̂
=b†b to obtain the spin-wave Hamiltonian,

H = S�
q

�Aq�bq
†bq + b−qb−q

† � + Bq�bq
†b−q

† + b−qbq�� ,

with

Aq = �− Jx cos Qx + Jx
1 + cos Qx

2
cos qx − Jd cos Qx cos Qy

+
Jd

2
�1 + cos Qx cos Qy�cos qx cos qy� + x ↔ y ,

Bq = Jx
1 − cos Qx

2
cos qx + Jy

1 − cos Qy

2
cos qy

+ Jd�1 − cos Qx cos Qy�cos Qx cos Qy ,

yielding the spin-wave dispersion �q=S�Aq
2−Bq

2 and the in-
elastic structure factor at zero temperature,42

Sinel�q,�� =�1 − �q

1 + �q
��� − �q� , �19�

with �q=Bq /Aq. The resulting excitation spectra are shown
in Fig. 12 for different values of �. In the case of disordered
orbitals, the �� ,0� antiferromagnet order is stable up to �
�0.25. Since Jx=Jy the spectrum is gapless not only at the
ordering wave vector �� ,0� but also at the antiferromagnetic
wave vector �� ,��. However, the spectral weight is centered
close to the ordering wave vector and goes strictly to zero at
the antiferromagnetic wave vector. In the presence of orbital
ordering the next-nearest-neighbor couplings are anisotropic
Jx�Jy which in the case of the �� ,0�-AF leads to a gap at
the antiferromagnetic wave vector, ���,��
=2��2Jd−Jy��Jx−Jy�. Since the anisotropy and the diagonal
exchange are large in the orbital-ferro state we find a very
big gap at �� ,��. This gap reduces drastically for bigger �
where the orbital-stripe state becomes favorable. Due to the
large reduction in Jd and also of the anisotropy, the gap is
considerably smaller and continuously goes to zero as we
approach the transition to the �� ,��-AF at ��0.14 where
2Jd−Jy =0. This of course also leads to a strong anisotropy of
the spin-wave velocities, vy /vx=��2Jd−Jy� / �2Jd+Jx�. On

approaching the magnetic transition we find a significant
softening of modes along the �� ,0�− �� ,�� direction which
leads to a considerable reduction in magnetic moments close
to the transition.

V. DISCUSSION AND CONCLUSIONS

In the preceding we have derived and studied a spin-
orbital Kugel-Khomskii Hamiltonian relevant to the Fe-As

FIG. 12. �Color online� Spin-wave excitation spectra for differ-
ent values of �. Top: �� ,0� magnet for disordered orbitals. The
spectral weights are coded by line thickness and color; high inten-
sity corresponds to red, low intensity to blue. Middle: �� ,0� magnet
for orbital-ferro ��=0.03,0.07,0.11� and orbital-stripe
��=0.12,0.13,0.14� orders. Bottom: �� ,�� magnet with orbital-
stripe order ��=0.15,0.17, . . .�.
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planes of the parent compound of the iron superconductors.
A variety of interesting spin-ordered and orbital-ordered
phases exist over a physical regime in parameter space. Due
to the peculiarities of the pnictide lattice and this particular
crystal-field state, we show that the relevant Kugel-Khomskii
model is of a particularly interesting kind.

The essence of the spin-charge-orbital physics is dynami-
cal frustration. With so many “wheels in the equation” it
tends to be difficult to find solutions that satisfy simulta-
neously the desires of the various types of degrees of free-
dom in the problem. This principle underlies the quite com-
plex phase diagrams of, for instance, manganites. But this
dynamical frustration is also a generic property of the spin-
orbital models describing the Jahn-Teller degenerate Mott
insulators. In the classic Kugel-Khomskii model43 describing
eg degenerate S=1 /2 3d9 systems of cubic 3D systems,
Feiner et al.44,45 discovered a point in parameter space where
on the classical level this frustration becomes perfect. In the
present context of pnictides this appears as particularly rel-
evant since this opens up the possibility that quantum fluc-
tuations can become quite important.

We propose two specific orbital-ordered phases that ex-
plain the orthorhombic transition observed in the experi-
ments. These are orbital-ferro and orbital-stripe states. The
orbital-stripe order is particularly interesting since it leads to
a spin model that provides possible explanation for the re-
duction in magnetic moment. It is our main finding that in
the idealized pnictide spin-orbital model the conditions ap-
pear optimal for the frustration physics to take over. We find
large areas in parameter space where frustration is near per-
fect. The cause turns out to be a mix of intrinsic frustration
associated with having t2g-type orbital degeneracy and the
frustration of a geometrical origin coming from the pnictide
lattice with its competing J1-J2 superexchange pathways.
The significance of this finding is that this generic frustration
will render the spin-orbital degrees of freedom to be ex-
tremely soft, opening up the possibility that they turn into
strongly fluctuating degrees of freedom—a desired property
when one considers pnictide physics.

We argued that the orthorhombic transition in half-filled
pnicitides and the associated anomalies in transport proper-
ties can be related to orbital order. When the parameters are
tuned away from the frustration regime the main tendency of
the system is to antiferro-orbital ordering, which is the usual
situation for antiferromagnets. An important result is that in
the regime of relevance to the pnictides where the frustra-
tions dominate we find phases that are at the same time
�� ,0� magnets and forms of orbital order that are compatible
with orthorhombic lattice distortions �Figs. 4 and 5�. Besides
the literal ferro-orbital-ordered state �Fig. 5�a��, we find also
a �� ,0� or tweed orbital order �Fig. 5�b��. This appears to be
the more natural possibility in the insulating limit, and if the
weak superlattice reflections associated with this state would
be observed this could be considered as a strong support for
the literalness of the strong-coupling limit. Surely, the effects
of itinerancy are expected to modify the picture substantially.
Propagating fermions are expected to stabilize ferro-orbital
orders,46,47 which enhances the spatial anisotropy of the spin-
spin interactions further.26

Among the observable consequences of this orbital phys-
ics is its impact of the spin fluctuations. We conclude the

paper with an analysis of the spin waves in the orbital-
ordered phases, coming to the conclusion that also the spin
sector is quite frustrated, indicating that the quantum spin
fluctuations should be quite strong, and offering a rationale
for a strong reduction in the order parameter.

Thus we have forwarded the hypothesis that the undoped
iron pnictides are controlled by a very similar spin-charge-
orbital physics as found in ruthenates and manganites. To
develop a more quantitative theoretical expectation is less
straightforward, and as it is certainly beyond standard LDA
and LDA+U approaches will require investigations of corre-
lated electron models such as we have derived here,48,49 tak-
ing note of the fact that the pnictides most likely belong to
the border line cases where the Hubbard U is neither small
nor large compared to the bandwidth.50
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APPENDIX A: EFFECTIVE INTERACTION AMPLITUDES

By acting with the hopping operator Ht �2� on all states in
the ground-state sector and calculating the overlap of the
resulting states projected on the different intermediate states,
we find the effective interaction amplitudes. For the high-
spin intermediate state �n=1� we find by projecting on the
intermediate 4A2 multiplet,

fzz
�1� =

4tab
2 − 2�taa

2 + tbb
2 �

	�4A2�
,

f+−
�1� = −

4taatbb

	�4A2�
,

f++
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4tab
2

	�4A2�
,

fzx
�1� =

4tab�tbb − taa�
	�4A2�

,

fz
�1� =

tbc
2 − tac

2
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fx
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2tactbc
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2tab
2 + taa

2 + tbb
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+

tac
2 + tbc

2

	�4A2� + �
, �A1�

where the hopping matrix elements have to be specified for a
particular bond. Likewise, we find by projections on the in-
termediate low-spin states �n=2�,
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The terms bilinear in the pseudospin operators result
solely from hopping processes involving the �a� and �b� or-
bitals only. The hoppings between the �c�ª �xy� orbitals enter
only as a positive constant in Q�2� leading to a conventional
antiferromagnetic superexchange contribution. Interestingly,
the coupling between the �c� and �a� , �b� orbitals results in
magnetic field terms for the orbital pseudospins.

APPENDIX B: HOPPING MATRIX ELEMENTS

For a given As-Fe bond with direction cosines l ,m ,n, the
p to t2g hoppings are given by32

tx,zx = n��3l2�pd�� + �1 − 2l2��pd��� ,

tx,yz = lmn��3�pd�� − 2�pd��� ,

tx,xy = m��3l2�pd�� + �1 − 2l2��pd��� ,

ty,zx = tx,yz = tz,xy ,

ty,yz = n��3m2�pd�� + �1 − 2m2��pd��� ,

ty,xy = l��3m2�pd�� + �1 − 2m2��pd��� ,

tz,zx = l��3n2�pd�� + �1 − 2n2��pd��� ,

tz,yz = m��3n2�pd�� + �1 − 2n2��pd��� . �B1�

Using direction cosines �l ,m ,n� �l2+m2+n2=1�, with �l�
= �m� resulting from the orthorhombic symmetry, we find that
only the following hopping-matrix elements are nonzero,

taa
x = tbb

y
¬ t1,

tbb
x = taa

y
¬ t2,

taa
d = tbb

d
¬ t3,

tab
d− = − tab

d+
¬ t4,

tcc
x = tcc

y
¬ t5,

tcc
d
¬ t6,

tac
x = tbc

y
¬ t7. �B2�

These hopping matrix elements which are shown sche-
matically in Fig. 2 can be parametrized by the lattice param-
eter �= �n / l� and the ratio �= �pd�� / �pd�� as

t1

t
= − 2�B2 − A2 − C2� ,

t2

t
= − 2�B2 − A2 + C2� ,

t3

t
= − �B2 + A2 − C2� ,

t4

t
= 2AB − C2,

t5

t
= 2A2,

t6

t
= 2�B

�
�2

− A2,

t7

t
= 2�AC +

AB

�
−

B2

�
� , �B3�

where we have introduced the overall energy scale
t= �pd��2 /�pd and defined for abbreviation

A =
���3 − 2��
�2 + �23 ,
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B =
���3 + �2��

�2 + �23 ,

C =
�3�2 + �2 − �2��

�2 + �23 . �B4�

APPENDIX C: ORBITAL PART OF THE HAMILTONIAN

For the nearest-neighbor bonds along x̂ and ŷ the orbital
operators in the spin-orbital Hamiltonian are given by

�̂x,y =
1
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where we have defined r̃1=1 / �1−3�+��, r̃2= r̃1 ��=0, r̃3
=1 / �1+2�+��, and ri= r̃i ��=0 and introduced the functions

g1 =
1 + � + �

1 + 2� − �2 , �C3�

g2 =
1 + � + 2�
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Likewise, for the bonds along the x̂� ŷ diagonals we ob-
tain
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