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The spatially anisotropic triangular antiferromagnet is investigated with the numerical diagonalization
method. As the anisotropy varies, the model changes into a variety of systems such as the one-dimensional,
triangular, and square-lattice antiferromagnets. Taking into account such a geometrical character, we impose
the screw-boundary condition, which interpolates smoothly the one- and two-dimensional lattice structures.
Diagonalizing the finite clusters with N=16,20,...,32 spins, we observe an intermediate phase between the
valence-bond solid (VBS) and Néel phases. Suppressing the intermediate phase by applying the ring exchange,
we realize a direct VBS-Néel transition. The simulation data indicate that the transition is a continuous one
with the correlation-length critical exponent »=0.80(15). These features are in agreement with the
deconfinement-criticality scenario advocated by Senthil and co-workers in the context of the high-temperature

superconductivity.
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I. INTRODUCTION

According to the deconfinement-criticality scenario,'™ in

(2+1) dimensions, the phase transition separating the
valence-bond solid (VBS) and Néel phases is continuous,
accompanied with unconventional critical indices. Naively,
such a transition should be discontinuous? because the adja-
cent phases possess distinctive order parameters such as the
VBS-coverage pattern and the sublattice magnetization, re-
spectively. A good deal of field-theoretical investigations has
been made to clarify this issue.>® For instance, as a low-
energy effective description, the QED; theory has been
investigated;’~ it would be intriguing that the theory exhibits
a deconfinement transition.'® On one hand, because of the
magnetic frustration, the Monte Carlo simulation suffers
from the negative-sign problem to realize the VBS phase.
However, in recent Monte Carlo simulations,!"'? the biqua-
dratic interaction, rather than the magnetic frustration, has
been utilized. Thereby, it turned out that the biquadratic-
interaction-driven transition is a continuous one with uncon-
ventional critical indices. (On the contrary, in Refs. 13-15, it
was claimed that the transition would be a weak first-order
one.)

In this paper, we investigate the spatially anisotropic tri-
angular antiferromagnet!®!7 with the ring exchange by
means of the numerical diagonalization method. As the an-
isotropy varies, the model changes into one- and two-
dimensional systems, and correspondingly, a variety of
phases appear. To cope with such a geometrical peculiarity,
we impose the screw-boundary condition, which interpolates
the one- and two-dimensional lattice structures smoothly.

To be specific, we present the Hamiltonian for the spa-
tially anisotropic triangular antiferromagnet with the ring ex-
change

H=JESISJ+J,E SISJ+J4E (Pljkl+P;}<l) (1)

(i) i [ijki]
The quantum spin-1/2 operators {S;} are placed at each
triangular-lattice point i. The symbol P;j; denotes a ring-
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exchange operator with respect to a plaquette [i,/,k,[] con-
sisting of two adjacent triangles; namely, as to a plaquette
state |§;D§i), the operation P,y translates it into |§i|:|§i)
The summations Xy, 2y, and X, run over all possible
vertical nearest-neighbor pairs, remaining nearest-neighbor
pairs, and plaquette spins, respectively; the triangular lattice
is directed so that one of the triangular edges points upward.
The parameters J, J', and J, are the corresponding coupling
constants. (In Sec. II, we present an explicit expression for
the Hamiltonian matrix, referring to the technical details of
the screw-boundary condition.) Hereafter, we consider J as a
unit of energy; namely, we set J=1.

In Fig. 1, we present a schematic phase diagram; the de-
tails are explained in Sec. III. As mentioned above, the aim
of this paper is to survey the direct VBS-Néel transition; in
this sense, the ring exchange J, is significant to realize the
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FIG. 1. A schematic phase diagram for the spatially anisotropic
triangular antiferromagnet (1) is presented. Solid (dashed) line
stands for the first-(second-) order phase boundary. Our concern is
to realize a direct VBS-Néel transition by applying the ring ex-
change J, and analyze the singularity in the context of the decon-
finement criticality. Concerning the singularities of the phase
boundaries surrounding the intermediate phase, we follow the con-
clusion of Ref. 22.
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VBS-Néel transition. A number of limiting cases were stud-
ied in Refs. 18-23. First, the case J,=0 was investigated
with the spin-wave,'® series-expansion,'®?’ large-N,”! and
numerical-diagonalization?” methods. The regime of the in-
termediate (triangular antiferromagnetic) phase®* was esti-
mated as 0.27<J'<2, 0.25<J'<1.43, 0.13<J'<1.71,
and 0.78(5)<J’' <1.15(10), respectively. (Some analyses
predict two types of intermediate phases. Such a detail is
ignored for simplicity.) These results appear to be unsettled.
It is a purpose of this paper to survey the intermediate phase.
Second, the spatially isotropic (J'=J) case in the presence of
the ring exchange was investigated in Ref. 23; here, the ge-
neric types of ring-exchange interactions were considered in
the context of the helium adsorbate. It was reported that the
J,-driven phase transition occurs in agreement with our ob-
servation.

As mentioned above, model (1) has a geometrical pecu-
liarity. That is, as the spatial anisotropy J' changes, model
(1) reduces to the one-dimensional (J'=0), triangular (J'
=1), and square-lattice (J'—o0) antiferromagnets succes-
sively. (Hence, for sufficiently large J’, the conventional
noncollinear Néel phase appears.) Notably enough, the phase
diagram, Fig. 1, reflects this geometrical character. In order
to take into account this geometrical character, we imple-
mented the screw-boundary condition, which interpolates the
one- and two-dimensional-lattice structures smoothly.

In fairness, it has to be mentioned that the VBS-Néel tran-
sition was studied for the frustrated square-lattice antiferro-
magnet, namely, the J;-J, model.>?’ According to the
series-expansion method,”> the Néel (J,/J,=<0.4), VBS
(0.4=J,/J,=0.6), and collinear (0.6=<J,/J,) phases appear
successively as the magnetic frustration changes. The VBS
phase seems to be dominated by the presence of the collinear
phase. (Note that for J,/J; — o, the system reduces to two
independent square-lattice antiferromagnets. The collinear
state consists of two independent Néel orders.) In this paper,
we dwell on the triangular antiferromagnet (1), which exhib-
its an isolated VBS-Néel transition.

The rest of this paper is organized as follows. In Sec. II,
we explicate the simulation algorithm, placing an emphasis
on the screw-boundary condition. In Sec. III, we show the
finite-size-scaling analysis of the simulation data. In Sec. IV,
we present the summary and discussions.

II. SIMULATION METHOD: SCREW-BOUNDARY
CONDITION

In this section, we present an explicit expression for the
Hamiltonian, Eq. (1), under the screw-boundary condition.
To begin with, we present a schematic drawing of the finite-
size cluster in Fig. 2. As shown in the figure, the spins con-
stitute a one-dimensional (d=1) alignment {S;} (i
=1,2,...,N). The dimensionality is lifted to d=2 by the
bridges over the vth-neighbor interactions. As mentioned in
Sec. I, the spatially anisotropic triangular antiferromagnet
possesses a geometrical character such that it reduces to a
one-dimensional antiferromagnet in the limit J' —0. In this
sense, the geometrical peculiarity is seized by the screw-
boundary condition. Actually, for a rectangular cluster with
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FIG. 2. A schematic drawing of the spin cluster under the screw-
boundary condition for the spatially anisotropic triangular antifer-
romagnet (1) is presented. As indicated, the spins constitute a one-
dimensional (d=1) alignment {S;} (i=1,2,...,N) via the
longitudinal coupling J. The dimensionality is lifted to d=2 by the
bridges over the vth-neighbor pairs through the transverse coupling
J'. The screw pitch v is given by Eq. (5).

the system size 6 X 6, for instance, the length of the indepen-
dent chains in the limit J'—0 is merely L=6. On the con-
trary, owing to the screw-boundary condition, we attain treat-
ing the chain length L=32 along the J-bond direction.

To be specific, we present an explicit expression for the
Hamiltonian matrix. We propose the following expression:

H=JH()+J'[Huv)+H@w+1)]+J Hs(1,v) + Hy(1,v + 1)
+H,(v+1,0)]. (2)

Here, the vth-neighbor Heisenberg interaction H(v) is given
by
N

Hv)= S Siu- 3)

i=1

(The periodic condition, namely, Sy,;=S;, is imposed.) Simi-
larly, the ring exchange is introduced via
N

H,(j,v) = E (P isj ivv,injen + H.C). (4)
i=1

We set the screw pitch to
n(\N)+1 for N=24

V= n(\N)

otherwise, )
with the round-off function n(x)=[x+0.5] and Gauss’ sym-
bol [...]; i.e., n(2.4)=2. The screw pitch v(N) converges to
v(N)/\N=1 for large system sizes N — ; hence, the spins
form a \WX \W network embedded on the torus. The rule,
Eq. (5), is intended to suppress the finite-size errors; actually,
by Eq. (5), we can set the screw pitch v to an even number
(for small N), which turns out to improve the finite-size be-
havior even for small system sizes. More specifically, the
screw-boundary condition introduces a frustration particu-
larly for the Néel-type magnetism (J' — o) and the frustra-
tion effect is suppressed by the above rule, Eq. (5).

The above formulae complete the basis of our scheme. As
shown in Fig. 2, the embedding geometry under the screw-
boundary condition is essentially one dimensional, admitting
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FIG. 3. The energy gap AE,(7,0%), Eq. (6), is plotted for J,
=0, various J', and N=(+) 16, (X) 20, (*) 24, ((J) 28, and (H) 32.
A softening instability, AE;<<0, takes place in the intermediate
phase 0.65(15) <J' <1.1(1).

us to calculate the Hamiltonian-matrix elements systemati-
cally with Eq. (2). In Sec. III, utilizing the Lanczos method,
we diagonalize the Hamiltonian matrix for the system sizes
N=32.

III. NUMERICAL RESULTS

In this section, we present the numerical results. We cal-
culate the excitation gap

AE(k,S) = Ej(k,S) = Eo(0,0%), (6)
with the ith low-lying energy E;(k,S%,) (i=1,2,...) within

tot
the sector (k,Sfot). Here, the index k denotes the wave num-
ber within the Brillouin zone —7=k=m. We impose the
screw-boundary condition (Fig. 2), and the Bloch wave k
extends along the spiral (J-bond) chain; hence, the reciprocal
space is one dimensional. The quantum number S, denotes
an eigenvalue of the operator =¥ ,S%. In the case of §%,=0,
additionally, we introduce an index =, which specifies the
inversion symmetry with respect to S7——S;. The sector
(0,0%) contains the ground state. In this sector, we shift the i
index so as to express the ground-state energy as E,(0,0%)
via i—i—1. (The ground-state energy is the starting point of
all excitations, and it is sensible to index the ground-state
energy as E;_, rather than i=1.) The linear dimension L of

the cluster is given by
L= \r'% (7)

because the N spins constitute a two-dimensional network as
shown in Fig. 2.

A. Spatially anisotropic triangular antiferromagnet: J,=0

In this section, we survey the regime without the ring
exchange J,=0. As mentioned in Sec. I, this case has been
studied in Refs. 18-22, and the details of the intermediate
phase remain unclear.

In Fig. 3, we plot the excitation gap AE,(w,0%) for J,
=0, various J’, and N=16,20,...,32. We notice that the
level crossings take place at J'=0.65 and J' = 1.1. That is,
the softening instability, AE,(7,0%) <0, occurs in the inter-

PHYSICAL REVIEW B 79, 054425 (2009)

mediate regime. We estimate the range of the intermediate
phase as

0.65(15) <J' < 1.1(1). (8)

Here, as an error indicator, we utilize the data scatters of the
J' intercept among N=20, 24, 28, and 32. (Several related
studies are overviewed afterward.)

Surveying various parameter ranges, we found that the
elementary-excitation gap opens at either k=0 or . The
softening of the branch k=7 suggests that the magnetic order
along the J-bond direction is unstable against a staggered
modulation. Such a staggered modulation fits the boundary
condition (constraint) such that the chain length N is always
set to an even number. On one hand, as shown in Fig. 2, the
number of spiral turns, N/v, of the chain is a fractional num-
ber and the magnetism along the spiral direction may not fit
the embedding geometry. Hence, the staggered order along
the chain direction becomes even stabilized, resulting in the
k= softening. On the one hand, in the VBS phase J’
<0.65, the energy gap AE,(m,0%) gets closed as the system
size enlarges; eventually, the ground state may be doubly
degenerated in the thermodynamic limit. This double degen-
eracy suggests that the J-bond chain is covered by the
dimers. (In this sense, the VBS picture of the present system
is not so complicated as compared to that of the square
lattice.?8-2)

On the contrary, in the Néel phase 1.1<<J', a positive gap
AE,(7,0%)>0 starts to open. In fact, in the limit J' — oo, the
model reduces to the square-lattice antiferromagnet. Hence,
the spins along the diagonal (J-bond) direction align ferro-
magnetically and the k= excitation exhibits a mass gap.

It is a good position to make an overview of the related
studies. According to the spin-wave,'® series-expansion,'”
large-N,>! and diagonalization studies,?” the ranges of the
intermediate phase are estimated as 0.27<<J' <2, 0.25</J’
<1.43,0.13<J'<1.71, and 0.78(5) <J' < 1.15(10), respec-
tively. Our result, Eq. (8), indicates that the VBS phase per-
sists up to a considerably large J', suggesting that the VBS
phase is robust. Similar conclusion was drawn from the di-
agonalization study by Weng et al.??> They diagonalized the
rectangular clusters with the sizes 6 X4, 8§ X4, and 6 X6.
Such a rectangular geometry is suitable for investigating the
Néel-type magnetic structure. On the contrary, the screw-
boundary condition meets the quasi-one-dimensional system
(VBS phase). The agreement between these approaches
would be encouraging.

As a reference, in Fig. 4, we present the ground-state
energy per unit cell, Ey(0,0%)/N, with N=32 for the same
parameter range as that of Fig. 3. In the small-J' regime, the
ground-state energy is close to the Bethe-ansatz solution,
Ey/N=-0.443..., for the one-dimensional Heisenberg anti-
ferromagnet. This fact suggests that the VBS phase is of
one-dimensional character.

Last, we mention a number of remarks concerning the
phase diagram. We made similar analyses for various values
of J,~0. The result is summarized in Fig. 1; as suggested by
Eq. (8), the intermediate-phase boundaries are not deter-
mined very precisely, and the boundaries in Fig. 1 are only
schematic. (The critical branch separating the VBS and Néel
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FIG. 4. The ground-state energy per unit cell, Ey(0,0%)/N, with
N=32 is presented for the same parameter range as that of Fig. 3. In
the small-J' regime, the ground-state energy is close to the Bethe-
ansatz solution, Ey/N=-0.443..., for the one-dimensional Heisen-
berg antiferromagnet.

phases is considered in Sec. III B.) Concerning the singulari-
ties of the phase boundaries surrounding the intermediate
phase, we followed the claim?? that the intermediate-VBS
(-Néel) phase transition is discontinuous (continuous).

B. Suppression of the intermediate phase
by the ring exchange J,

In this section, we explore the regime with the ring ex-
change J,#0. In Fig. 5, we plot the excitation gap
AE (,0%) for J,=0.07, various J', and N=16,20,...,32.
Comparing the result with that of Fig. 3, we notice that the
ring exchange J, suppresses the intermediate phase (soften-
ing instability). As mentioned in Sec. I, the suppression of
the intermediate phase by J, was demonstrated in Ref. 23 at
J'=1. In the present study, we have yet another parameter J'
and we are able to investigate the J'-driven VBS-Néel tran-
sition.

In Fig. 6, we plot the scaled energy gap L*AE;(0,1) for
J4,=0.07, various J’, and N=16,20, ... ,32. Note that the sec-
tor S;,,=1 corresponds to the triplet excitation created pref-
erentially on the J-bond chain. The behavior of the triplet
excitation contains information on the phase transition from
the VBS phase. Here, we set the dynamical critical exponent
to z=1, following the conclusion of the Monte Carlo

25 T T T T T T T T

AE1(n,0+)

FIG. 5. The energy gap AE,(m,0%), Eq. (6), is plotted for J,
=0.07, various J’, and N=(+) 16, (X) 20, (*) 24, () 28, and (H)
32. Owing to the ring exchange, the softening instability, namely,
AE; <0, does not occur any more.
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FIG. 6. The scaled triplet-excitation gap LAE(0,1) is plotted
for J,=0.07, various J', and N=(+) 16, (X) 20, (*) 24, ((J) 28, and
(M) 32. A continuous transition takes place at J.=1.2.

analyses'!"!> for the square-lattice antiferromagnet. [Note
that the energy gap AE, is proportional to the reciprocal
correlation length, and the product LAE, is a dimensionless
(scale invariant) quantity.] According to the scaling theory,
the curves of the scaled energy gap should intersect each
other at the critical point. In fact, we observe that a phase
transition takes place at J'=1.2. Surveying various parameter
ranges, we arrive at the phase diagram, as depicted in Fig. 1.

A remark is in order. As mentioned in Sec. I, naively, the
VBS-Néel transition should be discontinuous;2 actually, the
adjacent phases possess distinctive order parameters such as
the dimer-coverage pattern and the sublattice magnetization,
respectively. However, according to the deconfinement-
criticality scenario,! the spinon deconfining from a sea of
singlet dimers changes the singularity to a continuous one.
Our result supports this scenario. In Sec. III C, surveying a
critical index, we investigate the criticality of the VBS-Néel
transition in more detail.

C. Deconfinement criticality

In this section, we estimate the critical exponent v for the
VBS-Néel transition. In Fig. 7, we present the finite-size-
scaling plot, (J’—JC’)L””-LAEI(O,I), for J,=0.07, various
J', and N=16,20,...,32. Here, we set the scaling param-
eters to JL’,=1.2 and v=0.8; note that the former parameter
J!=1.2 was determined in Fig. 6. The data of Fig. 7 collapse
into a scaling curve, confirming that the transition is indeed
critical. Moreover, the critical exponent acquires an enhance-

LAE,(0,1)

- N W hH OO N®®O©O

FIG. 7. The finite-size-scaling plot, (J'=J))LY"-LAE(0,1), is
shown for v=0.8, JZ_: 1.2, J,=0.07, various J', and N=(+) 16, (X)
20, () 24, (OJ) 28, and (M) 32.
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FIG. 8. The finite-size-scaling plot, (J’—JL',)L””-LAEI(O,I), is
shown for v=0.8, J.=1.4, J,=0.1, various J', and N=(+) 16, (X)
20, (%) 24, (OJ) 28, and (M) 32.

ment, as compared to that of the 3d Heisenberg universality,
v=0.7112(5).32 (An overview of the related studies is ad-
dressed afterward.) Similarly, in Fig. 8, we present the finite-
size-scaling plot, (J'=J!)LY"-LAE(0,1), for J!=14, v
=0.8, J;,=0.1, and N=16,20, ...,32. Again, the data collapse
satisfactorily. Surveying various parameter ranges, we arrive
at

v=0.80(15). )

This is a good position to make an overview of the pre-
ceding Monte Carlo studies. As for the square-lattice antifer-
romagnet, the biquadratic-interaction-driven VBS-Néel tran-
sition was investigated in Refs. 11 and 12 and the critical
exponent was estimated as v=0.78(3) and v=0.68(4), re-
spectively. Moreover, as for the quasi-one-dimensional
spin-1 antiferromagnet, the index v=1/2.9 was reported*
(see Ref. 31 for a field-theoretical interpretation). (Note that
these models are free from the negative-sign problem and the
quantum Monte Carlo method is applicable.) We notice that
the results are not quite settled. A notable point is that the
exponent!! v=0.78(3) is significantly larger than that of the
d=3 Heisenberg universality class »=0.7112(5),3? suggest-
ing a peculiarity of the deconfinement criticality. Our result,
Eq. (9), also suggests a tendency of an enhancement as to v.
Nevertheless, our simulation result provides an evidence that
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the VBS-Néel transition is a critical one in agreement with
the deconfinement-criticality scenario advocated by Senthil
and co-workers.!™

IV. SUMMARY AND DISCUSSIONS

The spatially anisotropic triangular antiferromagnet with
the ring exchange, Eq. (1), was investigated by means of the
numerical diagonalization method. As the spatial anisotropy
J' varies, the model changes into a variety of systems such
as the one-dimensional, triangular, and square-lattice antifer-
romagnets successively. Taking into account such a geo-
metrical character, we adopt the screw-boundary condition as
shown in Fig. 2.

First, we survey the regime without the ring exchange
J4=0. The simulation result indicates that the intermediate
phase appears in 0.65(15)<<J’' <1.1(1). Our result shows
that the VBS phase is robust?>?? against the interchain cou-
pling J'. Second, by applying the ring exchange J,, we sup-
press the intermediate phase. Eventually, we attain the direct
VBS-Néel transition, which is under the current theoretical
interest in the context of the high-temperature superconduc-
tivity. Postulating z=1,""1? we analyze the simulation data in
terms of the finite-size scaling. Thereby, we estimate the
correlation-length critical exponent as »=0.80(15), confirm-
ing that the VBS-Néel transition is indeed a critical one. The
exponent is comparable to the preceding Monte Carlo re-
sults, »=0.78(3) (Ref. 11) and v=0.68(4),'? calculated for
the square-lattice antiferromagnet.

Our result provides an evidence that the VBS-Néel tran-
sition is critical, realizing the deconfinement criticality. Here,
the ring exchange plays a significant role. In Ref. 23, generic
types of ring-exchange interactions are considered in the
context of the helium adsorbate. Such an extension may also
lead to an improvement as to the finite-size behavior. This
problem will be addressed in a future study.
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